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Early-stage design of complex systems is considered by many to be one of the most critical
design phases because that is where many of the major decisions are made. The design
process typically starts with low-fidelity tools, such as simplified models and reference
data, but these prove insufficient for novel designs, necessitating the introduction of
high-fidelity tools. This challenge can be tackled through the incorporation of multifidelity
models. The application of multifidelity (MF) models in the context of design optimization
problems represents a developing area of research. This study proposes incorporating com-
positional kernels into the autoregressive scheme (AR1) of multifidelity Gaussian processes,
aiming to enhance the predictive accuracy and reduce uncertainty in design space estima-
tion. The effectiveness of this method is assessed by applying it to five benchmark problems
and a simplified design scenario of a cantilever beam. The results demonstrate significant
improvement in the prediction accuracy and a reduction in the prediction uncertainty. Addi-
tionally, the article offers a critical reflection on scaling up the method and its applicability
in early-stage design of complex engineering systems, providing insights into its practical
implementation and potential benefits. [DOI: 10.1115/1.4065890]
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1 Introduction
Early-stage design of complex engineering systems is critical

since most of the major design decisions are being made at this
stage while engineers have minimal knowledge about the design.
The importance of early design stages has been recognized in
various engineering fields, including ship [1] and aircraft design
[2]. More specifically, design decisions that dictate the vessel’s
overall configuration reduce design freedom and commit a sig-
nificant portion of the overall cost. Therefore, engineers must
conduct comprehensive design space exploration to identify
design trends and trade-offs, leading to informed design decisions.
Throughout the design process, engineers employ a range of

analysis methods with varying fidelities to evaluate different
designs. At opposite ends of the spectrum, high-fidelity (HF)
methods, often based on first principles, provide highly accurate
results but entail significant computational expenses, while low-
fidelity (LF) methods yield less accurate results while requiring

lower computational costs. Traditionally, engineers have used LF
methods and tools to explore the broad multidimensional design
space of complex systems [2]. These methods include simplified
physical models, empirical and semi-empirical methods [3], and
trends based on historical data [4]. Based on engineering experi-
ence, these methods are suitable for conventional designs for
which we have a lot of gained knowledge.
However, nowadays, there is a drive toward innovative designs

driven by the need to address challenges such as the integration
of autonomous systems [5], enhancing safety [6], and promoting
sustainability [7]. This necessitates the design of systems with capa-
bilities that surpass our current state-of-the-art designs. Some exam-
ples of novel hull designs in naval architecture are the tumblehome
wave-piercing hull [8] employed in the Zumwalt-class destroyer,
the aluminum trimaran design [9] used for the USS Independence
frigate, the AXE bow [10] used in various yacht designs, and the
asymmetric hull configuration found in the Baltika icebreaker
[11]. In aerospace, the flying-V [12] represents an innovative air-
craft design that integrates the fuselage into the wing structure,
aiming to enhance its performance.
Incorporating new features into systems introduces added uncer-

tainty, primarily because engineers lack prior experience with
these unique systems [13]. This introduced uncertainty needs to be
quantified and taken into account in order to support decision-
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making [14]. Thus, in order to mitigate this heightened uncertainty,
it becomes important to introduce HF analysis at an earlier stage in
the design process. This is essential because relying solely on LF
models and tools to examine the design space may result in
designs that are not feasible or suboptimal when the underlying
physics is not appropriately captured [15]. Additionally, in the
case of ship design, engineers rely on established rules and guide-
lines prescribed by classification societies to guide their design prac-
tices. However, when dealing with novel ships featuring
unconventional shapes and sizes, blindly following the class
society formulations proves insufficient [16], as these guidelines
are primarily based on conventional ship knowledge. A similar chal-
lenge is present across different design domains. Currently,
advanced HF models are able to capture the underlying physics
that dictate a design’s performance, yet they require a significant
amount of computational resources, human input, and extended
lead times [17,18]. However, it is unrealistic to evaluate a sufficient
number of designs using expensive HFmethods in order to construct
an approximation of the design space. Therefore, a significant chal-
lenge in the optimization of vessel design is the efficient increase of
modeling accuracy required to capture the crucial physics that
restricts or allows for a specific concept [19].
To address these issues, a promising approach is to construct

multifidelity (MF) models, which are defined as models combining
various fidelities [20]. According to Ref. [19], models are consid-
ered multifidelity when there is synergistic use of different mathe-
matical descriptions (i.e., different physics typically represented
by different governing equations, boundary conditions, or paramet-
ric attributions) in the analysis or design procedure. The goal of MF
models is to achieve computational efficiency through the use of LF
models while maintaining precision through the use of the HF
model [21]. MF models are state-of-the-art for solving complex
problems. For a comprehensive understanding of the various MF
techniques, an extensive review of the various MF techniques can
be found in Refs. [20,21]. MF models have demonstrated notable
achievements across various engineering domains such as engineer-
ing design and analysis, and applied mathematics. They have been
used to tackle diverse problems, encompassing solving partial dif-
ferential equations [22], aiding in complex analyses like estimating
the wave-induced vertical bending moment on ships [23,24], and
supporting design applications [25].
Several state-of-the-art methods for design applications have

been extended to an MF scheme. Examples of such methods
include Monte Carlo (MC), Gaussian processes (GPs), and neural
networks (NNs). For example, Ng and Willcox [26] proposed an
MF estimator based on the control variate MC method. Diverse
methods exist in the literature for constructing MF NNs architec-
tures. For instance, Meng and Karniadakis introduced a composite
NN leveraging MF data. In their approach, the first NN approxi-
mates the LF data, while the second and third NNs model the cor-
relation between the low- and high-fidelity data [27]. Examples of
different approaches for building MF-NN architectures can be
found in Refs. [28,29]. According to the findings reported in Guo
et al. [29], the co-Kriging model demonstrated superior perfor-
mance compared to the MF-NN architectures in the case of the For-
rester function. Conversely, in the case of more complex functions
such as the Jump Forrester function, the opposite trend was
observed [29]. To estimate the uncertainty associated with the pre-
diction, Meng et al. [30] introduced a MF Bayesian NN framework.
Within this framework, uncertainty was estimated by predicting the
uncertainty of learning the correlation between the low- and high-
fidelity data. GPs have found extensive application in design prob-
lems. Their primary advantages lie in their ability to provide uncer-
tainty quantification pertaining to predictions, which can be
effectively used in the context of design optimization. Another
advantage is their effectiveness in addressing problems character-
ized by small data regimes.
Despite the ongoing developments in MF models, there are still

significant areas in design applications that remain unexplored.
For example, for multidisciplinary design problems, Mainini et al.

[15] argue that there is no mathematical framework that is
capable of determining (1) which design disciplines, (2) the
degree of coupling for analysis tools, (3) the level of accuracy nec-
essary to capture the crucial physics of a specific design, (4) where
the data is best collected, and (5) how to make optimal design deci-
sions with limited computational resources. Furthermore, Peherstor-
fer et al. [21] emphasize that for design frameworks, it is crucial to
construct frameworks that do not solely focus on models but include
additional information sources, so that decision-makers can effec-
tively utilize a wide range of available information.
In design applications, a primary challenge lies in the necessity

for a larger HF dataset to attain precise predictions, particularly
for complex and higher-dimensional problems. Expanding the HF
dataset poses difficulties since each data point is a product of com-
putationally expensive analyses or, in some cases, physical experi-
ments. Consequently, the acquisition of a substantial HF dataset is
constrained by the limited computational budget available. To
address this challenge, the present work proposes the integration
of compositional kernels in a design framework based on the auto-
regressive scheme of MF GPs. The main idea is that a more accurate
approximation of the design space can be attained by utilizing
knowledge about the underlying structure of the design space
revealed by the compositional kernels. The goal is to build a frame-
work where fewer HF evaluations are necessary to create an accu-
rate MF model, resulting in a reduction in computational cost. The
proposed method has been applied to five benchmark problems, as
well as to a cantilever beam design problem as a first step toward its
application to early-stage design of complex engineering systems
such as naval vessels.
Section 2 provides an overview of relevant work on the explora-

tion of design space structure and uncertainty quantification for
design applications. Section 3 provides the technical background
of the proposed method. Section 4 examines the results from the
conducted case studies. Finally, Sec. 5 outlines the conclusions
derived from the research and offers recommendations for future
research.

2 Relevant Works
The article addresses early-stage design exploration of complex

systems by introducing an MF-GP-based method. In this section,
the fundamental concepts of the topic are discussed individually,
and relevant studies are presented. These concepts include explora-
tion of design space’s structure, uncertainty quantification in design
exploration, and GPs.

2.1 Design Space: Exploration of Its Structure. Early-stage
design of complex systems deals with multidimensional design
spaces, and this forms a significant challenge. In practical applica-
tions, the design space often involves a large number of design var-
iables. Therefore, the scalability of modeling methods becomes a
crucial consideration. For instance, the design variables can range
from a few dozen, as seen in the hydrostructural optimization of
hydrofoils with a 17-dimensional design space [31], to thousands
of variables in the case of an aerostructural optimization benchmark
problem for commercial transport aircraft [32]. Another important
challenge to address during this design stage is the quantification
of uncertainty (UQ). As highlighted by Ref. [14], “UQ creates
value to the extent that it holds the possibility of changing a decision
that would otherwise be made differently.”
The literature has examined numerous approaches aimed at facil-

itating design exploration. For example, Di Fiore et al. [33] pro-
posed incorporating both information extracted from data and
domain knowledge to facilitate the conceptual design of re-entry
vehicles. Furthermore, Singh and Willcox [34] developed a frame-
work grounded in Bayesian statistics and decision theory. This
framework integrates information from different stages of a prod-
uct’s lifecycle to enhance decision-making in the design process.
The method proposed in the present article is founded on the
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premise that the design space under investigation possesses a spe-
cific structure, which can be uncovered and leveraged to enhance
the efficiency and effectiveness of design exploration.
The idea of uncovering the patterns within the design space has

been studied by Melati et al. [35]. The researchers proposed a
machine learning-based approach rooted in pattern recognition to
effectively map and characterize the multidimensional design
space of nanophotonic components. Through pattern recognition
techniques, the authors successfully unveiled relationships among
an initial sparse set of optimized designs, thereby reducing the
number of characterized variables.
In the context ofGPs, the covariancematrix via the kernel function

can be used to define patterns in the design space. The efficacy of
employing an appropriate kernel function for Bayesian optimization
was demonstrated by Moss et al. [36]. In their work, the authors
introduced a Bayesian optimization method for raw strings that
seamlessly incorporates a string kernel, showcasing the power and
effectiveness of this approach. In addition, the study conducted by
Palar et al. [37] explores the potential of composite kernel learning
and model selection in enhancing the accuracy of bi-fidelity GPs.
While the main focus of the current work aligns with the research

paper of Palar et al. [37], the approach of defining the kernel func-
tions differs. The approach of Palar et al. [37] is to build the com-
positional kernels as a weighted sum of basis kernels, and the
weights are treated as hyperparameters. In contrast, the present
study proposes an optimization routine where the kernel functions
of the different fidelities are sequentially built. Thus, the kernel
function for the ith fidelity is built based on the kernel function of
the lower fidelity model i− 1. The proposed method can be
extended to an sth fidelity problem setup.

2.2 Uncertainty Quantification in Design Exploration. UQ
is a widely discussed topic within the realm of design applications
[38]. Defining uncertainty poses challenges since it relates to a lack
of knowledge. Uncertainty is commonly categorized into two types:
aleatory and epistemic [39]. Aleatory uncertainty pertains to natural
randomness that is inherent in the system such as the outcomes of
tossing dice and drawing cards, and thus, it cannot be reduced or elim-
inated. On the other hand, epistemic uncertainty arises from a lack of
knowledge or information. This type of uncertainty can be reduced as
one gains a better understanding of the problem through further inves-
tigation and learning. However, there are arguments asserting that
uncertainty can only be epistemic. As described in Ref. [40], uncer-
tainty is an inherent aspect of the human brain and is not an inherent
property of the external world. Probability, serving as a measure of
uncertainty, reflects an individual’s state of mind rather than an abso-
lute state of affairs. In this article, we follow the common categoriza-
tion to aleatory and epistemic uncertainty.
A typical example of aleatory uncertainty in this context of

hydrodynamic analysis is the probabilistic formulation of ocean
waves. Due to the inherent randomness and variability of wave con-
ditions, a probabilistic approach is essential to adequately address
the associated uncertainties in the hydrodynamic analysis. On the
other hand, Mavris et al. [2] discuss several examples of epistemic
uncertainties that are pertinent to early-stage design, including the
treatment of assumptions, ambiguous requirements, the fidelity of
different codes, economic uncertainties, and technological risks.
Furthermore, according to Collete [41], the key epistemic uncertain-
ties for ship structures involve operational profiles and behavior,
model uncertainty, and the influence of the human engineer.
Hence, within the domain of early-stage design for complex engi-
neering systems, engineers confront both aleatory and epistemic
uncertainties. In certain instances, as highlighted by Ref. [41] in
the context of ship structures, numerous studies tend to simplify
or overlook epistemic uncertainties.
UQ can be used to improve early-stage design exploration of

novel and complex systems. First, UQ can be used to make more
informed and optimal design decisions [38,42]. Second, when
dealing with innovative concepts, there is an inherent introduction

of additional uncertainty into the design exploration problem. The
additional uncertainty arises due to the inherent lack of knowledge
concerning the performance of such systems. A real-world example
in industries like automotive and aerospace involves the use of pro-
totyping to acquire additional insights into the performance of new
engineering systems. It is noteworthy to emphasize that, particularly
in the domain of ship design, the large physical dimensions, the
complexity, and the fact that ship are not being built in large
series render the construction of full-scale prototypes unfeasible
[1]. Therefore, it becomes important to consider and account for
this uncertainty in order to effectively navigate the design space
and make reliable design decisions.
A viable mathematical framework for addressing epistemic

uncertainty lies within the family of Bayesian methods. Bayesian
methods possess an inherent capacity to quantify uncertainty
arising from our limited knowledge. This is because Bayesian sta-
tistics quantify the degree of belief in the truth of a particular prop-
osition, rather than the frequency of event occurrence. For a more
comprehensive discussion on the distinction between frequentist
and Bayesian statistics, readers are referred to Ref. [39].

2.3 Gaussian Processes. The present article focuses on GPs, a
subset of Bayesian methods. In general, a GP is a collection of
random variables such that any subset of these variables is jointly
Gaussian [43]. The MF schemes of GPs incorporate data obtained
from various fidelities. One of the schemes is the linear autoregres-
sive scheme (AR1) proposed by Kennedy and O’Hagan [44]. In
addition to this, two nonlinear schemes have been introduced: the
nonlinear autoregressive Gaussian process (NARGP) proposed by
Perdikaris et al. [45] and the deep Gaussian processes (deep GPs)
proposed by Damianou and Lawrence [46]. GPs and MF-GPs
have demonstrated their effectiveness in addressing design optimiza-
tion problems across different engineering fields such as aircraft
design [47], ship design [48], and materials design [49]. Their pop-
ularity widely comes from the fact that they are well suited for small
data regimes [50], which aligns them to the problem of early-stage
exploration of novels systems where there is inherently limited
data available. In contrast to AR1, which assumes a linear depen-
dency between the fidelities, NARGP, and deep GPs are capable
of capturing more complex nonlinear dependencies among the fidel-
ities. A general trend, based on aerospace-related engineering prob-
lems as shown in [51], is that linear schemes exhibit superior
performance in scenarios with limited data compared to nonlinear
schemes, which require a larger amount of data for effective training.
The present research targets engineering problems in the small data
regime; thus, the AR1 schemewas selected as the basis for this work.
While design optimization has seen successful applications,

ongoing research efforts are necessary to fully harness the potential
of GPs for early-stage exploration purposes. This study investigates
the concept of exploring the structure of the design spacewith the aim
of leveraging this information to enhance prediction accuracy and
reduce uncertainty. Such an approach holds potential for design
applications in domains such as ship and aircraft design, where HF
analyses, including computational fluid dynamics computations
and experiments, can be significantly (computationally) expensive.
Consequently, reducing the number of HF simulations would yield
benefits for tackling such problems. The article builds upon the
work of Charisi et al. [52] by expanding the model beyond the
bi-fidelity case. This is achieved by developing compositional
kernels for each fidelity level sequentially, starting from lower to
higher fidelity. Furthermore, extensive analysis of the model’s per-
formance is conducted across multiple case studies involving analyt-
ical benchmark problems with varying attributes, enhancing our
understanding of its applicability to diverse design problems.

3 Methods
This section contains the technical details of the proposed method

in Sec. 3.1, which is composed of two primary components: (1) the
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MF-GPs and (2) the compositional kernels. The mathematical for-
mulation of GPs and MF-GPs is provided in Sec. 3.2, while the
optimization process for the compositional kernels is described in
Sec. 3.3.

3.1 Proposed Method. The authors propose integrating com-
positional kernels to the linear autoregressive scheme (AR1) to
facilitate design exploration. The integration of the compositional
kernels aims to capture the shape of the underlying HF design
space with the goal of making improved predictions with less HF
analysis data.
The core concept revolves around seeking the optimal composi-

tional kernel, comprising kernels that effectively capture distinct
characteristics of the design space, such as linear or periodic pat-
terns. Constructing these compositional kernels involves solving a
discrete optimization problem. The optimization of the composi-
tional kernel is guided by the analysis data utilized as the training
set for the MF-GP.
Let us assume that the design problem involves models with

fidelities ranging from 1 to s, where fidelity 1 represents the
lowest model and fidelity s represents the highest fidelity model.
The first step is to build a compositional kernel for the data of the
lowest fidelity (fidelity 1) based on a single fidelity GP model (tech-
nical details in Sec. 3.2). For each fidelity i ranging from 2 to s, a
compositional kernel is built based on the bi-fidelity GP model
(technical details in Sec. 3.2) using fidelity i data and fidelity i+
1 data. The process is summarized in Algorithm 1 and Fig. 1.

Algorithm 1: Compositional Kernel optimization for MF-GPs

input: [X( j)
i ,Y ( j)

i ], Vf , k; /* training data: i∈ [1,Nj], j∈ [0,s],
vector of fidelities, number of basis kernels */

output: Vopt
k ; /* vector of optimal compositional

kernels */
1 S ← {k1, k2, . . . , kn}; /* where ki are the basis kernel

functions */
2 So ← {addition,multiplication};
3 for l:=1 to k do
4 V1 ← AllCombinations(S, l);
5 V2 ← AllCombinations(So, l− 1);
6 for i:= 1 to length(V1) do
7 for j:= 1 to length(V2) do
8 Apply the operations described in V2j to functions in V1i

to build kcompij ;
9 Vk ← Vk ∪ kcompij
10 end
11 end
12 end
13 for f to Vf do
14 if f = min(Vf ) then
15 for kcompij in Vk do
16 Build a SF GP model using [X( f )

i=1,..,Nf
, Y ( f )

i=1,..,Nf
];

17 Calculate BIC from Eq. (19);
18 end
19 end
20 else
21 for kcompij in Vk do
22 Build a MF-GP model using

[X( f )
i=1,..,Nf

, Y ( f )
i=1,..,Nf

] ∪ [X( f−1)
i=1,..,Nf−1

,Y ( f−1)
i=1,..,Nf−1

];
23 Calculate BIC from Eq. (19);
24 end
25 end
26 Find the optimal kernel koptcomp with the minimum BIC value;
27 Vopt

k ← Vopt
k ∪ {koptcomp};

28 end

3.2 Gaussian Processes: From the Single Fidelity to the
Multifidelity Scheme. The mathematical formulation for the GPs
is taken from Ref. [43]. A GP is defined as “a collection of
random variables, any finite number of which have a joint Gaussian
distribution, and it is fully characterized by its mean and covariance

function” [43]. GPs are used to build approximations of real-world
processes f (x), which can be fully defined by a mean μ(x) and a
covariance function k(x, x′) according to Eqs. (1)–(3):

f (x) ∼ GP(m(x), k(x, x′)) (1)

m(x) = E[ f (x)] (2)

k(x, x′) = E[f (x) − m(x)][ f (x′) − m(x′)] (3)

The available analysis or experimental data can be described
according to Eq. (4):

y = f (x) + ε, ε ∼ N(0, σ2nI) (4)

where f represents the function to be approximated and ε represents
the error term. GPs belong to the family of Bayesian methods. For
Bayesian methods, a critical element of the analysis is the prior dis-
tribution. The prior distribution encodes our prior knowledge or
assumptions regarding the unknown function f . The prior distribu-
tion of the observed data X and the test data X′ is determined accord-
ing to Eq. (5):

y
f∗

[ ]
∼ N 0

0

[ ]
, K(X, X) + σ2nI K(X, X∗)

K(X∗, X) K(X∗, X∗)
[ ]( )

(5)

where f∗ are the function values evaluated at the test locations X∗. A
common practice is to assign the prior a zero mean [43], since data
can be normalized to have a zero mean, and a kernel function
Kij = k(xi, xj; θ). In Bayesian learning, the prior distribution is
revised by incorporating the observed data, resulting in the

Fig. 1 Flowchart of the proposed method
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formation of the posterior distribution. Mathematically, the prior
distribution is conditioned on the observed data to form the poste-
rior distribution according to Eqs. (6)–(8):

f∗|X, X∗, y ∼ N(μ∗, σ2∗) (6)

μ∗ = kT∗ [K + σ2nI]
−1y (7)

σ2∗ = k∗∗ − kT∗ [K + σ2nI]
−1k∗ (8)

where K = K(X, X), k∗∗ = k(x∗, x∗), and k∗ = k(x∗). There are
various methods to optimize the kernel hyperparameters such as
cross-validation and maximum likelihood estimation [53]. In the
present work, the maximization of the marginal log-likelihood
was applied. The marginal log-likelihood is defined according to
Eq. (9).

log p(y|x, θ) = − 1
2
log |K + σ2nI|

− 1
2
yT [K + σ2nI]

−1y− n

2
log 2π (9)

The autoregressive scheme proposed by Kennedy and O’Hagan
[44] assumes a linear dependency of the various fidelity models.
It is assumed that there are s levels of code fidelity ( ft(x))s=1,...,s
modeled by GPs (Ft(x))s=1,...,s, where XεU ⊂ Rd . The code fidelity
increases from 1 to s, thus fs is the most accurate model. The math-
ematical formulation follows the description in Ref. [54]. The
model is based on the Markov property, described in Eq. (10),
which states that given the nearest point Ft−1(x), we can learn no
more for Ft(x) from any other Ft−1(x′) for x ≠ x′. This assumption
leads to the autoregressive model.

ρt−1(x) =
cov(Ft(x), Ft−1(x))

var(Ft−1(x)) , ∀x ≠ x′ (10)

The submodels are connected according to Eq. (11). The higher
fidelity function connects to the lower fidelity function via a scaling
function ρt (Eq. (13)) and an additive function δt (Eq. (14)). The
scaling function ρt determines the scale factor and the correlation
degree between two successive levels of code. The function δt is
a Gaussian process independent of Ft−1(x) (Eq. (12)). The lowest
fidelity function F1 is described by Eq. (15).

Ft(x) = ρt−1(x)Ft−1(x) + δt(x) (11)

Ft−1(x) ⊥ δt(x) (12)

ρt−1 = gTt−1(x)βρt−1
(13)

δt(x) ∼ GP(μTt (X)βt , σ2t rt(x, x′)) (14)

F1(x) ∼ GP(μT1 (X)β1, σ21r1(x, x′)) (15)

where gt−1(x) is a vector of qt−1 regression functions, rt(x, x′) is a
correlation function, μt(x) is a vector of pt regression functions, βt
is a pt-dimensional vector, βt−1 is a qt−1-dimensional vector, and
σ2t is a positive real number. The trend parameters are denoted as
β = (βT1 , . . . , βTS )T , the adjustment parameters are represented
as βρ = (βTρ1 , . . . , βTρS )T , and the variance parameters are expressed
as σ = (σ1, . . . , σS). The predictive model of the highest fidelity
response fs is calculated according to Eqs. (16)–(18).

[Fs(x)|F(s) = f (s), β, βρ, σ
2] ∼ N(mFs (x), s2Fs

(x)) (16)

mFs (x) = h(s)(x)Tβ + ts(x)T (V (s))−1(f (s) − H(s)β) (17)

sFs (x) = υ2Fs
(x) − ts(x)T (V (s))−1ts(x) (18)

where V (s) represents the covariance matrix of F(s), ts(x) denotes the
vector of covariances between Fs(x) and F(s), H(s)β stands for the
mean of F(s), h(s)(x)Tβ is the mean of Fs(x), and υ2Fs

(x) expresses
the variance of Fs(x). For further details regarding the mathematical
formulations, the reader is referred to the original papers [44,54].
The method of optimizing the hyperparameters is similar to the
one explained for single fidelity GPs by maximizing the marginal
log-likelihood (Eq. (9)).

3.3 Compositional Kernels. The kernel, a measure of similar-
ity between data points [43], incorporates the prior beliefs and
knowledge about the function f . Kernel validity demands symmetry
and positive semi-definiteness. Previous studies have produced
basis functions for constructing valid covariance matrices, such as
the periodic kernel for modeling repeating functions [55].
Duvenaud et al. [56] introduced compositional kernels, which are

formed by combining a limited number of basis kernels through
addition or multiplication. The idea of the method was to decom-
pose the function to be learned into interpretable components.
For constructing the compositional kernels, a set of basis kernel

functions was determined. The set included the exponential and
squared exponential kernels, the linear kernel, the Brownian
kernel, the white noise kernel, the Matérn 3/2 and Matérn 5/2
kernels, the constant kernel, and the periodic kernel. When selecting
a limited number of basis functions to compose the compositional
kernel, an exhaustive search method was employed. More, specifi-
cally, vector V1 contains all possible combinations of k basis
kernels out of nine possible functions. Vector V2 contains all pos-
sible combinations of operations (addition, multiplication) for the k
basis kernels. Each combination of operations described in V2 is
applied to every element of V1. This process yields a final vector
V3. Each element of V3 is assessed based on the Bayesian informa-
tion criterion BIC as proposed in the original paper [56]. BIC is
defined according to Eq. (19):

BIC = khyp ln n− 2 lnL (19)

where n is the number of training data, khyp is the number of hyper-
parameters, and L is the maximized likelihood value. BIC consists
of two components, a penalty term based on the number of model
parameters and a term based on the likelihood function. The
benefit of using BIC over maximizing the marginal log-likelihood
lies in its consideration of the kernel function’s complexity. By
favoring functions with fewer hyperparameters, BIC helps
prevent overfitting. The main idea of building the compositional
kernel is shown in Algorithm 1.

4 Case Studies
This section presents the case studies and the results. The case

studies considered encompass a range of analytical benchmark
problems proposed by Ref. [15], as well as an engineering
problem involving a cantilever beam. The case studies involving
the analytical functions are the following:

—the Forrester function (used for conceptualization)
—the Jump Forrester function
—the ND Rosenbrock function
—the Heterogeneous function
—the 2D shifted-rotated Rastrigin function

Following a notation similar to that of the previous sections, the
models are numbered as follows: the HF model is labeled as s, while
the LF models are sequentially numbered from 1 to s− 1, where 1
represents the lowest fidelity among the LF models. The PYTHON

packages used included GPy [57] and Emukit [58]. Latin hypercube
sampling technique was employed for the selection of analysis
points, and a total of 20 different design of experiments (DoEs)
were used to calculate statistics pertaining to prediction errors.
Throughout the case studies, the reference model refers to the
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AR1 model with the squared exponential kernel, whereas the pro-
posed model refers to the AR1 model with compositional kernels.
The prediction error was evaluated using two measures, namely,
R2 and the normalized root-mean-square error (RMSE), which are
expressed as follows according to Eqs. (20) and (21):

R2 = 1−
∑N

i=1 (yi − ŷi)2∑S
i=1 (yi − y)2 (20)

RMSE = 1
ymax − ymin

�����������������
1
N

∑N
i=1

(yi − ŷi)2
√√√√ (21)

where yi refers to the observed value of each data point i, ŷi refers to
the predicted value of each data point i, y refers to the mean of the
observed values for all the data points, and N refers to the total
number of the samples. Both errors are used to give a more thor-
ough understanding of the quality of the predictions. More specifi-
cally, R2 measures the proportion of variability in a dependent
variable, which can be captured by using the independent variable
[59]. In the context of linear models, this measure provides a
good intuitive understanding as its value ranges from 0 to 1 [60].
For nonlinear models, such as GPs, R2 is defined, but it is not con-
fined to the range (0, 1) [61]. A negative value would suggest that
the model’s performance is poorer than the average of the predicted
values. The metric R2 alone is inadequate for fully assessing the
specific models’ performance; therefore, it was used in conjunction
with RMSE. The latter metric assesses the accuracy of the model in
terms of the residual error.

4.1 Baseline Example: The Forrester Function. The
primary objective of this particular case study, as opposed to the
others, is to facilitate comprehension and visualization of the
concept of exploring the shape of the design space. For this inves-
tigation, we adopt the Forrester function as described in Eqs. (22)
and (23) to represent the design space.

f1(x) = 0.5f2(x) + 10(x− 0.5) − 5 (22)

f2(x) = (6x− 2)2 sin(12x− 4) (23)

This case discusses and demonstrates the benefit of composi-
tional kernels in early design exploration. For this analysis, 5 HF
and 25 LF analysis data were used. Figure 2 shows the LF approx-
imation represented by the blue line, the HF approximation depicted
in orange, and the prediction illustrated by the black dashed line. As
shown in Fig. 2(a), the prediction using the AR1 scheme with the
squared exponential kernel and the given observational data does
not effectively model the HF function. On the other hand, as
shown in Fig. 2(b), the prediction using the AR1 scheme and the
given observational data give an accurate prediction of the HF func-
tion, which represents the design space. In this instance, the kernel
for the LF data was represented as a product of a linear kernel and a
white noise kernel, while the squared exponential kernel was
employed for the HF data. This specific case visually demonstrates
that the additional information provided by the compositional
kernel about the structure of the HF function can improve the per-
formance of the framework. Thus, it is possible to make more accu-
rate predictions with less HF data, thereby reduce the required
computational cost. It is clear that the proposed approach incurs
additional computational cost for developing the compositional
kernels; however, the computational time and costs of running the

Fig. 2 Forrester function using 5 HF and 25 LF data: (a) reference model: RBF kernel and
(b) proposed model: optimized kernel

Table 1 Error measures calculated for the Jump Forrester function varying number of HF points

DoE
GP HF GP HF Ref. model Ref. model Prop. model Prop. model
R2 (std) RMSE (std) R2 (std) RMSE (std) R2 (std) RMSE (std)

(5,25)
0.1894 0.2409 0.6953 0.1297 0.7435 0.1280
(0.3832) (0.0569) (0.4458) (0.0787) (0.2294) (0.0547)

(8,25)
0.5451 0.1772 0.8704 0.0971 0.8554 0.0996
(0.2742) (0.0544) (0.0545) (0.0191) (0.0968) (0.0316)

(10,25)
0.5052 0.1805 0.8085 0.1058 0.8732 0.0892
(0.3329) (0.0695) (0.2703) (0.0574) (0.1296) (0.0403)

(15,25)
0.7322 0.1235 0.9095 0.0798 0.9384 0.0626
(0.2826) (0.0706) (0.0490) (0.0217) (0.0682) (0.0271)
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MF analysis are less than obtaining additional HF computational or
physical experimental data.

4.2 Addressing Discontinuities: The Jump Forrester
Function. The Jump Forrester is a variation of the Forrester

aimed at introducing discontinuities. The Jump Forrester is
described by Eqs. (24) and (25).

f1(x) =
0.5f2(x) + 10(x− 0.5) − 5, 0 ≤ x < 0.5

0.5f2(x) + 10(x− 0.5) − 2, 0.5 ≤ x ≤ 1

{
(24)

Fig. 3 Jump Forrester using 10 HF and 25 LF points: (a) GP HF model, (b) reference model, and (c) proposed model

Table 2 Assessment of the various models for the Jump Forrester function

DoE Improvement ref. model Improvement prop. model Improvement prop. model
compared to the GP HF (%) compared to the GP HF (%) compared to the ref. model (%)

(5,25) 46 47 1
(8,25) 45 44 −3
(10,25) 41 51 15
(15,25) 35 49 22

Table 3 Error measures calculated for the ND Rosenbrock function varying number of HF points

Dimensions GP HF GP HF Ref. model Ref. model Prop. model Prop. model
DoE R2 (std) RMSE (std) R2 (std) RMSE (std) R2 (std) RMSE (std)

4 0.2143 0.1127 0.9685 0.0228 0.9955 0.0085
(45,140) (0.2886) (0.0243) (0.0108) (0.0037) (0.0020) (0.0018)
6 −0.0092 0.1449 0.8188 0.0594 0.9824 0.0187
(55,160) (0.0368) (0.0027) (0.1065) (0.0155) (0.0078) (0.0040)
8 0.0065 0.1247 0.6489 0.0725 0.9399 0.0301
(65,180) (0.0404) (0.0026) (0.1421) (0.0157) (0.0315) (0.0059)
10 −0.01198 0.1203 0.5530 0.0783 0.8574 0.0447
(75,180) (0.0153) (0.0009) (0.1844) (0.0163) (0.0495) (0.0067)
15 −0.00224 0.1232 0.1173 0.1143 0.7037 0.0660
(100,250) (0.0186) (0.0012) (0.2470) (0.0176) (0.1341) (0.0115)
20 0.0032 0.1402 −0.1913 0.1523 0.6381 0.0838
(125,300) (0.0216) (0.0015) (0.1690) (0.0122) (0.0751) (0.0083)

Table 4 Assessment of the various models for the ND Rosenbrock function

Dimensions DoE Improvement ref. model Improvement prop. model Improvement prop. model
compared to the GP HF

(%)
compared to the GP HF

(%)
compared to the ref. model

(%)

4 (45,140) 80 92 63
6 (55,160) 59 87 68
8 (65,180) 42 76 58
10 (75,200) 35 63 43
15 (100,250) 7 46 42
20 (125,300) −8 40 45
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f2(x) = (6x− 2)2 sin(12x− 4), 0 ≤ x < 0.5

(6x− 2)2 sin(12x− 4) + 10, 0.5 ≤ x ≤ 1

{
(25)

In this particular bi-fidelity case study, we used a total of 25 LF
points while varying the number of HF points in the range of 5–15.
The Latin hypercube sampling method was employed to generate
20 different datasets to determine the statistics of the error mea-
sures. The results are presented in Tables 1 and 2.
The results demonstrate that both, the proposed and reference

models, exhibit similar performance in the cases of five and eight
HF points. However, it outperforms the reference model when
using 10 and 15 HF points. The improvement ranges from 1 to
22% depending on the number of HF points, but it is negative
(–3%) in the case of eight HF points. This suggests that while the
proposed model shows the potential for significant advancements
in scenarios with limited data, where both the SF model and the ref-
erence model struggle to accurately represent the underlying design
space, the amount of HF data needs to be adequate to properly
capture the function’s structure. The most substantial improvement
is observed when using 15 HF points. A representative case is illus-
trated in Fig. 3. The design space includes 10 HF and 25 LF data
points. The SF model in Fig. 3(a) fails to capture the function.
The reference model (Fig. 3(b)) is better but not entirely accurate.
In contrast, the proposed model (Fig. 3(c)) demonstrates superior
accuracy in predicting the function. In this case, the kernel function
for the LF data was a multiplication of a linear and a Brownian
kernel, while for the HF data, the Matérn 5/2 kernel was chosen.
Based on these findings, it can be concluded that neither model

adequately captures the discontinuity; however, the proposed
model exhibits enhanced capability in capturing the function
within the remaining domain.

4.3 Scalability: The ND Rosenbrock Function. As previ-
ously mentioned, in practical applications, the design space often
involves a large number of design variables. Therefore, the scalabil-
ity of modeling methods becomes a crucial consideration. To illus-
trate the performance of the proposed model in such design spaces,
the ND Rosenbrock function was employed as a representative test
case. The Rosenbrock function was evaluated in various dimen-
sions, ranging from 4D to 20D. Equations (26) and (27) were
used to describe the Rosenbrock function.

f1(x) = f2(x) − 4−∑D
i=1 0.5xi∑D

i=1 0.5x1
(26)

f2(x) =
∑D−1

i=1

100(Xi+1 − x2i )2 + (1− xi)2 (27)

where xiε[− 2, 2].
In this specific bi-fidelity case study, we systematically increased

the volume of HF and LF data in alignment with the number of
dimensions. The quantity of HF data ranged from 45 to 125,
while LF data varied from 140 to 300 data points. Importantly,
this approach has no impact on the relative performance of the
models, as all three models were trained with identical data
volumes. To assess the statistics of error measures, LHS was
employed to generate 20 distinct datasets. The resulting outcomes
are presented in Tables 3 and 4. In the case of all three models,
the results reveal a decline in their performance with the increasing
dimensionality. This outcome aligns with our expectations, as
higher dimensionality brings about greater complexity, necessitat-
ing a larger volume of training data to achieve the same level of
accuracy. Despite augmenting the training data as the problem
scaled, the extent of this increase did not compensate for the height-
ened complexity. The proposed model outperforms the reference
model in all the examined cases and showed a significant improve-
ment. It is noteworthy that in the context of 20 dimensions, the ref-
erence model proves ineffective in predicting the function
(R2 = −0.1913), while the proposed model maintains a satisfactory
level of accuracy (R2 = 0.6381).
One of the well-known challenges to address when using Gauss-

ian processes is that the computational complexity of training a GP
model is known to beO(N3), where N represents the number of data
points [62]. This cubic complexity poses challenges when dealing
with large datasets or high-dimensional design spaces. This signifi-
cantly impacts the procedure of constructing compositional kernels,
making it computationally expensive for high-dimensional input
spaces. Figure 4 displays the escalating computational costs
plotted against the dimensions of the function. To provide an indi-
cation of this increase, the average time of building the composi-
tional kernels for the 4D Rosenbrock function is 4728 s, which

Fig. 4 Computational cost comparison across various dimen-
sions of the ND Rosenbrock function

Table 5 Error measures calculated for the heterogeneous function varying the number of HF points

DoE GP HF R2 (std) GP HF RMSE (std) Ref. model R2 (std) Ref. model RMSE (std) Prop. model R2 (std) Prop. model RMSE (std)

(5,25) –0.3939 0.4476 0.1387 0.3081 0.6144 0.2115
(1.6100) (0.2197) (1.5754) (0.2423) (0.7309) (0.1550)

(8,25) 0.5476 0.2599 0.9114 0.1189 0.9569 0.0876
(0.3719) (0.1145) (0.0785) (0.0409) (0.0022) (0.0022)

(10,25) 0.6941 0.2160 0.9127 0.1193 0.9576 0.0869
(0.2431) (0.0888) (0.0639) (0.0367) (0.0017) (0.0018)

(15,25) 0.8813 0.1323 0.9066 0.1271 0.9576 0.0869
(0.1401) (0.0606) (0.0291) (0.0220) (0.0021) (0.0022)
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was 13 times lower than the time required for the 20D Rosenbrock
function, which was 64,557 s.

4.4 Discovering Complex Patterns: The Heterogenous
Function. Complex design spaces are often characterized by intri-
cate structures. To evaluate the performance of models in solving
such design spaces, a commonly employed analytical function is
the heterogeneous function, known for its localized and multi-
modal behavior [15]. The 1D heterogeneous function is described
by Eqs. (28) and (29).

f1(x) = ( f2(x) − 1.0+ x)/(1.0+ 0.25x) (28)

f2(x) = sin 30(x− 0.9)4 cos 2(x− 0.9) + (x− 0.9)/2 (29)

where 0 ≤ x ≤ 1. In the analysis, similar to the Jump Forrester func-
tion, the number of HF points varied from 5 to 15, while the number
of LF points remained constant at 25. The results are summarized in
Tables 5 and 6.
Notably, the MF approach demonstrates a significant advantage

over the SF approach, particularly across the range of tested HF
points. Moreover, the proposed model exhibits improved prediction
accuracy across all the tested DoEs. The improvement in the predic-
tions of the proposed model compared to the reference model ranges
from 26% to 32%. Insights into the performance of the models can
be gained from Fig. 5, which specifically focuses on the case where
a dataset of 5 HF points and 25 LF points is shown. In Figs. 5(a) and
5(b), it is evident that both the SF model and the reference model
struggle to accurately predict the shape of the function. The pro-
posed model employed a kernel function comprising the multiplica-
tion of the linear and Brownian kernels for the LF data, while a
squared exponential kernel was used for the HF data. Notably,
the proposed model achieves a more precise representation of the
function throughout the entire domain. However, one drawback
of the method is that the uncertainty bounds are reduced even in
the area close to x = 0, where the model fails to capture the struc-
ture of the function.

4.5 Noisy Observations: The 2D Shifted-Rotated Rastrigin
Function. In this case study, the 2D shifted-rotated Rastrigin func-
tion was employed. This function is characterized by multimodal

behavior. In practical applications, the analysis data and experimen-
tal data used for design optimization often contain noise. Therefore,
it is important to investigate the performance of the model while
dealing with noisy training data. To investigate this, a noise term
edata was added to the 2D shifted-rotated Rastrigin function, taken
from Ref. [15]. Thus, for this analysis, Eqs. (30) and (31) are
used. The function can be visualized in Fig. 6.

f1(z, ϕi) = f2(z) + er(z, ϕi) + edata (30)

where the resolution error er is defined according to Eq. (34).

f2(z) =
∑D=2

i=1

(z2i + 1− cos (10πzi)) (31)

where

z = R(θ)(x− x∗) (32)

Fig. 5 Heterogeneous function using 5 HF and 25 LF points: (a) GP HF model, (b) reference model, and (c) proposed model

Table 6 Assessment of the various models for the heterogeneous function

DoE
Improvement ref. model

compared to the GP HF (%)
Improvement prop. model
compared to the GP HF (%)

Improvement prop. model
compared to the ref. model (%)

(5,25) 31 53 31
(8,25) 54 66 26
(10,25) 45 60 27
(15,25) 4 34 32

Fig. 6 Visualization of the Rastrigin function
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R(θ) = cos θ − sin θ
sin θ cos θ

[ ]
(33)

where xiε[− 0.1, 0.2] for i = 1, .., D, R is the rotation matrix,
θ = 0.2, and x∗ is the location of the global optimum at
[0.1, . . . 0.1]T .

er(z, ϕi) =
∑D=2

i=1

α(ϕ) cos2(w(ϕ)zi + βϕ+ π) (34)

with α(ϕ) = Θ(ϕ), w(ϕ) = 10πΘ, β(ϕ) = 0.5πΘ(ϕ), and
Θ(ϕ) = 1− 0.0001ϕ. For the present case study, we chose
ϕ = 2500.
The outcomes are displayed in Tables 7 and 8. It is evident that

the GP HF model falls short in capturing the underlying function.
In contrast, both the proposed and the reference model demon-
strated substantial enhancements. The reference model shows
improvements ranging from 21% to 34%, while the proposed
model delivers enhancements between 61% and 75%. In terms of
statistical error analysis, we generated RMSE plots for the three
models over 20 iterations to assess error convergence. As illustrated
in Figs. 7(a)–7(c), it is clear that the error values reach a plateau
around iteration 16. The case study was extended to a three-fidelity
scenario, and the outcomes are presented in Tables 9 and 10. These
results exhibit analogous trends to the bifidelity case, with the dis-
tinction that both the proposed and reference models show greater
improvements in predictions, ranging from 32% to 63% and from
72% to 79%, respectively. Emphasizing the impact of incorporating
additional models, it is worth noting that this results in escalating

computational costs. Figure 8 illustrates the computational cost
for both the bifidelity and trifidelity scenarios.

4.6 Simplified Design Problem: The Cantilever Beam. The
proposed framework was tested on a structural design problem
involving a cantilever beam. This particular problem was chosen
because it serves as a simplified representation of real-world,
complex engineering problem, such as estimating lifetime loads
on intricate structures like aircraft or ships. The formulation of
the problem was taken from Ref. [51] and modified.
The cantilever beam is shown in Fig. 9(a). The square-section

beam is fixed to the wall on one end, while a concentrated load is
applied to the opposite end. In addition, there is a hole on the
side that is anchored to the wall. The aim is the calculation of the

Table 7 Error measures calculated for the 2D Rastrigin function varying number of HF points (bifidelity case)

DoE GP HF R2 (std) GP HF RMSE (std) Ref model R2 (std) Ref model RMSE (std) Prop model R2 (std) Prop model RMSE (std)

(5,100) −0.5539 0.3023 0.1910 0.2114 0.7925 0.1118
(0.7471) (0.0628) (0.4308) (0.0704) (0.0604) (0.0153)

(10,100) −0.2398 0.2735 0.2130 0.2039 0.8311 0.1013
(0.3482) (0.0355) (0.5096) (0.0820) (0.0371) (0.0102)

(15,100) −0.0627 0.2547 0.2727 0.2002 0.8543 0.0942
(0.1489) (0.0186) (0.3860) (0.0671) (0.0248) (0.0082)

(20,100) 0.1169 0.2260 0.4944 0.1586 0.8692 0.0878
(0.3703) (0.0558) (0.4170) (0.0761) (0.0599) (0.0179)

(25,100) 0.0332 0.2384 0.3945 0.1531 0.9028 0.0762
(0.2743) (0.0497) (0.4485) (0.0847) (0.0325) (0.0127)

(30,100) 0.1018 0.2267 0.5224 0.1489 0.9458 0.0559
(0.3339) (0.0610) (0.4562) (0.0845) (0.0323) (0.0142)

Table 8 Assessment of the various models for the 2D Rastrigin
function (bifidelity case)

DoE

Improvement ref.
model compared to
the GP HF (%)

Improvement prop.
model compared to
the GP HF (%)

Improvement prop.
model compared to
the ref. model (%)

(5,100) 30 63 47
(10,100) 25 62 50
(15,100) 21 63 52
(20,100) 30 61 45
(25,100) 27 68 55
(30,100) 34 75 62

Fig. 7 Convergence of the RMSE based on the Rastrigin bifidelity case study: (a) GP HFmodel, (b) reference model, and (c) pro-
posed model
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developed von Mises (VM) stress. The problem is set up as a
bi-fidelity problem, where the LF method is the analytical estima-
tion of the maximal von Mises (VM) stress and the HF method is
the numerical estimation of the maximal VM stress. Furthermore,
the problem was modeled as a two-dimensional (2D) problem,
with the independent variables being the beam’s length (L), and dia-
meter (d). The problem domain was defined within the ranges of
Lε[2.0, 3.0]m, and dε[0.25, 0.4]m. The applied force was estab-
lished as a constant value of 950 kN.
The equations can be found in Ref. [63]. To accurately calculate

the Von Mises (VM) stress through analytical means, both the shear
force and the bending moment, exerted along the beam’s length
when it is subjected to a transverse force, need to be accounted
for. The maximal bending stress σb is calculated according to Eq.
(35):

σb = −
Mb(d2)

I
(35)

Mb = −FL (36)

whereMb is the bending moment, I is the moment of inertia, F is the
applied force, and L is the beam’s length. For square cross sections,
the moment of inertia I is calculated based on Eq. (37).

I = d4

12
(37)

The calculation for the average shear force, τ, is determined accord-
ing to Eq. (38):

τ = FQ

Id
(38)

where Q is the first moment of area with respect to the neutral axis
that lies above the point of interest.

Q =
∫
A
y dA = d3

2
(39)

The maximal VM stress is calculated according to Eq. (40).

σmax
VM =

����������
σ2b + 3τ2

√
(40)

In the numerical model, a hole was incorporated into the cantile-
ver beam design. The dimensions of the hole were determined based
on the beam’s main dimensions according to Eqs. (41)–(43). The
material properties of the beam were specified as follows: steel
with a Young’s modulus (E) of 2e+ 11GPa and a Poisson’s ratio
(ν) of 0.30. The model was developed developed using ANSYS

software.

αi = Li
Lmax

(41)

Lihole = 0.3αi · Li (42)

Table 9 Assessment of the various models for the 2D Rastrigin function (three fidelity case)

DoE GP HF R2 (std) GP HF RMSE (std) Ref model R2 (std) Ref model RMSE (std) Prop model R2 (std) Prop model RMSE (std)

(5,50,100) −0.9417 0.3131 0.4089 0.1730 0.8663 0.0884
(2.7959) (0.1454) (0.4451) (0.0797) (0.0622) (0.0200)

(10,50,100) −0.2253 0.2710 0.3428 0.1842 0.9145 0.0717
(0.4342) (0.0414) (0.4362) (0.0800) (0.0267) (0.0101)

(15,50,100) 0.0385 0.2385 0.6996 0.1206 0.9234 0.0673
(0.3127) (0.0461) (0.3448) (0.0623) (0.0319) (0.0130)

(20,50,100) −0.0154 0.2472 0.5554 0.1412 0.9440 0.0577
(0.2139) (0.0348) (0.4671) (0.0856) (0.0189) (0.0102)

(25,50,100) 0.0394 0.2381 0.7627 0.1025 0.9527 0.0525
(0.2688) (0.0474) (0.3339) (0.0636) (0.0217) (0.0121)

(30,50,100) 0.1826 0.2115 0.8700 0.0773 0.9655 0.0452
(0.3981) (0.0736) (0.2054) (0.0446) (0.0137) (0.0089)

Table 10 Assessment of the variousmodels for the 2D Rastrigin
function (three fidelity case)

DoE

Improvement ref.
model compared to
the GP HF (%)

Improvement prop.
model compared to
the GP HF (%)

Improvement
prop. model

compared to the
ref. model (%)

(5,50,100) 44 72 49
(10,50,100) 32 74 61
(15,50,100) 49 72 44
(20,50,100) 43 77 49
(25,50,100) 57 78 49
(30,50,100) 63 79 42

Fig. 8 Computational cost comparison based on the Rastrigin
function case
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dihole = 0.3αi · di (43)

The outcomes are presented in Tables 11 and 12. These results
indicate that the reference model yields results that are on par
with the SF model. This can primarily be attributed to the consider-
able disparity between the LF fidelity model and the HF model,
which is attributed to the presence of the hole. In contrast, the pre-
dictions of the proposed model are closer to the HF design space.
Based on Table 12, the improvement compared to the SF model
ranged from 15% to 24%. An example of the problem can be visu-
alized in Fig. 10.

5 Discussion
5.1 Discussion on the Presented Case Studies. In summary,

the findings demonstrated that the incorporation of compositional
kernels significantly enhanced the predictive capabilities of the
AR1. Various analytical benchmark problems were simulated to
thoroughly test the proposed model.
The 1D Jump Forrester function, representing a discontinuous

space, was treated as a bi-fidelity problem. The number of HF
points ranged from 5 to 15, while LF points remained constant at
25. The proposed model yielded an improvement in predictions,

Fig. 9 Cantilever beam case study: (a) schematic representation and (b) equivalent von Mises
stresses calculated by ANSYS

Table 11 Error measures calculated for the cantilever beam varying the number of HF points

DoE GP HF R2 (std) GP HF RMSE (std) Ref model R2 (std) Ref model RMSE (std) Prop model R2 (std) Prop model RMSE (std)

(10,50) −0.1286 0.1892 −0.2348 0.1979 0.0710 0.1578
(0.8933) (0.0748) (1.0045) (0.0784) (1.0450) (0.0989)

(15,50) 0.3159 0.1484 0.3626 0.1437 0.5561 0.1127
(0.4988) (0.0535) (0.4623) (0.0518) (0.5115) (0.0627)

(20,50) 0.4264 0.1398 0.4255 0.1400 0.5339 0.1190
(0.3890) (0.0514) (0.3847) (0.0504) (0.4326) (0.0648)

(25,50) 0.6122 0.1149 0.5875 0.1184 0.6883 0.0975
(0.1661) (0.0290) (0.1872) (0.0308) (0.2393) (0.0418)

(30,50) 0.6200 0.1129 0.5941 0.1170 0.6989 0.0991
(0.1840) (0.0256) (0.1851) (0.0250) (0.1951) (0.0322)

(35,50) 0.6562 0.1073 0.6484 0.1085 0.7391 0.0910
(0.1528) (0.0162) (0.1575) (0.0158) (0.1798) (0.0308)
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reaching up to 22% in the case of 15 HF points. Similarly, the 1D
heterogeneous function case study followed a modeling approach
akin to the 1D Jump Forrester scenario. The proposed model exhib-
ited improvement, with predictions reaching up to 32% in the case
of 15 HF points. The 2D shifted-rotated Rastrigin function,
employed to assess multimodal behavior, was modeled both as a
bi-fidelity and tri-fidelity problem. In the bi-fidelity scenario, the
HF points ranged from 5 to 30, while LF points remained constant
at 100. An improvement of 62%was observed with 30 HF points. In
the tri-fidelity case, HF points ranged from 5 to 30, medium-fidelity
points were held constant at 50, and LF points remained constant at
100. In this case, the improvement was measured 49% for the
majority of the cases. For the cantilever beam problem, the refer-
ence model produced results comparable to the SF GP. However,
the proposed model demonstrated improved results, showing
enhancements ranging from 15% to 22%. Overall, these results
hold promise for the application of the model in addressing
complex design problems within multidimensional spaces.

5.2 Critical Reflection on Scaling-Up the Method to
Address Early-Ship Design of Complex Vessels. The objective
of the proposed method is to facilitate early-stage design explora-
tion of complex vessels. While the presented case studies involved
a lower complexity level, it is crucial to critically reflect on the scal-
ability of the method. The authors believe that the method has
undergone extensive testing in various analytical case studies,
which simulate challenges sharing similarities with real design
problems, such as the presence of discontinuities and complex pat-
terns. Furthermore, the chosen case studies demonstrate good align-
ment with benchmark problems that hold wide acceptance within
the research design community. An important consideration when
applying the suggested method to high-dimensional realistic
design problems is the increased computational costs associated
with the development of the compositional kernels. The associated
computational cost depends on the dimensionality of the problem,
the size of the training set, and the number of analysis methods
used in the MF model. The latter is not of interest because inher-
ently these design problems deal with small data regimes. The

impact of problem dimensionality was explored in the ND Rosen-
brock case study. Additionally, the effect of integrating additional
fidelity models was examined in the case of the Rastrigin function.
Overall, the integration of compositional kernels introduces a trade-
off between the computational benefits arising from reduced train-
ing dataset sizes and the supplementary computational expenses
stemming from kernel optimization. The determining factor in
this trade-off is contingent upon the nature of the design problem.
Particularly in scenarios characterized by design exploration tasks
featuring KPIs that are expensive to evaluate, we assert that the inte-
gration of compositional kernels presents a promising avenue.
The expansion of the method to tackle high-dimensional prob-

lems will inevitably result in increased computational expenses,
presenting a notable challenge. However, it is important to note
that HF analysis techniques in ship design problems such as compu-
tational fluid dynamics (CFD) analysis and model tests can be sig-
nificantly (computationally) expensive. Therefore, the authors
believe that the application of the proposed method and the subse-
quent reduction in the required number of HF simulations will yield
computational benefits for design space exploration problems.

5.3 Recommendations for Future Research. Several sugges-
tions for future research efforts are worth considering. First, the
method should be tested to real engineering engineering problems
to ensure its capability to effectively capture the complex patterns
inherent in real multidimensional design spaces. In the context of
real-world applications, another significant consideration involves
evaluating the enhancements in accuracy and the reduced uncer-
tainty in predicting the design space. In addition, it is important
to assess whether the computational benefits stemming from the
reduced necessity for HF simulations are offset by the computa-
tional costs associated with optimizing the kernel function.
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