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Compositionally graded alloys, a subclass of functionally graded materials (FGMs), utilize
localized variations in composition with a single metal part to achieve higher performance
than traditional single material parts. In previous work [Kirk, T., Galvan, E., Malak, R., and
Arroyave, R., 2018, “Computational Design of Gradient Paths in Additively Manufactured
Functionally Graded Materials,” J. Mech. Des., 140, p. 111410. 10.1115/1.4040816], the
authors presented a computational design methodology that avoids common issues which
limit a gradient alloy’s feasibility, such as deleterious phases, and optimizes for perfor-
mance objectives. However, the previous methodology only samples the interior of a com-
position space, meaning designed gradients must include all elements in the space
throughout the gradient. Because even small amounts of additional alloying elements can
introduce new deleterious phases, this characteristic often neglects potentially simpler solu-
tions to otherwise unsolvable problems and, consequently, discourages the addition of new
elements to the state space. The present work improves upon the previous methodology by
introducing a sampling method that includes subspaces with fewer elements in the design
search. The new method samples within an artificially expanded form of the state space
and projects samples outside the true region to the nearest true subspace. This method is
evaluated first by observing the sample distribution in each subspace of a 3D, 4D, and
5D state space. Next, a parametric study in a synthetic 3D problem compares the perfor-
mance of the new sampling scheme to the previous methodology. Lastly, the updated meth-
odology is applied to design a gradient from stainless steel to equiatomic NiTi that has
practical uses such as embedded shape memory actuation and for which the previous meth-
odology fails to find a feasible path. [DOI: 10.1115/1.4053629]
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1 Introduction
Functionally graded materials (FGMs) are a class of advanced

materials that utilize spatial property gradients to satisfy competing
performance requirements in different regions of a single part.
Typical methods for achieving these property gradients include
using a single material and varying its spatial microstructure [1,2]
or varying the location and composition of multiple materials
within a part [3–6]. Recently, increased adoption and advancements
in additive manufacturing (AM) have drawn more attention to the
study of FGMs since AM is well suited for customizing both micro-
structure and composition throughout a monolithic part [7–9].
Compositionally graded alloys are a specific category of multi-

material FGMs which utilize spatial variations in alloy composition
to tailor property gradients to the intended use of a specific part. In
the past, this has been accomplished through methods such as local-
ized heat treatments or surface engineering [10]. Compared to these
traditional methods, much finer control is possible through modern
additive manufacturing techniques which provide a straightforward
way to locally vary composition in metal parts. Directed energy
deposition (DED) in particular has opened the door for manufactur-
ing these materials due to the ability to easily change composition
on a layer-by-layer basis [11].

A significant obstacle in printing compositionally graded alloys,
however, is planning the gradient path between the alloys of inter-
est. Although some have been successful, many recent attempts to
manufacture compositionally graded alloys use linear gradients
between the composition path endpoints which resulted in the for-
mation of deleterious phases that ruined the viability of the part
[5,6,12–16].
A solution proposed by Hofmann et al. [10] outlined the use of

phase diagrams as maps to avoid undesirable phases. This strategy
was still limited in that one can only plan paths up to the degree that
the diagrams are able to be visualized. Also, these diagrams do not
account for variations in temperature during the printing process,
and they are also separated from property considerations, limiting
design freedom or capability. Further additions to this strategy
include the use of Scheil ternary projections [17], which take into
consideration the rapid solidification process during additive manu-
facturing to more accurately predict phase regions.
Kirk et al. [18] presented a novel design method, which synthe-

sizes the use of phase diagrams as maps with a robotic path planning
algorithm (rapidly exploring random tree fixed nodes (RRT)*FN
[19,20]) to design a path between a prescribed start and goal
point while both avoiding deleterious phase regions that have
been designated as obstacles and optimizing for a given cost func-
tion. The cost function can be encoded to achieve goals like mini-
mizing path length or maximizing obstacle clearance [18]. This
method solves many of the issues with the aforementioned
approaches. It can plan gradient paths through arbitrarily large com-
position spaces and include processing variables as constraints or as
explicit design variables. Recent improvements by the authors have
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enabled the methodology to design paths with monotonic property
profiles which can be used as building blocks to create arbitrary
property profiles [21]. Furthermore, this methodology has been
used to design compositionally graded alloys which were success-
fully manufactured using DED [22].
Despite the many advances made in FGM design to successfully

tackle the complex problems posed by compositionally graded
alloys, the previously developed methodology [18] cannot plan gra-
dient paths through sub-domains because the sampling method only
searches the interior of the composition space. This is not typically an
issue for robotic path planning algorithms operating in 2D or 3D
physical domains, as robots occupy space and therefore cannot
move directly into the walls or corners represented by the subspaces.
As such, subspace planning in sampling-based planning algorithms
is not addressed by current motion planning or path planning litera-
ture. In materials design, unlike robotic path planning, sub-domains
often represent superior solutions using simpler alloys. For example,
spaces with fewer alloys have often been explored more thoroughly
through experimentation and are thus less uncertain, providing more
robust solutions. Furthermore, in some systems, deleterious phase
regions often lie in close proximity to boundaries, where the smallest
inclusion of certain elements results in deleterious phases. Thus,
adding the search of boundary paths to the current design methodol-
ogy would result in a more complete and effective search of the
design space. This addition is critical, as it would open up the oppor-
tunity for solutions through narrow boundary passages and more
robust alloy compositions.
In this work, a new sampling method is proposed that includes

the boundaries in the path planning search domain. The proposed
method utilizes an artificial expansion of the state space, an
n-element unit simplex Δn, by designating an expanded n-element
simplex with the same centroid as the state space and a binary
side length scaled by a user-defined multiplier Ks where Ks≥ 1.
An algorithm from the literature [23] is used to take uniform
random samples in the expanded simplex. If any samples lie
outside the boundaries of the true state space, they are projected
to the nearest location on the state space boundary using a modified
method from the literature [24]. This methodology is evaluated and
demonstrated through several case studies. First, a breakdown of the
sampling distribution throughout all subspaces is investigated for a
three-, four-, and five-component alloy system. Then, the new algo-
rithm is applied to a 3D (three-element) synthetic parametric case
study where an artificial obstacle is placed along a binary edge
within a ternary state space. The parameter of interest in this
study is the side length multiplier Ks of the expanded simplex
space used for sampling. Lastly, the new method is applied to a
real gradient design problem, investigating a gradient from stainless
steel to equiatomic NiTi, to demonstrate the effectiveness of the
proposed method on a real design problem that is known to
require boundary path segments. This specific gradient path has a
variety of practical applications such as embedded shape memory
actuation. Ultimately, the proposed sampling method is shown to
enable the path planning algorithm to locate boundary solutions
without incurring any significant computational penalty for
finding solutions in the interior.

2 Methods
2.1 Computational Functionally Graded Material Design

Methodology. The computational methodology presented in
Ref. [18] solves general gradient design problems using a combina-
tion of machine learning surrogate models and a robotic path plan-
ning algorithm. A gradient design problem is first defined by its
state space, Z, which consists of all possible material states within
the desired gradient material. A point, z, in this state space repre-
sents a unique material composition, though other important pro-
cessing variables, like temperature, can also be included to
concurrently design the processing of the gradient. A continuous
path, σ, through this state space represents a potential gradient.

Such a path is a continuous function σ: [0, 1]→ z that relates a
path index, α∈ [0, 1], to a point in the state space (e.g., a unique
material composition).
The state space of a gradient design problem can be divided into

an obstacle space, Zobs, and a free space, Z \ Zobs = Zfree. The obsta-
cle space is composed of states that should be avoided by the
designed path, such as compositions that produce deleterious
phases, while the free space is the complement of the obstacle
space. A path is collision-free if σ(α) ∈ Zfree∀α ∈ [0, 1]. A path is
feasible if it is collision-free, σ(0)= zinit, and σ(1)= zgoal where
zinit and zgoal are the initial and goal states, respectively.
The goal of the optimal gradient design problem is to find the fea-

sible gradient path, σbest, that minimizes a user-defined cost func-
tion, c(σ). Cost functions can simply be path length, but more
intricate cost functions can be used to promote design preferences
like property monotonicity [21]. The problem formulation for the
general gradient design problem is summarized as follows:

Find σbest = argmin
σ

c(σ)

S.t. σ(α) ∈ Zfree ∀ α ∈ [0, 1]

σ(0) = zinit
σ(1) = zgoal

The computational methodology presented in Ref. [18] solves the
aforementioned problem formulation using a combination of mate-
rials modeling software, machine learning, and computational path
planning, as summarized in Fig. 1. In short, CALculation of PHAse
Diagram (CALPHAD) software is used to model relevant thermody-
namic data in the state space: namely, deleterious phase fractions
at a given composition and temperature. CALPHAD models are gener-
ally too computationally expensive to sample directly with
sampling-based path planners. As such, CALPHAD data are gathered
across the state space and states are labeled as belonging to the
obstacle or free region based on deleterious phase fraction or
other constrained criteria. The labeled data are then used to train
a machine learning classifier that is much cheaper to evaluate.
The path planning algorithm then samples the state space, evaluat-
ing this obstacle model and the user-defined cost function to check
for collision and optimize paths, respectively. If the cost function
depends on property information or other quantities that are expen-
sive to evaluate, a machine learning regressor might be necessary to
efficiently evaluate path costs [21].

Fig. 1 Computational FGM design methodology presented in
Ref. [18]. CALPHAD data are used to train machine learning classi-
fiers that model the obstacles in the state space. These obstacle
models and a user-defined cost function are sampled by the path
planner (RRT*FN) to find the optimal gradient path through the
state space.
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The path planning algorithm used by the methodology is a fixed-
nodes implementation of the optimal rapidly exploring random
tree (RRT). The optimal RRT (RRT*) was developed by
Karaman and Frazzoli [20] and provides guarantees of asymptotic
optimality and probabilistic completeness. The fixed-nodes imple-
mentation (RRT*FN) was developed by Adiyatov and Varol [19]
and allows users to limit the memory usage of the algorithm via
the introduction of a parameter for the maximum number of nodes.
Put succinctly, RRT*FN is a sampling-based planner that ran-

domly samples the state space to construct a collision-free tree,
beginning with the initial state, zinit. An iteration of the algorithm
begins by randomly sampling the state space. If the new sample
lies outside a specified distance from the tree, it is first projected
towards the closest node in the tree via a steering process. Neighbor-
ing nodes within a specified radius of the new sample are then eval-
uated to determinewhich potential connection creates the lowest cost
path to the new sample while also being collision-free. If a collision-
free connection exists, the minimum cost node becomes the new
sample’s parent node. An additional rewiring step then examines
the other neighboring nodes and sets the new sample as its parent
node if doing so lowers the path cost to that node. Lastly, a forced
removal step carefully removes suboptimal nodes from the tree if
the specified maximum number of nodes is exceeded.
There are several reasons the sampling-based method RRT*FN is

preferred for this design methodology instead of graph-based
methods such as using a graph search method like Dijkstra’s short-
est path algorithm to find the optimal path through a pre-computed
mesh. Due to the physical nature of the problem, the spatial resolu-
tion of the gradient designs is a central concern. Graph search algo-
rithms require a pre-computed fixed graph that defines the cost
between adjacent points. In contrast, RRT*FN builds the path as
it samples, constructing a path tree that becomes denser overtime
as needed to find the optimal solution if it exists [18,19]. The
RRT*-based approach produces denser nodes around the optimal
path whereas graph-based algorithms must rely on a broad sampling
of the entire domain, thereby facing a steeper trade-off in graph-
building cost versus resolution. Considering the additional graph-
construction time for Dijkstra’s algorithm and the superior sampling
resolution of RRT*, the scales tip further in support of using an
RRT*-based method, which motivated the authors to implement
RRT*FN in their methodology [18,25]. In practice, the authors
have used RRT*FN to design gradients that were successfully
printed using DED [22,25]. The authors have also leveraged the
cost-function formulation in RRT*FN to enable the design of com-
positionally graded alloys for arbitrary property profiles [21]. Thus,
not only has this method been thoughtfully selected from modern
motion-planning techniques but also, in practice, it has been imple-
mented with a demonstrable record of success [18,21,22,25].
The random sampling procedure that begins each iteration in the

RRT*FN process is relatively simple. In typical motion-planning
applications (e.g., robotic path planning), a random sample of the
state space (e.g., location in space) is simply generated via a
random number generator. However, to satisfy the requirement
that the composition of all elements in a composition space must
sum to unity, the sampling scheme in the gradient methodology
transforms randomly generated composition samples to lie within
a simplex. This is done by exploiting the fact that uniformly distrib-
uted samples on a unit n-element simplex follow an n-dimensional
Dirichlet or multivariate beta distribution [26] and that such a dis-
tribution can be obtained from a uniform random distribution, U,
via the inverse transformation −log U. The sampling procedure of
the previous methodology, also discussed by Otis [27], is described
as follows:

(1) Let n represent the number of elements in the composition
space.

(2) Generate an n-dimensional sample, xn, from a uniform
pseudo-random technique.

(3) Transform each element in the sample to be exponentially
distributed: xi,exp=−ln(xi).

(4) Divide each element in the exponentially distributed sample
by the sample’s sum:

xi,simplex =
xi,exp∑n
i=1 xi,exp

(5) Drop the balance element component from the sample,
resulting in a sample of dimension (n− 1).

The sampling procedure described above excludes compositional
subspaces. For example, if a quaternary (four-element) composition
space is sampled with the above procedure, no samples will be gen-
erated in the four constituent ternary subspaces or six constituent
binaries. This necessitates that these spaces be excluded by potential
gradient paths and consequently reduces the space of possible gra-
dient paths that the methodology can design. Consequently, the pre-
vious methodology obviously excludes potentially simpler
solutions that contain less elements, but can also potentially
exclude all feasible paths, resulting in an unsolvable problem,
because even small amounts of certain elements can produce dele-
terious phases.

2.2 Subspace-Inclusive Sampling. When investigating
various methods to include subspace sampling in the RRT*FN
algorithm, two potential solutions emerged. The first was to gener-
ate a grid on the subspaces of the true state space and to sample from
the grid at a given probability. The second method was to sample
outside of the true state space and to use some method to project
a sample taken outside of the true space onto the subspace bound-
aries. While the grid method allowed for more precise control over
which compositions are included in the sampling, the projection
method was more flexible and better aligned with the condition of
uniform random sampling necessary to satisfy the guarantees of
probabilistic completeness and asymptotic optimality provided by
the RRT* algorithm [20]. Thus, the authors ultimately chose to
investigate a projection-based method.
The first consideration when developing a projection-based

approach for a subspace-inclusive sampling method was defining
the position and size of the expanded domain for sampling in
order to project samples to the subspace boundaries of the true com-
position space. The parameter for defining the size of the expanded
space (and thereby, the bias of samples towards the subspace
boundaries versus the interior) is the binary side length multiplier,
hereafter referred to as Ks.
This was accomplished by defining an expanded (n)-dimensional

simplex such that its centroid is the same as that of the true unit
n-element simplex state space. This centroid method is based on
the principles that the centroid G of an (n)-dimensional simplex is
a function of its vertices given by the set v1, …, vn, the coordinates
of all points in a simplex sum to unity, and scaling the maximum
value of the vertex coordinates by the constant Ks results in the
side lengths being scaled by the same amount. Thus, the following
procedure defines the vertices of an expanded n-element simplex
with the same centroid as the unit simplex:

(1) Input cmax=Ks such that Ks≥ 1
(2) Compute

cmin =
1 − Ks

n − 1

(3) Define the n vertices of the expanded n-simplex:

v1 = (cmax, cmin, cmin, . . . , cmin)

v2 = (cmin, cmax, cmin, . . . , cmin)

..

.

vn = (cmin, cmin, cmin, . . . , cmax)

Figure 2 visualizes the 3D expanded space and a sample projec-
tion example using a 2D visualization where the balance element is
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dropped and therefore located at the origin. The binary side lengths
of the expanded simplex are Ks= 1.5 times larger than those of the
unit simplex. Due to the 2D visualization of the 3D expanded space
in Fig. 2, only the hypotenuses perfectly indicate this scaling. By
utilizing an equilateral balance-element-inclusive sampling with
this centroid expansion, there are no sampling biases among sub-
spaces of a given dimension. Additionally, while other expansion
methods were considered, they resulted in subspace biases and
were less elegant than the centroid method presented in this work.
Having established this definition of the expanded state space, a

revised sampling approach is necessary in order to acquire uniform
random samples within an arbitrary simplex, as the method previ-
ously used was only valid in the true composition space given by
the unit n-element simplex. By calculating the vertices of the
expanded simplex using the aforementioned procedure, one can
apply the method outlined by Grimme for uniform random sam-
pling in an arbitrary simplex [23]. Using barycentric coordinates,
in which coordinates are defined in reference to a given simplex,
Grimme’s method expands a basic method for generating random
points in triangles into (n)-dimensions [23,28]. With an arbitrary
simplex of dimension n that is defined by its n vertices, vi, with i
= 1, …, n, one can generate a random point x using Eq. (1),
where λj∈ (0, 1), j= 0, …, n, is a list of random weights, and
both λ0 and λn are defined as shown [23].

x =
∑n
i=1

1 − λi( )
∏i−1
j=0

λ j

( )
vi with λ0 : = 1 and λn : = 0 (1)

With λ0 and λn defined, each remaining weight λj∈ λ1, …, λ(n−1) is
found from a uniformly distributed random number zj∈ [0, 1] as
shown in Eq. (2) [23].

λ j =
�
[

√
k]z j with k : = n − j (2)

Now that an expanded space and sampling method have been
established; the remaining step is to project points outside the true
n-element simplex onto the subspace boundaries. Chen and Ye
have proposed a simple algorithm for computing the projection
onto the unit n-element simplex Δn [24]. The addition of both a
step eliminating negative coordinates and a subsequent test step
to determine if projection is necessary rounds out the algorithm
so that it efficiently projects all points outside of Δn. The steps of
Chen and Ye’s algorithm [24], including the added steps, are out-
lined as follows:

(1) Input point to be projected: x = (x1, . . . x(n))T ∈ R(n)

(2) (Added) For all (xi < 0)∈ x, where i= 1, …, (n), set xi= 0
(3) (Added) If (

∑n
j x(j)) > 1, proceed to Step 4, otherwise, xproj=

x returns the projection of x onto Δn

(4) Sort x in ascending order x(1)≤ · · ·≤ x(n), and set i= n− 1
(5) Compute

ti =

∑n
j=i+1 x(j) − 1

(n − i)

(6) If ti≥ x(i), then set t̂ = ti and proceed to Step 8, otherwise set
i = i− 1. If i≥ 1, then revisit Step 5, otherwise, if i= 0,
proceed to Step 7

(7) Set

t̂ =

∑n
j=1 x(j) − 1

n

(8) xproj = (x − t̂)+ returns the projection of x onto Δn

With this projection method, an algorithm for subspace sampling
has been completed, which can be implemented into the existing
RRT*FN algorithm and thus the compositionally graded alloy
design methodology. This addition allows for more effective and
exhaustive searches of the design space, enabling potentially supe-
rior solutions through lower-dimensional regions and even lower-
dimensional solutions in problems where a solution does not exist
in higher dimensions.

3 Case Studies: Results and Discussion
3.1 Case Study: Sampling Bias. Using the boundary sam-

pling method outlined in the previous section, a sampling bias case
study was configured to examine the sampling distribution through-
out 3D, 4D, and 5D state spaces and their respective subspaces. If
bias exists between subspaces of the same dimension, we would
expect to observe a notable difference in the proportion of samples
in different subspaces of the same dimension. For this study, the sub-
spaces that contain the balance element were separated from the
others to investigate the existence of any sampling bias. In total,
106 samples were collected, and the percentage of samples located
in each individual subspace were calculated. This process was com-
pleted for Ks= 1.1 and Ks= 1.25 with 10 random runs each and the
means and standard deviations were recorded. The results, shown in
Table 1, indicate that the chosen sampling method is not biased
towards certain subspaces of a given dimension.
As shown in the table, the difference in the proportion of samples

between subspaces with the balance element and those without is
negligible. This unbiased distribution of samples among subspaces
of the same dimension is desirable for path planning, as it is equally
probable for a random sample to be taken on any of the subspaces of
a given dimension. However, the ideal distribution of samples
across subspaces, determined by the value of Ks, for a path planning
problem with a state space of dimension n is unknown and will have
to be found heuristically.

3.2 Parametric Case Study: Synthetic Ternary. Since the
sampling method was shown to successfully capture samples in
each subspace, a synthetic case study was constructed to test the
effectiveness of the new method when integrated with the path plan-
ning algorithm. The goal was to explore the trade-off, in relation to
the parameter Ks, between the algorithm’s ability to find optimal
paths near the subspaces or the interior of the state space. Since
the sampling case study revealed that there are no sampling
biases among subspaces of the same dimension, this case study
was only posed along one of the binaries.
In order to accomplish the goal and gather the necessary observa-

tions, the state space was defined by a synthetic ternary (represented
by a 3D unit simplex) and an equilateral obstacle with a binary side
length

����
0.5

√
.When investigating the algorithm’s ability to plan paths

Fig. 2 Centroid-expanded three-element simplex shown forKs=
1.5 in comparison to the true simplex state space with an
example projected data point

041704-4 / Vol. 144, APRIL 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanicaldesign/article-pdf/144/4/041704/6847101/m
d_144_4_041704.pdf by guest on 05 June 2023



through a given binary subspace, the obstacle was placed at a dis-
tance of 10−6 away from the binary to create a narrow passage.
This arrangement is representative of a common occurrence in com-
positionally graded alloy design problems, where, in certain material
systems, deleterious phases become present with the slightest addi-
tion of a new element, while adjacent subspaces without the new
element are completely viable. In order to assess the new algorithm
holistically, additional trials were completed where the obstacle was
placed so that it blocked the binary subspaces. This forced the algo-
rithm to find a path through the interior so that its performance could
be fully compared with the original method which does not sample
the subspaces at all. It is worth noting that the original method is
identical to the new method when Ks= 1 because there is no expan-
sion beyond the true state space, so no boundary projections occur.
The prescribed path end points in this study were offset from the
binary edges in order to prevent an unfair arrangement benefiting
the new method. By offsetting the end points, the problem required
the algorithm to plan around the corners of the obstacle to generate
the optimal path, rather than the optimal path traveling straight
along the boundary. Using this problem formulation, the algorithm
was evaluated, with the cost function set to minimize path length,
until it reached the goal point (which was given a tolerance radius
of 0.05), and then optimized until the cost of the best path was less
than or equal to the known optimal path. A 2D projection of this for-
mulation is illustrated, along with the optimal interior and boundary
paths, in Fig. 3.
Using this problem formulation, 30 random trials were run for

each parameter in the set Ks∈ {1.05, 1.10, 1.15, 1.20, 1.25, 1.5, 2}.
The iterations required to find the optimal path, within a goal
point tolerance radius of 0.05, were recorded. For the interior
problem, the paths were compared to the previous sampling
method by adding the results of 30 trials for Ks= 1. The previous
method was not included in the boundary cases because, as previ-
ously noted, it is completely unable to find boundary paths. The
results of these trials are shown in the box plot in Fig. 4. The whis-
kers in this plot were extended to the minimum and maximum
instances to indicate the entire spread of the data.
Figure 4 shows the performance trade-off of increasing the

expanded binary side length multiplier Ks in finding the optimal
path through the interior versus the boundary. As samples
become more biased towards the subspace boundaries, the algo-
rithm requires more iterations to find the interior points needed to
optimize the interior path, and vice versa for the boundary path.
From these results, it is evident that for a ternary state space, Ks

values from 1.1 to 1.25 provide a notable increase in boundary
path performance while maintaining comparable interior perfor-
mance to the previous sampling method indicated by Ks= 1. It is
also worth noting that the distributions shown in the box plot
have long whiskers in comparison to the inter-quartile range

indicated by the boxes. This comparison illustrates the high var-
iance in the data as a result of the narrow passageway and sharp
obstacle corners in the cases of the boundary and interior paths,
respectively. Since the path planning algorithm is a sampling-based
technique, it must randomly sample within the narrow passage way
and close to the sharp corners in order to achieve a cost within tol-
erance of the optimal path, thus resulting in the high variance evi-
denced by the large whiskers.

3.3 Materials Case Study: Stainless Steel to NiTi. The new
sampling scheme was also tested in a real materials problem to
design a compositionally graded alloy between stainless steel
(approximated as Fe72Ni12Cr16 (at%)) and equiatomic NiTi
(Ni50Ti50 (at%)), a common shape memory alloy. A gradient
between these two materials could enable the creation of monolithic
morphing structures where NiTi joints actuate structural transforma-
tions and transition to steel plates or members that provide rigidity
and support. A continuous gradient would eliminate the need for
joining parts like brackets and bolts and enable the direct printing
of intricate morphing geometries via additive manufacturing for
applications such as extreme-environment solid-state actuators [29].
Unfortunately, the linear gradient between these two materials is

rife with deleterious phases. Figure 5 displays this linear gradient
and the phases predicted to form at the manufacturing temperature,
1100 °C, along the gradient, as calculated by Thermo-Calc’s High
Entropy Alloy (TCHEA4) database [30,31]. This value approxi-
mates the temperature of the additive manufacturing process and,

Fig. 3 Problem formulation with the obstacle along the
AB-binary-optimal paths for the interior path problem (obstacle
blocking binary edge) and boundary path problem (obstacle
10−6 away from binary edge) is shown

Table 1 Sampling bias case study: subspace sample distribution

Number of elements in subspace

1 2 3 4 5

Ks n
Subspace contains
balance element? (Number of subspaces) percent of samples in each subspace (mean ± st. dev.)

1.1 3 Yes (1) 0.56 ± 0.01 (2) 7.57 ± 0.03 (1) 75.59 ± 0.04
No (2) 0.57 ± 0.01 (1) 7.56 ± 0.02

4 Yes (1) 0.041 ± 0.003 (3) 0.61 ± 0.01 (3) 6.86 ± 0.02 (1) 68.69 ± 0.05
No (3) 0.040 ± 0.002 (3) 0.61 ± 0.01 (1) 6.88 ± 0.03

5 Yes (1) 0.0031 ± 0.0003 (4) 0.049 ± 0.002 (6) 0.59 ± 0.01 (4) 6.25 ± 0.02 (1) 62.41 ± 0.04
No (4) 0.0030 ± 0.0004 (6) 0.049 ± 0.002 (4) 0.59 ± 0.01 (1) 6.24 ± 0.03

1.25 3 Yes (1) 2.48 ± 0.01 (2) 13.24 ± 0.03 (1) 52.86 ± 0.05
No (2) 2.48 ± 0.02 (1) 13.24 ± 0.03

4 Yes (1) 0.388 ± 0.005 (3) 2.35 ± 0.01 (3) 10.54 ± 0.03 (1) 42.18 ± 0.06
No (3) 0.39 ± 0.01 (3) 2.35 ± 0.02 (1) 10.57 ± 0.03

5 Yes (1) 0.063 ± 0.003 (4) 0.412 ± 0.008 (6) 1.97 ± 0.01 (4) 8.43 ± 0.03 (1) 33.68 ± 0.05
No (4) 0.063 ± 0.002 (6) 0.412 ± 0.006 (4) 1.98 ± 0.01 (1) 8.43 ± 0.03
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as such, Fig. 5(b) approximates the phases that form during manu-
facturing. For the linear gradient, these phases include Ni3Ti and the
laves phases at maximums of over 0.35 and 0.6 mole fraction,
respectively. Such large fractions of these brittle phases are likely
to induce cracking during the build process and will also signifi-
cantly compromise the mechanical integrity of any potential gradi-
ent part. The center of this gradient is also predicted to melt to
nearly 50% liquid at this temperature, which would also negatively
impact manufacturing. Liquid was considered deleterious when
looking at the fixed manufacturing temperature of 1100 °C
because it is unknown what compositions it could form upon
cooling.
The path planning methodology developed by Kirk et al. [18]

was employed to design a new gradient path between these materi-
als without the deleterious phases present in the linear gradient. The
Fe–Ni–Cr–Ti composition space formed the state space for this
problem, where the Fe composition was left as balance, as shown
in Eq. (3) which depicts a point in this state space.

z = xNi, xCr, xTi : xFe = 1 −
∑3
i=1

xi and xi ≥ 0 ∀ i

{ }
(3)

The goal of this design problem was to find the path, σbest, that
minimizes the defined cost function, c(σ), while also satisfying con-
straints. The chief constraint imposed was to avoid≥0.01 mole frac-
tion of all deleterious phases (fdeleterious) at 1100 °C. Deleterious
phases were defined as the sigma, laves, and liquid phases as well
as all intermetallic compounds. The region of composition space
that avoids these phases is called the free space, Zfree, or the
space available for feasible paths. The other constraints ensure fea-
sible paths start at the initial composition, zinit, of stainless steel and
reach the goal composition, zgoal, of NiTi. The cost function was
chosen to simply the path length, computed as the sum of every
individual segment length, lk, in a given path. Minimizing this
cost function, the path length ultimately minimizes the number of
layers required to manufacture the gradient. The gradient design
problem formulation is summarized as follows:

Find σbest = argmin
σ

[
c(σ) =

∑n
k=1

lk
]

S.t. σ(α) ∈ Zfree ∀ α ∈ [0, 1]

Zfree =
{
z : fdeleterious(z, T) < 0.01, T = 1100 ◦C

}
σ(0) = zinit =

{
xFe = 0.72, xNi = 0.12, xCr = 0.16

}
σ(1) = zgoal =

{
xNi = 0.5, xTi = 0.5

}
Two approaches were attempted to solve the aforementioned

problem formulation: the original path planning methodology pre-
sented in Ref. [18] and the same methodology with the proposed
subspace sampling method. In both cases, Halton sequence sam-
pling of the composition space was used to generate compositions
for which equilibrium phase formation was predicted by Thermo-
Calc’s TCHEA4 CALPHAD database at a range of temperatures
from 300 to 1800K [30,31]. However, compositions explicitly
from the ternary and binary subspaces were only considered in
the second case. CALPHAD information was used to train k-nearest
neighbors classifiers (k= 3) as surrogate phase models for the
total quaternary space and each subspace individually to avoid
the influence of data outside a given space on predictions in that
space. These models were trained for each of 37 present deleterious
phases and combined to create a single obstacle classifier to increase
efficiency. All simple cubic, face-centered cubic, and body-centered
cubic phases were considered acceptable with all other phases con-
sidered as deleterious. Once the manufacturing temperature was
known, 5 × 10d composition samples were taken from the obstacle
classifier at 1100 °C for each subspace using Halton sequence sam-
pling, where d is the number of elements in the subspace (e.g., 50

Fig. 4 Number of iterations to reach the known optimal path
length within the goal point tolerance of 0.05 for both the bound-
ary path problem with the obstacle located 10−6 away from the
AB-binary and the interior path problem with the obstacle block-
ing the AB-binary.

Fig. 5 (a) Linear gradient path between stainless steel Fe72Ni12Cr16 (at%) and Ni50Ti50 (at.%) and(b) The mole fraction of dele-
terious phases predicted to form along this gradient at 1100 °C.
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for a pure element, 500 for a binary, etc.). These data were used to
train a single obstacle classifier at 1100 °C using the same process as
the variable-temperature model. Classifier accuracy was estimated
with 10-fold cross validation. Only two classifiers produced cross-
validated misclassification rates higher than 2%: the Ni–Cr–Ti
model at 3.24% and the Fe–Ni–Cr–Ti model at 2.54%. These
error rates were considered acceptable for the purpose of modeling
gradient path obstacles.
With the trained surrogate model for deleterious phase regions in

the quaternary space, the original methodology, without subspace
sampling, failed to reach the goal after 1,000,000 iterations of the
path planning algorithm. To explain the inability of the original
methodology to find a feasible path, the free region and obstacle
region of the state space were visualized at the manufacturing tem-
perature of 1100 °C, as shown in Fig. 6. If only the compositions
strictly within the Fe–Ni–Cr–Ti quaternary space are considered,
there is no feasible path through the free region, as shown in
Fig. 6(a). The free region (i.e., those compositions without deleter-
ious phases) is not contiguous between the start and goal composi-
tions. The closest potential point of connection is within the critical

region shown in Fig. 6(a) near pure Cr. In this region, two disjoint
regions of free space (one with the start composition and one with
the goal composition) come close to connecting, but do not connect
due to small amounts of Ti which lead to intermetallic formation. If
instead, as shown in Fig. 6(b), all ternary and binary subspaces (i.e.,
faces and edges) are considered, these regions are connected and
feasible paths do exist. This is due to the Fe–Ni–Cr ternary (i.e.,
the bottom face in Fig. 6), which contains almost no deleterious
phases at this temperature. This region was ignored by the previous
methodology but can now be exploited to find feasible paths with
the proposed subspace sampling scheme.
Using obstacle surrogate models informed from the quaternary

data and data from all the relevant subsystems, the path planning
algorithm with the proposed subspace sampling scheme (expanded
side length, Ks, of 1.15) was run for 50,000 iterations. In this time,
the algorithm was able to find a feasible path. The best path found
by the algorithm after 50,000 iterations is shown in Fig. 7(a). This
path immediately exploits a subspace as the first half of the gradient
is contained entirely within the Fe–Ni–Cr ternary. As mentioned
previously, this ternary is entirely devoid of deleterious phases at

Fig. 6 The Fe–Ni–Cr–Ti state space divided into compositions that contain ≥0.01 mole fraction of deleterious phases at
1100 °C (unsatisfactory) and those that do not (satisfactory) visualize with (a) only quaternary data (without subspaces) and
(b) including ternary and binary compositions. The region of satisfactory compositions forms the free space or the region avail-
able for feasible paths. There is no feasible path without considering the subspaces as the free space is disjoint in the critical
region shown in (a).

Fig. 7 (a) The best gradient path, σbest, obtained by the path planning algorithmwith the proposed subspace sampling scheme
after 50,000 iterations. Note: Ni and Ti content are near equal in the second half of the gradient and (b) The mole fraction of
equilibrium phases predicted to form along this gradient at 1100 °C.
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1100 °C. The gradient path moves along this ternary from stainless
steel towards pure Cr, reaching a maximum of nearly 87 at% Cr
before adding Ti. In the second half of the gradient, Cr is traded
in near equal proportion with equiatomic NiTi to traverse the
Cr–Ni–Ti ternary towards the goal point, with the exception of
trace amounts of Fe.
The equilibrium phase fractions at 1100 °C along the designed

gradient, as predicted directly from Thermo-Calc, are shown in
Fig. 7(b). The designed gradient is largely free of deleterious
phases with the slight exception of a maximum of 0.03 mole frac-
tion of Laves near the center of the gradient. This small amount
of a deleterious phase is a consequence of the problem formulation
and small errors in the constraint surrogate modeling. By minimiz-
ing path length, the problem formulation necessitates that the best
path lies along the constraint boundary at some point if any con-
strained regions lie in the linear path between the initial and goal
compositions. Because the constraint modeling technique relies
on a surrogate model, there is some error in the representation of
the constraint boundary so minimum length paths can sometimes
cross these boundaries. Fortunately, the nature of phase diagrams
requires that phase fractions decrease to zero at phase boundaries
so the fractions of deleterious phases at constraint boundaries are
nearly always small. Furthermore, deleterious phases can nearly
always be avoided entirely by lengthening the path in the affected
area (i.e., increasing the maximum Cr content in this case).
After verifying the success of the proposed sampling scheme, a

parametric study was conducted to determine the effect of the
expanded side length parameter, Ks, on the efficiency of the path
planning process. Ten random runs of the path planning algorithm
were conducted for each parameter in the set Ks∈ {1.1, 1.2, 1.25,
1.3, 1.4, 1.5}. The number of iterations until the algorithm obtained
a feasible path that reached the goal point (within 5 at%) and the
number of iterations until the algorithm reached the solution were
recorded. The cost (i.e., length) of the best path shown in Fig. 7
was compared to the cost of the best feasible path at every iteration
to determine when the algorithm reached the solution. The results of
this parametric study are shown in Table 2 as the mean and standard
deviation of both efficiency metrics. Here in Table 2, we see that Ks

values from 1.1 to 1.25 reach the true solution in less iterations on
average compared to the Ks values from 1.3 to 1.5, with Ks= 1.25
being the best on average with a mean of 15,831 iterations to
reach the solution. This corresponds with the findings from the syn-
thetic ternary case study, where Ks values from 1.1 to 1.25 indicated
a balance between providing boundary solution capability and
slowing the algorithm by oversampling the boundaries. However,
in this case, we also measured the CPU time to account for the
varying amount of function evaluations that occur per iteration.
From these results, we see that the best three parameter values in
order from fastest to slowest on average are Ks= 1.1, 1.25, and
1.3. The standard deviations of iterations to goal, iterations to solu-
tion, and CPU time are all quite high relative to the respective mean
values in each case. This is due to the narrow passageway in free

space near pure Cr and the Cr–Ni–Ti ternary that must be traversed
to reach the goal point, as visualized in Fig. 6(b). As a sampling-
based technique, the path planning algorithm must randomly
sample points within this narrow passageway to find a feasible
path. The exact iteration at which enough points are sampled in
the narrow region to construct a feasible path is therefore subject
to high variance. This behavior is further supported by the fact
that the iterations to solution is only slightly higher than the itera-
tions to the goal point in all cases. It is worth repeating that
without the subspace sampling scheme (when Ks = 1), the path
planning algorithm failed to reach the goal after even 1,000,000 iter-
ations because no feasible paths are possible, as evidenced by
Fig. 6(a).

4 Conclusions
In this work, the FGM design methodology previously developed

by the authors [18] is improved with the addition of subspace sam-
pling to the path planning algorithm’s (RRT*FN) [19,20] sampling
process, thus including subspaces in the design search. This devel-
opment enables the methodology to consider the whole design
space: all possible continuous paths containing any combination
of constituent elements. It also enables the methodology to
provide solutions that are more straightforward, more optimal, or
more robust and even enables lower-dimensional solutions in
spaces where higher-dimensional solutions might not exist. With
the new sampling scheme, new elements can also be added to the
state space without the fear that the deleterious phases they might
produce could prohibit feasible paths entirely. The addition of sub-
space sampling could also be useful in other applications of
sampling-based path planning algorithms where the subspaces
contain potential solutions.
While the new sampling method is limited by the fact that the

ideal distribution of samples across subspaces is problem-specific,
parametric case studies revealed that the design algorithm’s perfor-
mance is not particularly sensitive to the value of the binary side
length multiplier Ks, which controls the sampling distribution. In
a ternary, Ks values from 1.1 to 1.25 were shown to be viable
parameter settings that provided vast improvement over the past
methodology in finding boundary paths, without notably penalizing
the algorithm’s ability to find paths through the interior of the state
space. Further application of the new sampling method indicated
that it successfully outperformed the previous algorithm in planning
a path from stainless steel to equiatomic NiTi, a compositional gra-
dient with promising applications in embedded actuation. In this
instance, the previous methodology was unable to find a feasible
path, while the new sampling scheme found optimal paths with rela-
tive efficiency. Out of several Ks parameters tested in this quater-
nary case, the algorithm also ran most efficiently with Ks values
from 1.1 to 1.3, indicating that a similar range of values performs
well for both ternaries and quaternaries. The algorithm found the

Table 2 Effect of binary side length multiplier parameter on path planning efficiency in materials case study

Side length mult., Ks

Iter. to first feasible path
(mean± st. dev.)

Iter. to optimal path
(mean± st. dev.)

CPU time to optimal solution (s)
(mean± st. dev.)

1 (no subspaces) N/A N/A N/A
1.1 15,282± 5970 19,792± 6833 33.8± 82.9
1.2 10,077± 2981 20,030± 9304 151.4± 282.6
1.25 9683± 3940 15,831± 4390 82.4± 91.1
1.3 9636± 4508 21,239± 10,777 127.8± 121.2
1.4 11,063± 6030 23,008± 14,424 244.7± 165.9
1.5 14,912± 5132 25,571± 13,411 270.6± 286.5

Notes: The Iter. to first feasible path column shows the mean and standard deviation of the iterations until the endpoints were connected by a continuous path
within the goal point tolerance radius of 0.05. The Iter. to optimal path column shows the mean and standard deviation of the iterations until the path length
was optimized to the global minimum within the goal point tolerance radius of 0.05. The time reported in the last column is the mean and standard deviation
of the CPU time to achieve the optimal path on an AMD Ryzen 7 2700 Eight-Core Processor at 3.20GHz with 16.0GB of RAM.
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optimal solution quickly for this set of Ks values, with the average
time to find the optimal path ranging from 33.8 s to 151.4 s. Overall,
the algorithm is able to find boundary solutions in a matter of
minutes for any Ks> 1, the primary difference among the values
tested is a minor variation in the time required to obtain an
optimal path. While the optimal Ks is problem-specific, optimal
paths themselves can be obtained for a wide range of Ks values in
a small amount of time.
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Nomenclature
Mathematical Symbols

c = cost function that promotes design preferences
d = number of elements in a subspace
n = number of elements in the total state space
x = sample from an n-element simplex
z = point in state space of the path planning problem
G = centroid of a simplex
T = temperature
U = a uniform random distribution
Z = state space of the path planning problem

fdeleterious = phase fraction of deleterious phases
lk = length of arbitrary segment k in path
vi = vertex of an n-element simplex
xi = composition of element i

zinit = initial point in path
zgoal = goal point in path
Ks = binary side length multiplier for an expanded simplex

Zfree = obstacle-free space
Zobs = obstacle space
S.t. = subject to
α = path index of a point in the state space

Δn = n-element unit simplex of dimension n
λj = weight for calculating a sample in an arbitrary simplex
σ = continuous path in the state space

σbest = feasible path that minimizes the cost function
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