clinical practice guidelines

Neuroendocrine gastroenteropancreatic tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up

K. Öberg¹, G. Åkerström², G. Rindi³ & S. Jelic⁴
On behalf of the ESMO Guidelines Working Group*

¹Department of Endocrine Oncology, University Hospital, Uppsala, Sweden; ²Department of Surgery, University Hospital, Uppsala, Sweden; ³Institute of Pathology, U.C.S.C. Policlínico A. Gemelli, Rome, Italy; ⁴Internal Medicine Service, Institute of Oncology and Radiology, Belgrade, Serbia

incidence

Neuroendocrine gastroenteropancreatic tumours (GEP-NET) constitute a heterogeneous group of tumours with their origin in neuroendocrine cells of the embryological gut, most commonly with the primary lesion located in the gastric mucosa, the small and large intestine, the rectum or the pancreas. The crude incidence has significantly increased over the last year, from 3.0 cases/100 000/year to 5.25/100 000/year. The prevalence has recently been calculated as 35/100 000/year. The most recent analysis of the US SEER database indicates an incidence of 0.95/100 000 for small intestinal neuroendocrine tumours (so-called classical carcinoids), 0.86/100 000/year for rectal, 0.32/100 000/year for pancreatic and 0.30/100 000/year for gastric NETs. Neuroendocrine GEP tumours can appear at all ages, with the highest incidence from the fifth decade upwards. Exception is the carcinoid of the appendix, which occurs with the highest incidence at ~40 years of age. There is a slight overall higher incidence of NETs for males (5.35) compared with females (4.76). Patients with multiple endocrine neoplasia type 1 (MEN-I) or von Hippel–Lindau’s disease (vHL), may have a clinical onset 15 years earlier than patients with the corresponding sporadic type of neuroendocrine tumour.

diagnosis

Patients with clinical symptoms suggesting a neuroendocrine GEP tumour should be referred to a centre with special interest in and knowledge of these diseases. The histopathological diagnosis is performed on tissue samples obtained either by endoscopic biopsy, open surgery or by core needle biopsy from metastatic sites. The family of neuroendocrine GEP tumours constitutes a heterogeneous group, but all share common histochemical features, with immunoreactivity for the so called ‘pan-neuroendocrine’ markers, including chromogranin A and synaptophysin. The proliferation potential should be evaluated by staining with the proliferation marker Ki-67 (MIB-I). Depending on clinical symptoms, specific hormonal markers can be searched for in the tissue sample, but it must be remembered that there is not always a correlation between tissue expression of hormones and amines and circulating levels. All patients should have an analysis of chromogranin A in plasma as a general tumour marker and depending on clinical symptoms, other markers should be analysed such as urinary 5HIAA for the carcinoid syndrome, gastrin for the Zollinger–Ellison syndrome and insulin/pro-insulin for the hypoglycaemic syndrome. Dynamic stimulation tests may be required in specific cases (fasting test for insulinomas; secretin test for gastrinomas, etc.).

staging and risk assessment

Neuroendocrine tumours arising at different anatomical sites of the digestive system represent tumour entities that differ in their biology and clinical presentation (Table 1). The WHO classification system was established in year 2000 (Table 2), dividing the tumours into well-differentiated endocrine tumour, well-differentiated endocrine carcinoma, poorly differentiated endocrine carcinoma and mixed exocrine and endocrine tumours. Recently the European Neuroendocrine Tumor Society has proposed a TNM staging and grading system for various types of GEP-NET (Tables 3–8). Pre-operative staging should whenever possible include somatostatin receptor scintigraphy (Octreoscan), although it is not equally sensitive for all GEP-NETs. This technique should always be complemented with CT or MRI (depending on the tumour location), which can generally provide more precise anatomical definition if positive. PET scanning with specific tracers, such as 11C]-H-TTP, 18F]-DOPA or
[186Ga]DOTA-octreotate can further optimize the staging of the disease. However, 18FDG PET is only of value in poorly differentiated GEP-NET tumours. Endoscopy (gastroscopy, endoscopic ultrasonography, colonoscopy, etc.) is often of additional value.

Patients with endocrine pancreatic tumours, often present with metastatic disease, except for insulin-producing tumours, which are benign in 85% of cases [II, A]. The largest group of GEP-NETs, well-differentiated (neuro-)endocrine tumours of the small intestine (midgut carcinoids), present with the carcinoid syndrome in ~30%, including flushing, diarrhoea and endocardial fibrosis. The 5-year survival rate for patients with endocrine pancreatic tumours is estimated to be 60%–100% for localized disease, 40% for regional, 25% for metastatic and 80% for all stages. Similarly for ‘classical’ midgut carcinoids, the 5-year survival rate has been 60% for all stages.

treatment plan

localized disease

Surgery is the primary treatment for localized tumours and might be curative providing 5-year survival rates of 80%–100% in resectable cases. It is so far the only curative treatment [II, A].
treatment of extensive disease

The majority of patients present with metastatic disease. Even with metastatic disease, surgery plays an important role by reducing tumour masses (debulking, bypassing) and can be performed before or concomitantly with medical treatment. Resection of metastasis is a potential curative option when R0 resection is possible [III, B]. Other means of cytoreductive procedure are of importance, such as radiofrequency ablation (RF) and embolization/chemoembolization of liver metastases [III, B]. Liver transplantation can be considered in selected cases, young patients without documented spread outside the liver and resected primary tumour [III, B].

Cytotoxic treatment has been of limited value for the treatment of low-proliferating GEP-NET tumours, such as the typical midgut carcinoids (response rates ~10%–15%), but has been the standard of care for malignant endocrine pancreatic tumours (with response rates ~30%–50%). Currently the following cytotoxic agents are applied: streptozotocin plus 5-flurouracil (5FU)/doxorubicin (response rates ~30%–50%), temozolomide alone or in combination with capecitabine (RR ~35%–40%). Poorly differentiated tumours (WHO group 3) are mostly treated with cisplatinum/oxaliplatin plus etoposide (response rates ~40%–60%) usually of short duration (Table 9).

Biological treatment, such as somatostatin analogues and α-interferons has proved effective in the control of associated clinical syndromes related to hormone production and release (carcinoid syndrome, VIPoma and glucagonoma syndrome). Their use in non-functioning tumours has been debated, but
A recent study has indicated an antiproliferative effect by somatostatin analogues in both functioning and non-functioning tumours (the PROMID study) [II, B]. A combination of somatostatin analogues and a-interferons has been effective in patients with resistance to either drug. Furthermore, a-interferon up-regulates the numbers of somatostatin receptor type 2 [III, B].

Peptide receptor radiotherapy (PRRT) treatment is an option in patients who present with high-grade uptake on somatostatin receptor scintigraphy [III, B]. The precise role of PRRT has to be defined by future randomized trials and is usually applied as second-line therapy. Recently antiangiogenic agents (bevacizumab, sunitinib) and m-TOR inhibitors (RAD001, everolimus) have been applied in GEP-NETs with objective response rates of 10%–20%. A treatment algorithm is presented in Figure 1. This algorithm is based on the WHO classification and the ENETS guidelines for treatment of GI-NETs.

response evaluation

Response to current treatment should be evaluated by both biochemical markers and imaging. Chromogranin A is an important and stable marker that can be followed during long-term treatment, in both functioning and non-functioning tumours; CT scans or MRI are standards for treatment evaluation.

follow-up

Patients with malignant neuroendocrine tumours are usually followed at 3-month intervals during treatment with cytotoxic agents or biological therapy to evaluate the treatment response. The same is true for treatment with PRRT. Patients undergoing curative surgery should be followed every 3–6 months for >5 years. Biochemical testing is suggested every 3 months and imaging every 6 months.

notes

Levels of Evidence [I–V] and Grades of Recommendation [A–D] as used by the American Society of Clinical Oncology are given in square brackets. Statements without grading were considered justified standard clinical practice by the experts and the ESMO faculty.

