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A resilient system is a system that possesses the ability to survive and recover from the
likelihood of damage due to disruptive events or mishaps. The concept that incorporates
resiliency into engineering practices is known as engineering resilience. To date, engi-
neering resilience is still predominantly application-oriented. Despite an increase in the
usage of engineering resilience concept, the diversity of its applications in various engi-
neering sectors complicates a universal agreement on its quantification and associated
measurement techniques. There is a pressing need to develop a generally applicable
engineering resilience analysis framework, which standardizes the modeling, assessment,
and improvement of engineering resilience for a broader engineering discipline. This
paper provides a literature survey of engineering resilience from the design perspective,
with a focus on engineering resilience metrics and their design implications. The cur-
rently available engineering resilience quantification metrics are reviewed and summar-
ized, the design implications toward the development of resilient-engineered systems are
discussed, and further, the challenges of incorporating resilience into engineering design
processes are evaluated. The presented study expects to serve as a building block toward
developing a generally applicable engineering resilience analysis framework that can be
readily used for system design. [DOI: 10.1115/1.4034223]

1 Introduction

Change occurs perpetually in life. For an engineered system to
adapt to changes, this ability has to be designed into the system.
This practice is also known as engineering resilience. To promote
a better understanding of engineering resilience, there are several
basic questions that should be considered: (1) What is engineering
resilience? (2) Why is engineering resilience necessary? (3)
Where could engineering resilience be implemented? (4) When is
engineering resilience desired? and (5) How can engineering resil-
ience be modeled and quantified, and used to improve the design
of engineered systems?

Primarily popularized by researchers in the field of ecology,
resilience in an ecosystem is defined as the speed with which an
ecosystem returns to its equilibrium state following a perturbation
[1]. This idea of “speed of returning to equilibrium” has influ-
enced the origin of the engineering resilience concept [2]. In engi-
neering, speed of returning to equilibrium is typically associated
with: (1) how fast an engineered system can adapt to deviation
following a misfortune and/or (2) how swiftly an engineered sys-
tem can be restored from its disrupted states. Engineering resil-
ience is the concept that fuses resilience ability into engineering
practices. Resilience in engineering implies the ability of an engi-
neered system to autonomously sense and response to adverse
changes in health conditions, to withstand failure events, and to
recover from the effects of these unpredicted events [3]. A resil-
ient system, from the perspective of the U.S. Department of
Defense as reported in the literature [4], represents the system that
exhibits specific resilience properties, such as ability to repel,
resist, or absorb, ability to recover, and ability to adapt. A survey
of the definitions of resilience that have been reported in different
disciplines can be found in Refs. [5,6]. Engineering resilience has
been sought as an alternative or as a complement to the traditional

view of system safety to endure the possibility of failure [7–9].
The resilience of engineered systems has been addressed in many
different aspects, leading to the fast growing engineering disci-
pline referred to as “engineering resilience,” sometimes also
addressed as “resilience engineering” in the engineering society.

The continuous pursuit of developing a better, safer, and longer
lasting engineered system has pushed the continuous growth in
complexity and scale of engineering systems [3,10]. Subject to
operation in unpredictable and uncertain conditions, complex
engineered systems may require extraordinarily high safety pre-
cautions in design to account for unforeseen failure modes, such
as those induced by adverse natural disasters. However, in the
early design stage, it is very challenging, if not impossible, for
system designers to determine all the possible failure modes.
Thus, noticeable consideration has been given to engineering
resilience that it is necessary to be designed into engineered sys-
tems in order to cope with system complexity and unforeseen fail-
ure modes.

To date, the implementation of the engineering resilience con-
cept has been widely spotted in various engineering disciplines.
Many of the engineering resilience implementations are associated
with large-interconnected-complex systems, such as transportation
systems [11–19], power systems [5,20–24], production systems
[25–30], multitier supply chains [3,25,31–39], general infrastruc-
ture systems [5,20,40–47], health care systems [48–51], and many
more. The implementation of engineering resilience is not only
limited to complex systems applications, but the engineering resil-
ience concept could also be implemented to single-mechanical-
design system, such as aircraft actuators [52], aircraft controllers
[53–55], or computer numeric control machining systems [56].

Traditional research efforts were focused on developing a sys-
tem with high reliability to prevent failures. Although the high
reliability concept has managed to improve system performance,
there are two main reasons why high reliability is no longer suffi-
cient in some instances: (1) High reliability is costly. Improving
reliability in a system typically involves backup, redundant, or
standby systems and/or components. This simultaneously requires
additional costs. The costs involved in improving reliability would

1Corresponding author.
Contributed by the Design Automation Committee of ASME for publication in

the JOURNAL OF MECHANICAL DESIGN. Manuscript received February 29, 2016; final
manuscript received July 14, 2016; published online September 12, 2016. Assoc.
Editor: Mian Li.

Journal of Mechanical Design NOVEMBER 2016, Vol. 138 / 111408-1Copyright VC 2016 by ASME

D
ow

nloaded from
 http://appliedm

echanics.asm
edigitalcollection.asm

e.org/m
echanicaldesign/article-pdf/138/11/111408/6400827/m

d_138_11_111408.pdf by guest on 05 O
ctober 2024

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4034223&domain=pdf&date_stamp=2016-09-12


increase substantially as the system reliability level approaches
the maximum achievable reliability. At some point, it is no longer
economical to improve system reliability further as the law of
diminishing returns will apply. (2) Failures could be inevitable in
many engineering applications, even with very high system reli-
ability. For instance, a failure event with a zero probability of fail-
ure could still occur in engineering practice as suggested by the
probability theory. In addition, there are some cases where the
damage caused by the failure events is unavoidable and uncontrol-
lable, especially those adverse failure events which are induced
by nature. Engineering resilience has presented itself as the turn-
ing point in recent research efforts toward a more systematic way
of addressing failures of engineering systems. In cases when
achieving higher system reliability is no longer affordable and
failure is inevitable, engineering resilience offers the ability to
survive failures and to recover from calamities. Resilience is par-
ticularly appropriate when the system is expected to survive and
recover from low frequency-high impact disruptions [57].

Although engineering resilience has gained popularity among
designers, engineers, and practitioners, the consensus on how
engineering resilience can be designed, quantified, and improved
in engineered systems has not yet been reached. This may be
partly because engineering resilience, during its implementation,
is highly subject to the application context. It is dependent on the
architecture of the systems, the operating conditions, the type of
disruptive events, along with the magnitude of damage [57]. Dif-
ferent systems may be designed to be resilient to different disrup-
tions, which would most likely require different approaches. The
catch here is in what way or manner engineering resilience can be
translated to unambiguous quantifiable measures. To design or
create resilience in a system, a set of actions describing resiliency
can be further interpreted in the same quantifiable measures as
engineering resilience. After one identifies a proper way to quan-
tify engineering resilience, modifying system designs and opera-
tions thereby improving resilience can be further carried out.

This paper provides a literature survey of existing studies in
engineering resilience from a system design perspective, with the
focus on engineering resilience metrics and their design implica-
tions. This paper would offer a better understanding of the engi-
neering resilience concept in the engineering design community
and help promoting further developments of generally applicable
resilience quantification metrics, resilience analysis methodolo-
gies, and resilience design tools. These potential developments
are expected to be applicable in a broad range of applications in
the design of resilient-engineered systems. The rest of the paper is
structured as follows. The conceptual attributes of an engineering
resilience curve is first presented in Sec. 2, a survey of the avail-
able resilience quantification metrics is presented in Sec. 3, the
design implications of engineering resilience are then discussed in
Sec. 4, and conclusions drawn are summarized in Sec. 5.

2 Engineering Resilience Curve

Most engineered systems are exposed to uncertain, unpredict-
able, and potentially harsh operating conditions, which partake in
the alteration of system performance level over time (P(t)).
Figure 1 shows the performance behavior of a resilient-engineered
system compared to that of a nonresilient-engineered system, after
being subjected to a disruptive event.

A resilient-engineered system possesses the ability to recover
the system performance level from its disruptive state to its oper-
ating state as indicated in Fig. 1(a). On the other hand, a
nonresilient-engineered system may gradually decline toward a
significantly low performance level due to an unexpected disrup-
tive event. Depending on the inherent capabilities of the system to
withstand mishaps, the system may reach an unhealthy or
degraded stable-state (Fig. 1(b)). This scenario is indicated by a
lower performance level (Pv). If the system cannot survive the dis-
ruption, it will continue to worsen until the systems face a com-
plete failure or collapse state (Fig. 1(c)). From Fig. 1, it is

apparent that engineering resilience is more favorable when the
system is subjected to disruptive events.

Since resilience has been generally associated with the losses of
system performances after a disruptive event, a resilience curve is
thus typically represented as a system performance curve, P(t),
plotted against time, t. In general, there are four states in the time-
line of the engineering resilience concept. As illustrated in Fig. 2,
these four states are briefly explained as follows:

(1) Reliability state (SI): Baseline or original state, when the
system operates normally before the occurrence of disrup-
tive events (Po).

(2) Unreliability state (SII): Vulnerable state, when the system
degrades to Pv following a disruptive event at time td.

(3) Recovery state (SIII): Recovery state, when the system
improves its performance functions as a result of restorative
efforts. The restoration actions occur instantly from tv to tn.

(4) Recovered steady state (SIV): System performance reaches
a newly recovered steady state after successfully complet-
ing the recovery state at time tn.

There are many variations of the engineering resilience curve
apart from the one illustrated in Fig. 2. The various versions of
engineering resilience curves originate from different perspectives
that are mostly for conceptual and qualitative illustration of resil-
ience in the application of interest. These variations are mostly
due to differences in the unreliability profile and the recovery pro-
file for different engineering applications. As a disruptive event
typically varies in terms of severity and duration, the recovery
response may also vary in different scenarios [36]. Figure 3 shows
some examples of the conceptual attributes which lead to various
forms of the engineering resilience curve.

Following a disruptive event, the impact level captures the
severity of the event on the system performance. Impact level
could be measured through the difference between the initial

Fig. 1 Resilient versus nonresilient behavior

Fig. 2 Four states engineering resilience curve [25]
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performance level and the performance after the disruptive event
(Po�Pv) [36,60].

The unreliability profile and the degree of unreliability (h) vary
with the impact level and the inherent ability of the system to sur-
vive a disruption. Figure 3 shows three different unreliability pro-
files (u1, u2, u3). The first unreliability profile (u1) exhibits a sharp
vertical performance drop (hu1¼ 0 deg). In this scenario, the sys-
tem is interpreted as unable to endure the impact of a disruption
where the disruption may be unavoidable, sudden, and destructive.
The second unreliability profile (u2) shows a gradual decrease in
system performance and stabilized in a stable disruptive state
before the recovery takes place. In the literature [18,20,61], this
scenario is often referred to as a five-state resilience curve, as
depicted in Fig. 4. The third unreliability profile (u3) expresses a
gradual decline in system performance and immediate recovery.
Since engineering resilience is associated with an accompanying
swift recovery action, the recovery action should take place imme-
diately once the system has sensed a continuous drop in system
performance due to a disruptive event. The recovery action should
be proactive and preferably triggered before the system settles to
a stable disruptive state, as depicted in u2. The system unreliabil-
ity state and disrupted state in Fig. 4 can be generally reflected as
one unreliability state as both states exhibit nonoptimal perform-
ance level. Note that hu3> hu2, which also explains that u3 is able
to endure the impact of disruption better than u2. The performance
loss area of hu3 is lesser than hu2 although both scenarios are
recovered at the same time tv in Fig. 3.

The degree of recovery (c) determines how much system per-
formance can be recovered. Despite the fact that some failure
events cannot be foreseen, engineering resilience offers swift
recovery abilities to return the system performance function rap-
idly to its ideal operating condition (SIV). There are three possible
outcomes as seen in Fig. 3, SIV could be improved (higher than
baseline), stabilized (same as baseline), and deteriorated (lower

than baseline), all in line with the built-in resilience ability in the
system and the availability of required resources. The unreliability
profile and recovery profile in most resilience curves in this paper
are demonstrated as straight lines for simplicity purposes. In prac-
tical engineering applications, due to the presence of uncertain-
ties, both unreliability and recovery profiles are more likely to
exhibit nonlinear behavior. In some cases, convex and concave
profiles are also observed [36,51]. Figure 5 shows four representa-
tive behaviors of a recovery profile.

3 Resilience Quantification Metrics

Quantification of engineering resilience plays an important role
in defining resilience of an engineered system and further apply-
ing the resilience concept in the engineer design process.
Although it has been explored in diverse engineering disciplines,
to date, available engineering quantification metrics still exhibit
very little standardization. Agreement on a general quantifiable
measure remains a challenge. Many different approaches and
aspects (including uncertainties) should be taken into considera-
tion when it comes to quantifying engineering resilience. Highly
dependent on the application of interest, quantification metrics
could be classified as deterministic–probabilistic and/or
static–dynamic [62].

In this section, the available metrics are grouped based on the
derivation approaches of the resilience quantification metrics.
Some metrics could fit into more than one category. There are
strengths and weaknesses in every available resilience quantifica-
tion metrics, depending on the purpose of study and application of
interest. A compilation of resilience metrics as reported in this lit-
erature is provided in this section to show the diversity of the
available metrics. These resilience metrics are categorized based
on three categories, namely, (1) resilience curve, (2) pre- and post-
disruptions performances, and (3) reliability and restoration,
which are detailed below. Note that the available resilience quan-
tification metrics provided in this paper is not exhaustive.

3.1 Resilience Metrics Based on Resilience Curve. Since
the resilience curve is often used to illustrate the resilient behavior
of an engineered system undergoing a disruptive event, many
researchers have used the properties from the resilience curve to
quantitatively measure the resilience level of the system. In the
resilience curve, the area of concern is the shaded area in Fig. 3 or
6. This area is also referred as the “impacted area (IA),” which
defines the performance loss after a disturbance or disruptive
event. If the area is enclosed by a nonlinear recovery profile, the
performance loss can be approximated using the integral method.
In Ref. [63], loss of resilience (Wloss) is denoted as performance
loss. Wloss can be quantified by the magnitude of the expected deg-
radation in performance quality over recovery time, mathemati-
cally expressed in the following equation:

Fig. 3 Variants of a general resilience curve [58,59]

Fig. 4 Five states engineering resilience curve [18,20,61] Fig. 5 Various topology of recovery profiles [36]
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Wloss ¼
ðtn

td

½PoðtoÞ � PðtÞ�dt (1)

where Po(to) is the initial performance function before a disruptive
event at time (td), and P(t) is the performance quality of a system
which varies with time.

The shaded area of concern in Fig. 6 is also known as the resil-
ience triangle in the literature [59,60]. When the recovery profile
in Fig. 6 is assumed to be linear, a triangle formulation can be
integrated to quantifying resilience. As mentioned in Ref. [64],
the predicted resilience (W) is given in Eq. (2), in which X is the
percentage of lost performance (Po(to)�Pv(tv)), T is the time
required to recover to normal operation (tn� td), and T* is a long
time interval in general.

W ¼ Po toð Þ �
XT

2|{z}
Area of the

Triangle

1

T�

� �
(2)

The system performance does not necessarily show a steep or
extreme drop in the aftermath of a disruptive event, as illustrated
in Fig. 6. During td and tv, a gradual performance degradation may
be experienced by the system, as illustrated in Fig. 7. Most of the
gradual performance drops exhibit a nonlinear behavior. For the
nonlinear unreliability and recovery profiles, resilience can be
explained as the functional capability of a system following a haz-
ard over the control period (T¼ tn� td). As mathematically shown
in Eq. (3), W can be quantified as the normalized shaded region

under the system response (describing the functionality of a sys-
tem) after a disruptive event denoted as AP(t) in Fig. 7 [65].

W ¼
ðtn

td

APðtÞ
T

dt (3)

During the performance loss period from td to tn, W can be
quantified by taking the ratio of the areas below the system
response after a disruptive event (AP(t)) over the baseline system
response (BP(t)) from time to to T* [20,46,61], mathematically
shown in Eq. (4). BP(t) characterizes the system performance if
no disruptions occur from time to to T*. AP(t) characterizes the
system response in the presence of a disruptive event from time to
to T*. Equation (4) is also referred to as the integral resilience
[61].

W ¼

ðT�

t0

APðtÞ dtðT�

t0

BPðtÞ dt

(4)

In cases where BP(t) is measured in a relative scale and
assumed to be either 100% (or in other words a constant value of
1.0), the integral of the dominator in Eq. (4) will result in T*, and
thus, Eq. (4) could be further rewritten as Eq. (3), in this specific
case. Note that the time period proposed by Renschler et al. [65]
in Eq. (3) is different than the one in Eq. (4).

Instead of taking the integral value, AP(t) could also be quanti-
fied as the baseline performance BP(t) minus the performance loss
which is indicated by the impacted area (IA) in Fig. 7. In the case,
where the disruptive event occurs more than once in a long period
of time T*, Eq. (4) could be accordingly formulated as follows
[23,24]:

W ¼

ðT�

t0

BPðtÞ dt�
XNðT�Þ
i¼1

IAiðtiÞðT�

t0

BPðtÞ dt

(5)

where N(T*) is the total number of occurrences during time T*, i
is the event occurrence number, and IAi(ti) is the impacted
area caused by ith event at time ti. When BP(t) is assumed to be
a constant value of 1.0 and is combined with the scenario in
which the occurrence of the disruptive event is based on a Pois-
son process, an expected resilience metric could be derived
as [23,24]

W ¼ 1� kE½IA� (6)

where E[IA] is the expected impact area caused by the disruptive
event. E[IA] accounts for all the possible damage intensities. k is
the occurrence rate of the disruptive event per year. P(t), AP(t),
and BP(t) could either be deterministic or stochastic variables
depending on the application of interest. In order to mimic reality,
stochastic variables would be more preferred in resilience analysis
because of the incorporation of probabilities, randomness, and
uncertainties.

In addition to the performance loss, other resilience dimensions
could also be derived from a resilience curve. Figure 8 depicts
five resilience dimensions: recovery, impact, performance loss,
recovery profile function (f(t)), and weighted-sum (g(t)) as pro-
posed in Ref. [36]. The description of each dimension and the cor-
responding equations are listed in Table 1. The resulting
resilience value could be calculated by the submission of the
weighted resilience dimensions in Eq. (7). w1,.,5 is the weight cor-
responding with the dimension of resilience

Fig. 6 Predicted performance loss [63,64]

Fig. 7 Performance loss before and after disaster
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W ¼ w1ðRecoveryÞ þ w2ðImpactÞ þ w3ðPerformance LossÞ
þw4ðProfile LengthÞ þ w5ðWeighted� sumÞ (7)

3.2 Resilience Metrics Based on Pre- and Postdisruption
Performances. Engineering resilience is often affiliated with per-
formance loss of the system undergoing a disruptive event. There-
fore, one of the approaches to quantify resilience is the
measurement of performance changes, where resilience metrics
could be represented as the ratio of system performance before
(pre-) and after (post-) disruption. Expressing resilience based on
system performance is highly application-specific, as different
applications generally have different performance functions. In
addition, there are many cases where a unique application can be
described by multiple performance functions. For example, in a
networked-system, the performance function could be character-
ized in various ways, such as the flow/delivery value in a network,
the system travel time (STT), the demand that has to be satisfied,
etc.

In the case where the flow/delivery value (V) was adopted as
system performance in a networked-system application, the corre-
sponding resilience metric has been expressed in the following
equation [11]:

W ¼ Vinitial � Vloss

Vinitial

(8)

where Vinitial is the initial amount of information that needs to be
carried through network, and Vloss is the information loss as a
result of disruptions. In a similar networked-system application, a
resilience index has been proposed and quantified as the differ-
ence between the optimal travel time (SO) and the critical system

travel time (STT*) [19]. The proposed resilience index has been
normalized relative to the STT* as

W ¼ STT� � SO

STT�
(9)

Considering all the nodes in a networked-system, the resilience
metric with a fraction of the expected demand E (D) is also shown
in Eq. (10) [14,37], where Dw,pre is the original predisruption
demand for the origin–destination (O–D) pair w, and Dw,post is the
postdisruption maximum demand that can be satisfied for O–D
pair w.

W¼ E

X
w2W

Dw;postX
w2W

Dw;pre

2
664

3
775 (10)

In addition to the pre- and postdisruption ratio, a resilience for-
mula was introduced based on the postdisruption reliability of
each supplier in a networked-system application [33], which has
been mathematically formulated as

Wi ¼
pjqkmin di; sj; ckf g

di
(11)

where Wi is the resilience of the demand node i, pj is the reliability
of supply node j, qk is the reliability of supply link k, di is the
demand quantity of demand node i, sj is the availability of supply
node j, and ck is the capacity of supply link k, respectively.

In general, the maximum performance drop represents the worst
case scenario that could happen for a system as the postdisruption
effect, as shown in Fig. 9, where the worst case scenario has been
denoted by Pmax. Based upon the worst case scenario, a resilience
index was defined as the ratio of the avoided performance drop

Fig. 8 Five dimensions of resilience [36]

Table 1 Five dimensions of resilience [36]

Resilience dimension Description Equation

(1) Recovery Time required to return to the acceptable performance range tn � td
(2) Impact The severity impact on performance PoðtoÞ � PvðtvÞ
(3) Performance loss Total performance loss is the area above the curve P(t) between tn and td ðtn � tdÞ � PoðtoÞ �

ðtn

td

PðtÞdt

(4) Profile length f(t) The length of the recovery profile as it reaches the acceptable performance level ðtn

td

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dp

dt

� �2
s

dt

(5) Weighted-sum g(t) A time-dependent deviation weighted sum to capture the speed and shape of the
recovery response

Xn

i¼1

ai½gðaiÞ�pðaiÞ�

Fig. 9 Maximum and avoided performance drop postdisaster
[60]
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postdisruption and the potential maximum performance drop [60],
as expressed in Eq. (12) mathematically.

W ¼ Avoided drop

Max drop
¼ Pv tvð Þ � Pmax

Po toð Þ � Pmax

(12)

When the performance drop is quantified based on the percent-
age of performance change instead of the performance output
value, a resilience index can be instead formatted in Eq. (13) [17],
where %DYm is the maximum percent change in direct output per-
formance, and %DY is the estimated percent change in direct out-
put performance

W ¼ %DYm �%DY

%DYm
(13)

Besides the performance change before and after the disruption
event, the system recovery process is another performance func-
tion that has been utilized to quantify the resilience of a system
while considering the pre- and postdisruption conditions. The
recovery process generally occurs as an aftermath of a disruptive
event, which can be considered as a postdisruption system behav-
ior. Depending on the recovery performance, a more resilient sys-
tem could normally recover in a faster manner. Thus, by
comparing two recovery properties, as denoted by YDR and YDU in
Fig. 9, resilience can be quantified as Eq. (14) [60], where YDR is
the resilient recovery path and YDU is the normal recovery condi-
tion, and m and n are the required recovery time where m> n in
order to demonstrate a scenario where lesser time is required to
recover under resilient response path.

W ¼
Xn

t¼td

YDR �
Xm

t¼td

YDU (14)

In addition to the ratio between pre- and postdisruptions as seen
in most of the previously mentioned equations, a weighting factor,
a, was introduced in Ref. [51], which combines the integrals of
the system performance, P(t), before and after a disruption during
the control time, T¼ tn� td. Accordingly, the resilience metric
can be represented mathematically as

W¼ a
ðtn

td

Pbefore tð Þ
T

dtþ 1� að ÞPafter tð Þ
T

dt (15)

3.3 Resilience Metrics Based on Reliability and Restoration.
As discussed previously, a resilient system is a system that pos-
sesses the ability to survive and recover from the likelihood dam-
age due to disruptive events or mishaps. For an engineered
system, resilience has been defined as the ability of an engineered
system to sense and withstand adverse events and to recover from
the effects of the disruptive events [49]. A mathematical formula
has been derived to quantitatively measure the resilience of engi-
neered systems with two essential attributes as reliability and res-
toration, in which system reliability quantifies the ability of an
engineered system to maintain its capacity and performance above
a safety limit during a given period of time under stated condi-
tions, whereas restoration measures the ability of an engineered
system to restore its capacity and performance by detecting, pre-
dicting, and mitigating/recovering from the system-wide effects
of adverse events. Mathematically, it can be expressed as

W ¼ ReliabilityðRÞþRestorationðqÞ
¼ RþqðR;KP;KD;jÞ (16)

in which the capacity restoration (q) can be considered as the
degree of reliability recovery. The reliability and restoration can

be derived as a set of conditional probabilities. The restoration in
Eq. (16) was further quantified as a conditional probability of a
system failure event (1�R), a correct diagnosis event (KD), a cor-
rect prognosis event (KP), and a mitigation/recovery action suc-
cess effect (j) [52].

In the presence of uncertainties, while taking into account dis-
ruptive events and system performance, conditional probabilities
were employed [3,25] to quantify resilience as a function of dis-
ruptions (D), system specific characteristics (SSCs), reliability
(R), and restoration (q).

W ¼ PrðDÞ � Pr ðSSCjDÞ � PrðRjSSCÞ
� Pr ðqjR;SSCÞ � Pr ðWjR; qÞ (17)

Reliability of a system in general describes the ability of a sys-
tem to perform intended function for a predefined period without
failure, which is usually measured by a probability. For the analy-
sis of system reliability, failure is usually defined based on a sys-
tem performance of interest, P, which is generally represented as
a function of system random input variables within a random
space, where P< 0 indicating system failure. The random input
space can be divided into two domains, namely, the failure
domain and the safe domain, by a limit state function defined by
P¼ 0 [66,67]. The probability of random input variables falling
into the safe region is known as reliability, and accordingly the
probability that the random input variables fall in the failure
region is denoted as probability of failure. With the reliability and
probability of failure being quantified, resilience can be repre-
sented as the recovery over system failure in a probabilistic man-
ner. Given system failure at time t1 and recovery of failure at a
later time t2, resilience was formulated between t1 and t2 as [67].

Wðt1; t2Þ ¼ Pr½Pðt2Þ � 0jPðt1Þ < 0� (18)

where W(t1, t2) is the conditional probability given a system fails
at t1 and recovers at t2. Considering the state transition probabil-
ities (PFS) between the failure state and the reliable state, and the
failure probability (PF), resilience can be further quantified as
[67,68].

W ¼ PFS t1; t2ð Þ
PF t1ð Þ

(19)

Reliability has also been expressed in terms of damage or per-
formance loss in many available resilience quantification metrics.
Resilience was quantified in Ref. [69] as Pr(A|i), which is the con-
ditional probability that the system will meet predefined system
performance standards (A) after the disruptive event i. The per-
formance standards introduced in Ref. [69] include robustness
(r*) and rapidity (t*). The robustness has been defined as the max-
imum acceptable loss, which can be considered as the ability of
the system to endure failure or ensure reliability. Moreover, rapid-
ity has been defined as the minimum acceptable disruption time or
maximum time to full recovery. After the presence of a disruptive
event, the initial loss (ro) and the time to full recovery (tn) should
not exceed the performance standards, as shown in Fig. 10 where
ro> r* and tn< t*. With this resilience quantification metric, a
resilience objective where Pr(A|i) should also meet the reliability
goal of R* can be set and represented as

W ¼ PrðAjiÞ ¼ Prðro<r� and tn<t�Þ
W ¼ PrðAjiÞ � R�

(20)

Equation (20) provides a resilience metric by taking into
account an individual disruptive event. In the presence of multiple
disruptive events (e.g., different failure evens), a conditional resil-
ience metric was proposed in Ref. [70] that employs the
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percentage of system performance maintained in response to these
disruptive events as

W ¼ %system performance

���� Yi
Si

� �
(21)

where
Q

i Si, represents the combination of a set of failure or dis-
ruptive events. On the other hand, resilience have also been quan-
tified based on the proportion of performance loss that has been
restored from its disrupted states [18,44,61,71].

WðtjeiÞ ¼
PðtjeiÞ � P tvsjeið Þ
PoðtoÞ � P tvsjeið Þ (22)

where P(t|ei) is the proportion of the performance function that
has been recovered from its disrupted states P(tvs|ei), as shown in
Fig. 4. Given a disruptive event ei, initial time to, time to a dis-
rupted state tvs, time to recovery tvf, and time t�(tvs, tvf), the resil-
ience metric shown in Eq. (22) is also referred to as the quotient
resilience [61]. In a very similar manner, a resilience metric was
constructed as the ratio of capacity restoration over the initial per-
formance conditions [5], as

W ¼ Sp
Fr

Fo

Fd

Fo
(23)

where Sp is the speed recovery factor, Fr is the performance at the
recovered stable state, Fd is the performance level immediately
postdisruption, and Fo is the original stable system performance
level predisruption. Fd/Fo and Fr/Fo are deemed to be the absorp-
tive capacity and the adaptive capacity of the system, as discussed
in Ref. [5]. In this scenario, absorptive capacity can be considered
as reliability whereas the adaptive capacity can be considered as
restoration of reliability losses.

The resilience curve based quantification approaches as dis-
cussed in Sec. 3.1 have also been utilized by to calculate reliabil-
ity and restoration. A resilience metric was defined in Ref. [58] as

W ¼ TdþFDTvþqTn

Td þ DTv þ Tn

Failure
�

FÞ ¼
ðtv

td

f dt
.ðtv

td

PðtÞdt

Recovery
�
q
�
¼
ðtr

tv

pdt
.ðtr

tv

PðtÞdt

(24)

where failure profile (F) and recovery profile (q) are measured
based on failure event (f) and recovery event (p), respectively,
over the performance P(t).The time notations have been labeled in
Figure 11 accordingly. Moreover, efficiency of the system prior to

disruption, E0, is also believed to have an effect on the recovery
process. Resilience has been quantified in Ref. [72] for civil infra-
structures under earthquake disruptions as the recovery over the
loss of efficiency by taking into account Eo, the measures of dam-
age transpired (Pd) after a disruptive event, and the measure of the
recovery process (Pq), respectively. The resulting resilience met-
ric was then formulated as

W ¼ 1

PdEo

ðPd

0

E Pqð ÞdPq (25)

where E(Pq) indicates the efficiency of the recovery curve.

3.4 Resilience Scale. Although resilience has been quantified
in different manners for different application purposes, as dis-
cussed in Secs. 3.1–3.3, it is, however, important to reach an
agreement within the community on a scale that resilience of an
engineered system can be measured, which facilitates the resil-
ience analysis and further the assessment of resilience perform-
ance for different system design alternatives. A resilience scale
allows one to evaluate how much resilience has been gained or
lost in a system. As reported in the literature, most of resilience
metrics have taken a resilience scale between 0 and 1 [25,52,65],
or may be expressed as a percentage value between 0% and
100%. Quantifying resilience based on different system perform-
ances of interest with a universal scale between 0 and 1 could
potentially simplify the complication induced by all different
resilience metrics, thereby reaching a generally applicable
quantity.

First, as resilience could also be considered as one of the system
characteristics, it is more convenient to quantify it at a relative
scale based upon the performance changes before and after a dis-
ruptive event. In addition, when uncertainties are incorporated in
resilience analysis, probabilistic resilience metrics can be used
that generally possess a probability value between 0 and 1. By
using a resilience scale, a resilience value could be interpreted
based on system performance recovery after a disruptive event or
based on the probabilistic concept on how likely the system would
survive or recovery from the disruptive event in general. For
example, a system that has a resilience value of 0.9 can be inter-
preted as that the system is 90% resilient to a particular disruptive
event in general. Specifically, it could indicate a 90% probability
that the system will survive a given disruptive event or recover to
a predefined system performance within a given time period after
the disruptive event.

Fig. 10 Robustness and rapidity performance measures [69]

Fig. 11 Resilience metrics notations for Eq. (21) [58]
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From the resilience scale perspective, success in engineering
resilience would point toward the ability of a system to sense the
changes in health conditions, to prevent and/or survive the likeli-
hood of damage, and to recover from the postdisruption effects
successfully. Failures in engineering resilience imply the inability
of a system to adequately adapt to changes following a mishap,
instead of system breakdowns or malfunctions [73]. In addition,
while there are multiple potential disruptions, an engineered sys-
tem may possess different resilience performance toward different
disruptive events. Depending on the severity of disruptions, the
system could be more resilient to one type of disruption, but not
to other types [57].

4 Engineering Design Implication

Based on the surveyed resilience quantification metrics, what
engineering resilience has to offer from a system design perspec-
tive will be discussed in this section. Considering the perception
of failure probability, a certain level of resiliency can be designed
into a system to improve the system performance against disrup-
tive events, as depicted in Fig. 12. In order to develop a high-
resilience and low-cost engineered system from the system design
perspectives, there are two questions with regards to integrating
resilience in engineered systems: (1) How to connect the resil-
ience quantification metrics to system design parameters, thereby
assessing the resilience of different design alternatives? and (2)
What resilience strategies can be used in engineering design to
generate design alternatives and improve resilience of engineered
systems? These two key questions will be further discussed as fol-
lows. Section 4.1 discusses the resilience attributes in general
from a design perspective, Sec. 4.2 discusses predictive resilience
analysis of system design alternatives, Sec. 4.3 describes potential
resilience strategies that could be used in design in order to
improve the resilience of an engineered system, and Sec. 4.4 pro-
vides the discussion for the challenges and further research needs
in design for resilience.

4.1 Resilience Attributes for Design. For a system to be
resilient against disruptive events or potential failures, there are
two essential properties that a system should possess before or
after the occurrence of a perturbation, as shown in Fig. 13. The
first one is the ability of the system to maintain function without
failures, or generally referred to as “reliability.” The second one is
the ability of the system to recover from misfortunes, or the ability
to “recovery” or “recoverability.” These two key attributes of
resilience could be designed and engineered to enable the failure
resilience for an engineered system. Reliability and recovery
attributes have also been viewed as passive and proactive survival
rates [25,52], static and dynamic resilience [57], or absorptive
capacity and adaptive capacity [5].

Considering the resilience quantification metrics suggested by
the resilience curve, a resilient-engineered system can be designed
by minimizing the performance losses for a given disruptive
event. This design strategy can be further realized through reduc-
ing the impact of a disruptive event, such as reducing the magni-
tude and duration of performance losses, or increasing the speed
of recovery. Similar implications can be drawn from the resilience
quantification metrics based on the pre- and postdisruption per-
formances. Although these metrics provide a conceptual represen-
tation of resilience in a straightforward manner, incorporating
them into engineering design is still very challenging. Due to the
growing complexity of an engineered system, as well as the diffi-
culty of precisely knowing how a system would respond to the
disruptive event at the early stage of system design, it would be
very challenging to measure the resilience level for different
design alternatives precisely.

Compared to the resilience metrics based on a resilience curve
or pre- and postdisruption performances, the resilience metrics
suggested by reliability and restoration as surveyed in Sec. 3.3
(which are often probabilistically measured) could offer a better
choice for system designers when designing an engineered system
to be failure resilient. As mentioned in Sec. 3.3, reliability can be
precisely quantified through the probability that the system or
component will perform its required functions under stated condi-
tions for a specified operating period, and measured systemati-
cally by a probability distribution of time to failure. In addition,
unreliability, survivability, or vulnerability is another term that
could be used to describe reliability in a system. The resilience
concept extends the concept of reliability by incorporating the
ability to recover from disruptive events into the system. As sug-
gested by the resilience quantification metrics based on reliability
and restoration, not only reliability of a system must be designed
but the ability to recovery from a performance disruption must
also be engineered in order for an engineered system to be failure
resilient. Compared to tremendous amount of research and devel-
opment in the area of design for reliability, research in the area of
design for restoration is still very limited, despite its importance
in realizing engineering resilience.

Besides the reliability and recovery, other resilience attributes
have also been studied including the ability of a system to monitor
its operations, anticipate potential failures, response to failures,
and learn from failures [74]. The ability of a system to monitor
includes tracking the changes in its own performance as well as
its environment, allowing a disruptive event to be anticipated,
minimized, or avoided. When a disruptive event has been antici-
pated, more coherent, timely, and effective responses can be
expected from the system. If the responses of the system are not
the desired responses, the ability of the system to learn allows the
system to learn from the experience, so that the ability to monitor,
anticipate, and response can be enhanced.

4.2 Predictive Resilience Analysis. While designing an engi-
neered system to be failure resilient, it is essential for system
designers to be able to assess the resilience levels for different
design alternatives in order to make the best design decision.
There are many uncertainty factors should be taken into account,

Fig. 12 Design resilience to improve system performance
scheme

Fig. 13 Notional engineering resilience behavior following a
disruptive event [57]
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while converting a conceptual framework to a designable resil-
ience measure and further developing predictive resilience analy-
sis techniques. A conceptual resilience framework is composed of
many factors that affect the system performance in terms of resil-
ience characteristics inherent in the system. As surveyed in Sec. 3,
resilience quantification metrics have mostly related system per-
formance outcomes after a disruption to system resilience. How
the system responds in the aftermath of a disruption will largely
determine the resiliency level of the system, thus one of the essen-
tial and challenging tasks in predictive resilience analysis is being
able to analyze system disruption responses at early system design
stage.

In the early design stage, an engineering assessment technique
for predictive resilience analysis is very much needed for system
designers to gain necessary knowledge of how the system
responds to a disruptive event, and whether the resilience level in
a system design is sufficient. The methodologies and tools avail-
able in the literature for assessing engineering resilience in the
design process are still very limited. This is primarily because
assessing the further performance of a system in its operating
stage during the design process is challenging. Although advanced
system simulation techniques have given system designers more
capability in predictive analysis, it is still challenging to take into
account the interdependencies and complexities of an engineered
system, the uncertainties associated with system design and opera-
tion, and the emergent changes in the long term that may affect
the system operating conditions.

One of the primary challenges in predictive resilience analysis
is the development of effective system modeling techniques, so
that the interdependencies and complexity of an engineered sys-
tem can be modeled, and the performance of the system under-
going a disruption can be simulated and analyzed at the design
stage. Some preliminary studies have been reported in the litera-
ture in addressing this challenge. One way to understand the
design architecture of a complex engineered system by utilizing
approaches from game theory and social network analysis [75].
Interdependency between entities can be expressed in the terms of
algebraic connectivity. However, this approach requires an accu-
rate modeling of a complex engineered system as an intercon-
nected graph, which could be very challenging in the cases where
a large amount of interdependent components and subsystems are
considered, thereby the graphical model expands tremendously in
size. Thus, recent research efforts have been directed toward
adapting a combination of logical and statistical approaches, such
as the Bayesian or the Markov approach. Reasoning copes with
complexity, and probability handles uncertainty. Bayesian net-
work (BN) approach has been proposed as a way to handle inter-
dependencies [57,70]. A Bayesian network (BN) approach has
been applied to assessing the resiliency of a supply chain [3], a

production system line [25], and a system-of-system [70]. Fig-
ure 14 shows the BN modeling framework that has been reported
for engineering resilience analysis and design [25]. In the BN
approach, the important system characteristics or critical compo-
nents are represented as nodes, the interdependencies between
components are modeled as links, and the overall complexity of
the system structure is demonstrated through the combination of
links and nodes. Moreover, in BN the uncertainties are repre-
sented as conditional probabilities in multiple possible states.
Considering the dynamic or evolving behavior of the system per-
formance over time, the dynamic Bayesian network (DBN) could
be further employed [76–78]. However, updating the BN or DBN
to accommodate system changes for a complex system may be
laborious and computationally intensive.

Besides the interdependency and complexity of an engineered
system, it is also challenging to take into account the emergent
behavior of the system due to the recovery effects, as well as the
evolving operating environment. An example would be in the
design of a transportation infrastructure system to accommodate
more automatically driving vehicles in the future. In a different
application, employing partially observable Markov decision pro-
cess (POMDP) has been proposed for designing resilient space-
craft swarms [79]. Although POMDP allows self-learning and is
self-adaptive, a strenuous initial condition is required to define the
behavior, reward, and actions to enable an accurate self-learning
capability. Considering the evolving characteristics of complex
adaptive systems (CASs), the agent-based simulation technique
could be potentially used by system designers as a sophisticated
tool for analyzing the disruptions in an adaptive evolving simula-
tion environment [26,79,80]. Although some initial efforts have
been made in modeling engineering systems for the resilience
assessment as reported in the literature, more effective predictive
resilience analysis methodology and tools that are readily used in
various system design applications should be developed in addi-
tion to uncovering different engineering resilience quantification
metrics.

4.3 Engineering Resilience Strategies. As discussed in Sec.
4.1, there are two essential resilience attributes that an engineered
system must possess in order to be failure resilient, namely, reli-
ability and recovery. The resilience strategies discussed in this
section are focused on how to improve the reliability and ability
to recover through system designs. Since reliability and recovery
are designable quantities, they could be utilized in transforming
the conceptual resilience to the designable resilience attributes,
enabling system designers to develop resilient-engineered sys-
tems, as demonstrated in Fig. 15. Accordingly, design strategies
used for advancing reliability and recovery could be implemented
for the purpose of advancing resilience in the system. In the rest
of this section, design strategies for the improvement of reliability
and recovery are further discussed.

Fig. 14 A general Bayesian network for engineering resilience
[25]

Fig. 15 Translating system performance to resilience and vice
versa
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4.3.1 Improving Reliability Through Design. As one of the
important design attributes for engineering resilience, reliability is
a relatively mature concept within the design community. Reli-
ability can be generally defined as the probability that the system
or component will perform its required functions under stated con-
ditions for a specified operating period. Accordingly, substantial
research efforts have been made in the past few decades in design-
ing engineered systems for reliability, leading to mutual design
frameworks and tools being developed in the literature, such as
the reliability-based design optimization framework [66,81–84],
effective reliability analysis methods for design [85–89], and post-
design reliability assessment and growth.

There are different approaches and design strategies to improve
the reliability of an engineered system or component. While con-
sidering single failure mode, it is beneficial to understand the fail-
ure mechanism and physics of failure so that appropriate
reliability design strategy could be identified such as discovering
new materials, mechanisms or new design concepts, or developing
a reliability growth plan. While considering reliability at a sys-
tems level with multiple components and failure modes, one of
the most used design techniques in improving reliability is the
incorporation of redundancy into the system. Reliability allocation
could be used to allocate reliability attributes to component and
subsystems optimally in design while considering redundancy lev-
els. In addition, when dealing with uncertainties in most engineer-
ing applications, there is no certain way that all the failure modes
could be taken into account in the early design stage. Therefore,
derating and diversity are other design techniques that can be
adopted to improve reliability. Derating could be found in the
applications where higher tolerance components are used for extra
endurance instead of components with normal specifications.
Diversity can be seen in logistics applications, such as having a
diversity of suppliers to ensure the reliability of the continuous
supply process.

Besides the design strategies in improving the system reliabil-
ity, failure diagnostics, prognostics and health management
(PHM), and appropriate operation and maintenance (O/M) plans
could also be developed to improve the system reliability in oper-
ations. PHM is an emerging engineering discipline that has been
applied to a large variety of engineered systems to improve sys-
tem reliability [90–94]. It diagnoses the performance degradation
of a system through its operational performance data, thereby pre-
dicting the remaining useful life (RUL) of the system. PHM can
significantly enhance the reliability, availability, and predictability
of the system by providing the early awareness of potential system
failures, thus enabling optimized planning of failure mitigation
and recovery activities.

4.3.2 Improving the Ability to Recover. Different with
improving the reliability through design, the ability of an engi-
neered system to recovery often relates to the aftermath of disrup-
tive events of the system, which makes it more challenging for
system designers to consider it thoroughly at the early stage of a
system design process. In many applications, a swift recovery pro-
cess also depends on the amount of available resources and time.
Thus, optimal allocation, high-level preparedness, and good col-
laboration can be designed into a system with the relation to the
decision makers or managerial-level.

Redundancy is also in line with recovery strategies, since it
offers an alternative path for maintaining system functionality
when a disruption event occurs due to failure of a component or
subsystem. Similarly, maintenance actions in mitigating potential
failures or recovering the functionality of failed components or
subsystems would be another design strategy that could be applied
to enhance the ability to recover for an engineered system. Pre-
ventive maintenance is associated more with reliability attributes
because it is usually used to maintain the healthy condition of a
system to prevent a complete system failure. This is opposed to
corrective maintenance, which is typically carried out to restore
the system to an operational condition, leaning more toward

recovery attributes. Development of an effective maintenance
plan includes not only the maintenance planning to be optimized
but also the system designs to be more effective in conducting the
planned maintenance actions. Additionally, functional retrofits
that apply partial changes to a system at the operation stage to
restore its capacity or improve performance have gradually
become a major cost-effective means to maintain desired system
functionality of an engineered system over its lifecycle. Func-
tional retrofits through partial system repair, replacement, or
upgrade could be a viable strategy in improving the ability to
recover, given that these retrofits could be appropriately projected
and engineered at the system design stage.

The PHM technique that diagnoses the performance degrada-
tion of a system through its operational performance data could
facilitate an optimized planning of failure mitigation and recovery
actions. The PHM technique could not only improve system reli-
ability by offering early awareness of system failures but also play
an important role in improving the ability of an engineered system
to recover from the aftermath of disruptive events. This is because
the PHM technique enables a proactive approach to address fail-
ures at the life cycle use phase through detecting, diagnosing, and
predicting the system-wide effects of disruptive events and pro-
viding valuable information for failure mitigation and recovery
decisions. A resilient design of an engineered system would
expect the system to be intelligent so that it can make autonomous
decisions to recognize risk induced by a potential hazard or dis-
ruptive event, and adjust or reconfigure itself in response to risk
[79,80]. Advanced resilience design could leverage the capability
offered by the PHM technology in order to develop self-learning
or self-restructuring capabilities for the design of a resilient-
engineered system [76]. The PHM technique has been successful
in lowering system lifecycle costs by providing precise informa-
tion about operational stage failures. However, in order to realize
the resilience through failure prognosis and prognosis-informed
maintenance or functional retrofits, a generally applicable PHM
system development framework that ensures high accuracy and
robustness needs to be developed for the design of resilient-
engineered system.

In summary, both reliability and recovery are essential resil-
ience attributes that are quantifiable and designable, and some
examples of design strategies for the reliability and recovery
improvements are listed in Table 2, which are still being perfected
with the continuous progress in design for resilience researches
and developments.

4.4 Challenges and Further Researches. From the surveyed
resilience quantification metrics and the discussion on their engi-
neering design implications, it is postulated that resilience of an
engineered system could be enhanced through better design. The
enhancement could be realized from the improvement of designa-
ble resilience attributes through appropriate design strategies.
However, to achieve resilient designs of engineered systems,

Table 2 Design strategies to improve resilience in a system

Reliability Recovery

Physics of failure Collaboration
Reliability growth Preparedness
Derating and diversity Retrofits
Reliability allocation Resource allocation

Performance improvement
(Discovery of new materials/mechanisms/concepts)

Redundancy
(Stand-by/back-up/spare/alternative)

Maintenance activities
(Corrective/preventive/condition-based)

Prognostics and health management
(Monitoring/diagnostics/prediction/failure mitigation)
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challenges from multiple aspects must be addressed. In this sub-
section, based upon the authors’ best knowledge, the challenges
and the further research needs are discussed.

As shown by most of the resilience quantification metrics, the
resilience measure is closely tied to the system performance
changes throughout a disruptive event. Early awareness of poten-
tial disruptive events and the aftermath of these events at the early
system design stage is one of the primary challenges in resilient
system design. This challenge is posed to system designers at the
early design stage, as they have to be aware of potential disruptive
events, the factors of complexity, and uncertainties in their design
applications. They also have to be aware of how these factors
would affect the behavior of the system when undergoing one of
the disruptive events, before the system is actually being
developed.

Disruptions can be categorized according to the types, sources,
or impact levels, such as natural or man-made, external or inter-
nal, and local or global [95]. Disruptions do not necessarily need
to have a sudden fatal impact on the system. Aging and degrada-
tion due to long hours of operation could be considered as disrup-
tions as well. Furthermore, a minor disruption will only alter a
small part of the system characteristics, whereas a disruption with
severe impact could be fatal for the system. From the disruption
aspects, the context (behavior, mode, and state), the duration
(temporary, permanent, and trend), and the risk (likelihood and
severity of damage) should be considered in the design of a resil-
ience scheme [79].

Complexity is generally associated with the hierarchy and the
collective behavior of the system. For example, the interdepend-
ency between system components and subsystems, different sub-
functions, as well as between the system and its operating
environment, would substantially increase the complexity of the
system. A system in general consists of multiple components and
subsystems that are interconnected and interact with each other in
various different ways. The collective behaviors of lower-level
systems regulate the top-level system performance. Depending on
the severity and the impact of the disruptive events, a partial fail-
ure, common cause failures, or cascading failures could occur.
Either failure imposes negative effects on a system that is indi-
cated by an overall lower system performance level. From the sys-
tem characteristic viewpoint, the architecture or hierarchy, the
collective behavior, the interdependencies, and the functionality
of the system should not be disregarded in the scheme of design-
ing resilience.

To address the challenges as outlined above in designing
resilient-engineered systems, there is a great research need for a
theoretical basis that furnishes a better understanding of how engi-
neered systems achieve resilience, as well as enables the develop-
ment of an engineering resilience principle readily applicable to
engineering design. In the rest of this subsection, several emergent
research needs are discussed from four different aspects. This dis-
cussion is not intend to be exhaustive, but rather to throw light on
further research directions and to stimulate more valuable insights
from the community to address the research challenges in design-
ing resilient-engineered systems.

4.4.1 Early Awareness of Disruptive Events. In the early
design stage, it is essential for system designers to be aware of
potential disruptive events for their design applications, and be
able to have necessary knowledge in terms of the likelihood of
occurrence for each of these disruptive events. Although informa-
tion on the failure rates of different types of system failures exists
in the literature, these failure-induced disruptions are largely
within the scope of a particular system or due to human error, and
primarily considered independently. Knowledge about disruptions
is induced by external factors, such as natural disasters or external
environments, and their cascading effects due to the interdepend-
ency between system components and subsystems are primarily
dependent on subjective expert judgments. Understanding the
characteristics of these potential disruptive events would enable

the development of failure mitigation and recovery techniques to
be included in the consideration of system designs. In addition,
early awareness of the potential disruptions would help the devel-
opment of system monitoring, diagnostic, and prognostic techni-
ques so that these potential disruptive events could be avoided or
their consequences could be minimized.

4.4.2 Capability of Predictive Resilience Analysis. During the
system design process, it is also essential for system designers to
be able to assess the resilience levels for different design alterna-
tives. Thus, enabling techniques for predictive resilience analysis
applicable at the early design stage is of paramount importance.
The development of advanced complex system modeling method-
ology and associated system simulation tools would largely
enhance the capability of system designers in predictive resilience
analysis. The modeling technique must be able to take into
account the complexity of systems, simulate the aftermath of sys-
tem disruptions and system responses to these disruptions, con-
sider the uncertainties associated with system design and
operation, and further be adaptive to emergent changes in system
operating conditions.

4.4.3 Recovery Strategies for Design. As discussed in Sec.
4.3, recovery is one essential resilience attribute to be designed
for a resilient-engineered system. However, recovery of the per-
formance of degraded or partially failed engineered systems has
largely relied on maintenance activities or functional retrofits. The
strategies that can be used in design primarily depend on the allo-
cation of redundancy, as it offers an alternative path for maintain-
ing system functionality when a disruption event occurs due to
failures of a component or subsystem. Although the PHM research
could improve the ability to recover by facilitating an optimized
planning of failure mitigation and recovery actions, failure recov-
ery strategies that can used for the system designers in the design
stage are very limited. Further research directions are very much
needed in the new venue of exploring diverse failure recovery
strategies that can be readily used for engineering design. These
research needs would generally fall into either developing new
performance recovery pathways, such as the use of self-healing
materials [96,97] for design, or better implementing of existing
recovery strategies, such as an advanced operation and mainte-
nance planning method. Additional efforts would also need to be
spent on design decisions on different recovery strategies and
design alternatives in achieving the recovery of system perform-
ance after the disruptions.

4.4.4 Cost Assessment and Systems Engineering. With
increasing complexity and long projected useful lives of engi-
neered systems, design decisions to ensure resilience of the sys-
tem generally have to be made while simultaneously considering
the costs or affordability. Thus, a lifecycle cost assessment frame-
work that takes into account all costs associated for the improve-
ments on each of the resilience attributes with the resilience
strategies must be developed and incorporated into the decision-
making process while designing a resilient-engineered system.

In addition, during the process of designing a resilient-
engineered system, not only reliability but also the ability to
recover from a disruption must be designed in order for an engi-
neered system to be failure resilient, as suggested by the resilience
quantification metrics. Advanced systems engineering tools for
design, such as those for tradespace explorations [98–100], must
also be developed and used to facilitate the generation and assess-
ment of different design alternatives considering interdependen-
cies, design constraints, different design outcomes, and their
lifecycle costs.

5 Conclusion

This paper presented a literature survey of engineering resil-
ience quantification metrics from a system design perspective.
The engineering resilience quantification metrics reported in the
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literature were reviewed and summarized in three categories.
With the surveyed resilience quantification metrics, the design
implications toward the development of resilient-engineered sys-
tems were discussed, with the focus on the resilience attributes,
predictive resilience analysis, and design strategies for resilience.
The challenges of incorporating resilience into the engineering
design processes were discussed, and the future research needs
were outlined from four different perspectives, with an aim of
inspiring future research directions and arousing valuable insights
from the community to address the research challenges in design-
ing resilient-engineered systems. The presented study expects to
serve as a building block toward developing a generally applica-
ble engineering resilience analysis and design framework that can
be readily used for system design.
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Nomenclature

E[•] ¼ expected value
ei ¼ disruptive event

P(t) ¼ system performance level over time
Po ¼ initial system performance level before disruption
Pv ¼ system performance level after disruption
R ¼ system reliability
T ¼ control period (T¼ tn� td)
td ¼ occurrence time of the disruptive event
tn ¼ time to new recovered state
to ¼ initial time
tv ¼ time to vulnerable or degraded state

T* ¼ a long period of time
q ¼ system recovery/restoration
W ¼ system resilience
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