The estrogen receptor α:insulin receptor substrate 1 complex in breast cancer: structure–function relationships

D. Sisci1, Accum◗, C. Morelli1, S. Cascio2, M. Lanzino1, C. Garofalo1, K. Reiss3, M. Garcia4, A. Russo2, S. Ando5 & E. Surmacz6

1Dipartimento Farmaco Biologico, University of Calabria, Arcavacata di Rende, Cosenza; 2Section of Medical Oncology, Department of Surgical and Oncology, Università di Palermo, Palermo, Italy; 3Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA, USA; 4Institut National de la Sante et de la Recherche Medicale, Unite Hormones et Cancer, Montpellier, France; 5Dipartimento di Biologia Cellulare, University of Calabria, Arcavacata di Rende Cosenza, Italy; 6Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, USA

Background: Insulin receptor substrate 1 (IRS-1) is a signaling molecule that exerts a key role in mediating cross talk between estrogen receptor α (ERα) and insulin-like growth factor 1 (IGF-1) in breast cancer cells. Previously, we demonstrated that a fraction of IRS-1 binds ERα, translocates to the nucleus, and modulates ERα-dependent transcription at estrogen response elements (ERE). Here, we studied structure–function relationships of the ERα:IRS-1 complex under IGF-1 and/or estradiol (E2) stimulation.

Materials and methods: ERα and IRS-1 deletion mutants were used to analyze structural and functional ERα/IRS-1 interactions. IRS-1 binding to ERE and IRS-1 role in ERα-dependent ERE transcription was examined by chromatin immunoprecipitation and gene reporter analysis, respectively. The requirement for IRS-1 in ERα function was tested with RNAi technology.

Results: Nuclear translocation of IRS-1 was induced by E2, IGF-1, and a combination of both stimuli. ERα:IRS-1 binding was direct and involved the activation function-1 (AF-1)/DNA binding domain (DBD) region of ERα and two discrete regions of IRS-1 (the N-terminal pleckstrin homology domain and a region within the C-terminus). IRS-1 knockdown abrogated IGF-1-dependent transcriptional activity of unliganded ERα, but induced the activity of liganded ERα.

Conclusions: ERα/IRS-1 interactions are direct and involve the ERα AF-1/DBD domain and IRS-1 domains mapping within N- and C-terminus. IRS-1 may act as a repressor of liganded ERα and coactivator of unliganded ERα.

Key words: estrogen receptor alpha (ERα), insulin receptor substrate 1 (IRS-1), breast cancer

introduction

Insulin-like growth factor-1 (IGF-1) and 17β-estradiol (E2) have been shown to act in synergy, stimulating breast cancer cell growth and survival [1, 2]. The functional interactions between E2 and IGF-1 signaling systems involve several transcriptional and posttranscriptional mechanisms. For example, IGF-1 can affect estrogen receptor α (ERα) action by enhancing its expression and potentiating its transcriptional activity in a ligand-independent manner [3–7]. On the other hand, E2 can enhance IGF-1 signaling by upregulating the expression of IGF-1 [8], IGF-1 receptor [9], and some IGF-1 binding proteins [10]; ERα also stimulates transcription and enhances stability of insulin receptor substrate 1 (IRS-1), a major IGF-1 signaling molecule [11–13].

IRS-1 is a 130–180 kDa docking protein containing two conserved domains within the N-terminal portion. The PH (pleckstrin homology) domain mediates interactions with phospholipids and proteins containing acidic motifs. The phosphotyrosine-binding (PTB) domain couples IRS-1 with the phosphorylated IGF-1 receptor. The IRS-1 C-terminus contains several serine and tyrosine residues that can modulate its activity. The major intracellular pathways stemming from IRS-1 are activated upon its tyrosine phosphorylation and subsequent recruitment of downstream signaling molecules through Src homology domain-type interactions [14, 15].

Numerous studies have shown that in breast cancer cells, IRS-1 signaling regulates cell proliferation, survival, and drug resistance. IRS-1 is also a key molecule sustaining efficient E2/IGF-1 cross talk [11, 16]. Recently, we described that in addition to its function as a signaling molecule, IRS-1 might affect nuclear processes. Specifically, IRS-1 can be found in the nucleus in breast cancer cells where it can interact with ERα. In breast tumors, nuclear colocalization of IRS-1 and ERα negatively correlated with tumor grade, size, mitotic index, and lymph node involvement in ductal breast cancer tissues [17]. The function of nuclear IRS-1 in the regulation of steroid receptor function is not well defined; our data

© 2007 European Society for Medical Oncology
indicated that nuclear IRS-1 can act as transcriptional regulator of liganded ERα at estrogen response elements (ERE) in DNA [18].

In this study, we examined how E2, IGF-1, and the combination of both factors regulate IRS-1 nuclear translocation, its binding with ERα, and its effects on ERα-mediated transcription. Furthermore, using different deletion mutants of IRS-1 and ERα, we characterized structure–function relationships in the ERα:IRS-1 complex.

methods and results

E2 and IGF-1 modulate nuclear translocation of IRS-1 and its recruitment to ERE sites

Previously, we reported that IRS-1 colocalizes and coprecipitates with ERα in ER-positive MCF-7 cells and that a fraction of IRS-1 can be translocated to the nucleus together with liganded ERα [18]. Here, we asked whether IRS-1 could be transported to the nucleus in response to IGF-1 or IGF-1 plus E2 treatments. Under serum-free medium conditions, IRS-1 was present mainly in the cytoplasm. The addition of E2 for 1 or 4 h significantly increased nuclear abundance of IRS-1 and reduced its cytoplasmic content (Figure 1A). Similar effects were seen with the combination of E2 and IGF-1. IGF-1 alone minimally increased IRS-1 nuclear translocation at 4 h (Figure 1A).

![Figure 1.](image-url)
Figure 1. Insulin receptor substrate 1 (IRS-1) associates with the pS2 ERE motif in insulin-like growth factor 1 (IGF-1) and estradiol (E2)-treated MCF-7 cells. (A) MCF-7 cells synchronized in serum-free medium were left untreated or were treated with 10 nM E2 and/or 20 ng/ml IGF-1 for 24 h. The abundance and localization of IRS-1 was analyzed by western blotting using 50 μg of cytoplasmic and nuclear proteins. The purity of cytoplasmic and nuclear protein markers, respectively. The antibodies (Abs) used were described previously [18]. (B) Chromatin immunoprecipitation assays were carried out as described previously [18]. Briefly, MCF-7 cells were treated with 10 nM E2 and/or 20 ng/ml IGF-1, for 1, 4, 8, 12, and 24 h. Next, the cells were cross-linked with paraformaldehyde and chromatin–protein complexes were immunoprecipitated with a specific IRS-1 Ab. The presence of pS2 ERE in the resulting immunoprecipitates was analyzed by PCR [18].

Next, we analyzed the association of IRS-1 with ERE sequences within the pS2 gene promoter (Figure 1B). We found that E2 stimulated IRS-1 loading on pS2 ERE from 1 h to 12 h, reaching the maximum at 4 h, which was concomitant with the increased nuclear translocation of IRS-1 (Figure 1A and B). On the other hand, IGF-1 stimulation produced two peaks in the IRS-1 binding on pS2 ERE promoter, at 4 h and 12 h. The addition of E2 significantly improved IGF-1-induced recruitment of IRS-1 on pS2 ERE at 4 h. Interestingly, at 8 h, IGF-1 was loaded on pS2 in response to E2 but not under IGF-1 or E2 plus IGF-1, indicating involvement of IRS-1 in IGF-1 signaling at these time points.

characteristics of the ERα:IRS-1 complex

To characterize the region of IRS-1 responsible for ERα binding under different stimuli, we employed IRS-1 truncation mutants (depicted in Figure 2A) [15]. The glutathione S-transferase fusion protein incorporating IRS-1 (GST-IRS-1) mutants were incubated with 100 μg of either cytoplasmic or nuclear proteins obtained from MCF-7 cells stimulated with E2 and/or IGF-1, or left untreated. In unstimulated cells, the strongest ERS binding mapped within the first 300 amino acids of IRS-1 (M1); a less efficient binding was also detected with the last 500 amino acids corresponding to the mutants M4 and M5 (Figure 2B). The IRS-1 M1 region contains the PH domain and a portion of the PTB domain [14, 19]. The absence of binding with the M2 mutant, containing 97 amino acids of the PTB domain, indicates that this domain is not involved in ERα:IRS-1 interactions (Figure 2B). ERα binding to IRS-1 M1, M4, and M5 domains occurred under all stimulation conditions (Figure 2C), indicating that these interactions are not affected by conformational changes or phosphorylation induced by stimulation with IGF-1 and/or E2. The question whether ERα:IRS-1 binding is direct or requires other proteins was addressed with the GST-IRS-1 mutants with a synthetic ERα protein. The results demonstrated efficient ERα binding to M1, and to a lesser extent to M4 and M5 in vitro (Figure 2D), indicating that ERα directly interacts with IRS-1.

To map ERα regions involved in IRS-1 binding, we first used ERα deletion mutants lacking the activation function-1 (AF-1)/DNA binding domain (DBD) or activation function-2 (AF-2) domain [20] (Figure 3). Using GST pull-down assays, we demonstrated that IRS-1 binds to AF-1/DBD, but not to AF-2 (Figure 3A and B). Interestingly, stimulation with E2, IGF-1, or both increased AF-1/DBD/IRS-1 binding in the nucleus, decreasing their cytoplasmic interactions (Figure 3A). A more detailed mapping of ERα:IRS-1 interfaces was done using additional GST-ERα truncation mutants (Figure 3C). Specifically, we tested A1 and A2 mutants that include the AF-1 domain, A3 that includes a part of the AF-1 domain and the entire DBD, A4 that covers the AF-2 domain and a part of DBD, and A5 that includes a major portion of the AF-2 domain [21] (Figure 3C). The results confirmed that IRS-1 binds to the AF-1/DBD domain of ERα (Figure 3D).

effects of IRS-1 knock down on ERα-mediated transcription at pS2 ERE

To investigate functional interactions between IRS-1 and the ERα AF-1 domain, we employed a luciferase transcription reporter assays (Figure 4). HEK293 cells (ERα negative, IRS-1 positive) were transiently cotransfected with the ERE-responsive luciferase reporter plasmid and a plasmid encoding ERα (pSG5-HeG6, Figure 4B), ERα with C-terminal truncation (encoding ERα AF-1/DBD domain pSG5-HE15, Figure 4C), or AFα with N-terminal truncation (encoding ERα AF-2/DBD domain, pSG5-HE19, Figure 4D), or an empty vector (pSG5, Figure 4A) [22]. To test the role of IRS-1 in ERα-mediated transcription, IRS-1 levels were downregulated by 70% using anti-IRS-1 siRNA, as described before [23]. We observed a significant increase of E2-induced ERE transcription in the absence of IRS-1 (Figure 4B). In contrast, downregulation of IRS-1 reduced ERE
transcription in IGF-1 and IGF-1 plus E₂-treated cells (Figure 4B). IRS-I knock down did not significantly influence ERE-mediated transcription in HeLa cells expressing the AF-2/DBD region of ERα (Figure 4D), while a significant decrease of ERα transactivation was observed in cells expressing the AF-1/DBD region in response to IGF-1 stimulation.

discussion

ERα/IGF-1 cross talk is known to influence breast cancer cell proliferation, survival, transformation, migration, and invasion [2, 24, 25]. IRS-1 is a major substrate of the IGF-1 receptor and a crucial molecule mediating ERα/IGF-1 interactions [1, 2, 14]. In breast cancer, IRS-1 overexpression has been associated with the development of the transformed phenotype, hormone independence, and drug resistance [2]. These effects have been attributed to increased IRS-1 tyrosine phosphorylation and potentiation of its signaling through the antiapoptotic Akt pathway [2, 25]. In addition to its conventional role as signal transducing molecule, IRS-1 has been found in the nuclear compartment in several cell types [15, 17, 18, 26, 27]. Recently, we demonstrated that nuclear IRS-1 is present in ERα-positive breast tumors and cell lines.

Figure 3. Estrogen receptor α (ERα) domains involved in insulin receptor substrate 1 (IRS-1) binding. (A) We expressed and purified the GST-ERα fusion proteins with activation function-1/DNA binding domain or activation function-2 deletions, as described previously [15]. MCF-7 cells were left untreated or treated with 10 nM estradiol, or 20 ng/ml of IGF-1 or both (B) for 24 h and then lysed. Hundred microgram of cytoplasmic or nuclear proteins were precipitated with 10 μg of GST (V) or different GST-IRS-1 truncation mutants coupled to glutathione-Sepharose. IRS-1 and GST content in precipitates were determined by western blotting (WB). Twenty microgram of total lysates were loaded as control (Lysate [Lys]). (C) A more detailed mapping was carried out with shorter GST-ERα fragments. (D) Cell lysates were precipitated with 10 μg of GST (V) or different GST-ERα truncation mutants coupled to glutathione-Sepharose. IRS-1 and GST content in precipitates were determined by WB.
Our results indicated that the interaction between IRS-1 and ERα does not require intermediating proteins as it can occur in vitro between GST-IRS-1 mutants and synthetic ERα. Two binding sites for ERα were mapped on IRS-1. One site mapped within the N-terminal portion of IRS-1 containing the PH domain, while the second localized within the C-terminus of IRS-1. These results are consistent with previously published observations that nuclear IRS-1 can interact with other proteins (e.g. the T antigen of JCV virus) via the PH domain. The binding site for IRS-1 on ERα was mapped in the AF-1/DBD domain that contains several serine residues responsible of ligand-independent transactivation of ERα. However, because the ERα:IRS-1 complex can bind to ERE under E2, which must engage an unoccupied DBD domain, we speculate that ERα binding to IRS-1 is mediated mostly by AF-1.

Nuclear translocation of IRS-1 and its interaction with ERE could be induced by both E2 and IGF-1, but with different dynamics and efficiency. E2 activates continuous presence of IRS-1 on ERE, while IGF-1 stimulates intermittent IRS-1 interaction with these sites. Notably, IRS-1 recruitment to ERE in response to E2 and IGF-1 resembles that of liganded or unliganded ERα, respectively. The differential recruitment of the ERα:IRS-1 complex could be explained by the nature of ERα activation in response to E2 or IGF-1. In particular, E2 directly activates ERα by binding to the AF-2 domain. Instead, activation of ERα by IGF-1 is indirect and mediated by Erk1/2 and Akt kinases that phosphorylate ERα AF-1 domain on serine residues 118 and 167, respectively. Notably, the recruitment of

Figure 4. Insulin receptor substrate 1 is a transcriptional coregulator of estrogen receptor α. The experiments were carried out using HeLa cells that are ERα negative and IRS-1 positive. All transfection mixtures contained the reporter plasmid, ERE-Luc, encoding the firefly luciferase complementary DNA under the control of the TK promoter and three estrogen response element sequences and, as internal control, the plasmid pRL-Tk (Promega) encoding Renilla reniformis luciferase. The cocktail was cotransfected with either the empty vector pSG5 (A), pSG5-HeG0 encoding ERα (B), pSG5-HE15, and pSG5-HE19, code for a C-terminal truncated receptor (activation function-1/DNA binding domain (DBD), amino acids 1–281) (C) and for the N-terminal truncated receptor (activation function-2/DBD, amino acids 179–575) (D), respectively. The luciferase activity was measured using Dual luciferase assay System (Promega Madison, WI). IRS-1 knock down was obtained by transfecting cells with pSilencer IRS-1 plasmid (shIRS1) [23] or with a control scrambled shRNA (Scrambled). Transfections and luciferase assays were carried out as described previously [18]. The results represent mean ± standard deviation of five independent experiments.
IRS-1 on ERE site in response to a combination of IGF-1 and E2 was greater than that seen with either IGF-1 or E2 alone, confirming synergistic effects of both mitogens on ERα.

Finally, we investigated the relevance of IRS-1/ERα interaction in ERα-dependent transcription in response to E2 and/or IGF-1 stimulation. Using IRS-1 RNAi technology, we confirmed that IRS-1 might act as a repressor of liganded ERα on ERE [18]. It is worth noting that the effects of IRS-1 knock down were not noticeable in cells expressing the AF-1 or the AF-2 truncated mutants of ERα. This is in agreement with IRS-1 function since the absence of IRS-1 reduces the recruitment of protein kinases that phosphorylate serine residues within the AF-1 domain inducing ligand-independent activation of ERα [16, 33]. On the other hand, our results indicated that IRS-1 might be a coactivator of unliganded (IGF-1 transactivated) ERα. The negative effects of IRS-1 towards liganded ERα were abrogated under combined E2 plus IGF-1 treatment, indicating that cooperation of both stimuli might be optimal for ERα transcriptional response. In conclusion, our data indicate that IRS-1 interacts directly with ERα in the nucleus of breast cancer cells and plays a key role in the regulation of balanced transcription of liganded and unliganded ERα.

acknowledgements

ERα AF-1 and AF-2 mutants were obtained from R. Kumar at Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. This work was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC)—2004, Ministero dell’ Università e della Ricerca (MURST) Ex 60%—2006, and Sbarro Health Research Organization.

references

3. Lange CA. Making sense of cross-talk between steroid hormone receptors and intracellular signaling pathways: who will have the last word? Mol Endocrinol 2004; 18: 269–278.