Updating clinical recommendations for breast, colorectal and lung cancer treatments: an opportunity to improve methodology and clinical relevance

E. Parmelli1,2*, D. Papini3, L. Moja2, E. Bandieri4, M. Belfiglio5, G. Ciccone6, R. De Palma3, M. Leoni7, G. Longo8, N. Magrini4, I. Moschetti3 & A. Liberati1,2,3

1Department of Oncology, Ematologia e Patologie dell’Apparato Respiratorio, Università degli Studi di Modena and Reggio Emilia, Modena; 2Centro Cochrane Italiano, Istituto di Ricerche Farmacologiche Mario Negri, Milano; 3Agenzia Sanitaria e Sociale Regionale, Regione Emilia Romagna, Bologna; 4Centro Valutazione Efficacia Assistenza Sanitaria, Azienda Unità Sanitaria Locale, Modena; 5Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, Santa Maria Inbiaro, Chieti; 6Centro Prevenzione Oncologica, Azienda Ospedaliero-Universitaria San Giovanni Battista, Torino; 7Department of Medical Oncology, Azienda Unità Sanitaria Locale, Ravenna; 8Department of Oncology, Ematologia e Patologie dell’Apparato Respiratorio, Azienda Ospedaliera Universitaria Policlinico, Modena, Italy

Received 5 March 2010; accepted 28 April 2010

Background: Clinical guidelines can improve quality of care summarising available knowledge and proposing recommendations for health care decisions. Being up to date is one of their quality requisites. Little experience is available on when and how guidelines should be updated. We report on the update process of evidence-based clinical recommendations on anticancer drugs.

Methods: Three multidisciplinary panels, supported by methodology experts, updated the recommendations. The methodologists were in charge of the qualitative and quantitative synthesis of the evidence. The panels were responsible for the final decision about risk/benefit profile of the drugs and strength of the recommendations. The GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach was used.

Results: Six recommendations out of 15 were completely updated in 8 months time. In four cases, the strength of the recommendation changed; in two of them, we moved from a weak to a strong positive one. Despite the increased certainty about the positive risk/benefit profile, this was translated in a change in the strength of the recommendation only in one case out of three. Three recommendations were refined making them more clinically specific.

Conclusions: Accumulation of evidence is an opportunity for guideline panels to refine methodological rigour, clinical relevance and to foster consensus on recommendations. This requires time and resource investments.

Key words: anticancer drugs, clinical recommendations, updating process

Introduction

Evidence-based practice guidelines (EBPGs) represent a very important tool to improve quality of care as they would stem from a synthesis of available knowledge and contain recommendations that would clearly inform health care decisions. To meet these expectations, EBPGs should be ‘valid’ and ‘up to date’. This means that they have to include all relevant, recent valid evidence and reflect current clinicians’ experience as well as patients’ value and preferences [1, 2]. Over the last years, a sizeable body of methodological literature on methods of production and implementation of EBPGs has been produced [3–6].

why it is important to update clinical recommendations

Being up to date is a fundamental quality requisite of EBPGs. Little experience is available to understand how often EBPGs should be updated. In 2001, Shekelle et al. [7] assessed how outdated were 17 guidelines published by the USA Agency for Healthcare Research and Quality: more than three-quarters needed update and the median time to become obsolete was 5.8 years. A similar finding applies also to high-quality systematic reviews (SRs) where the median survival free of signal for update was 5.5 years [8]. These results are not easily generalisable since these samples included both slowly and rapidly evolving fields, which are important factors in determining the stability of evidence. In 2002, Eccles et al. [9] described the process of update guidelines within the North of England Evidence Based Guideline Development Programme concluding that to develop a guideline de novo or to update a pre-existing one are similar.
considerable tasks. The advantage in efficiency and more manageable volume of evidence of update was set off against the expansion of scope and improvement of methods. The update process did not lead to cost or staff savings.

This paper describes the process and the issues that emerged during the update of the recommendations of the Emilia-Romagna region in the rapidly evolving field of anticancer drugs. We particularly highlight how often the update process led to improving the quality of the recommendations, how it has been obtained and in which aspects the quality remained unchanged or unsatisfactory. The process is described from the perspective of the team in charge of the methodological coordination and the panellists involved, roles and responsibilities, methods and perspective adopted, changes in reporting and synthesis of evidence and in terms of deriving recommendations. The general point of view is that of the Emilia-Romagna Clinical Governance Direction.

methods

In 2005, the Emilia-Romagna Health Care Agency (ERHCA) produced a set of evidence-based recommendations on anticancer drugs identified as around their benefit-risk profile; there was still uncertainty. Specific clinical questions for the treatment of breast, colorectal and lung cancers were developed; a complete description of the process and its implications is described elsewhere [10].

<table>
<thead>
<tr>
<th>Table 1. Processes and methods</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Development groups</td>
<td>A 10-person CG who oversaw the process and was responsible for coordinating and chairing panel meetings, undertaking literature search and evidence selection and drafting the initial version of recommendations.</td>
</tr>
<tr>
<td>A 10-person CG—5 members with expertise in oncology and 5 in critical appraisal and narrative synthesis—who oversaw the process. It was responsible for coordinating and chairing panel meetings, undertaking literature search and evidence selection, assessing the quality, preparing the summary of findings tables and drafting the initial version of recommendations.</td>
<td>Three multidisciplinary panels (15% panellists were replaced with alternative ones). They were in charge with the final decision about the risk/benefit profile and the strength of the recommendations.</td>
</tr>
<tr>
<td>Four multidisciplinary panels, one for each type of cancer and one specific for ‘innovative drugs’, consisting of 16 medical oncologists and 41 of different medical expertises and patient representatives. They were in charge with the selection of the clinical questions, the evaluation of evidence and the final decision about the risk/benefit profile and the strength of the recommendations.</td>
<td>An external MG, skilled in systematic research synthesis and evaluation, was responsible for the retrieving, assessment and synthesis of the evidence. It worked closely with the CG and the three panels through an iterative process, from the refinements of the clinical questions to recommendations’ publication.</td>
</tr>
<tr>
<td>Type of included evidence</td>
<td>The 2005 inclusion criteria remained unchanged in the update.</td>
</tr>
<tr>
<td>SRs</td>
<td>Performed by the MG</td>
</tr>
<tr>
<td>MAs</td>
<td>Application of GRADE methodology</td>
</tr>
<tr>
<td>RCTs</td>
<td>Summary of the evidence at outcome level through structured ToEs using GRADE profiler software*</td>
</tr>
<tr>
<td>Evidence assessment</td>
<td>The 2005 outcomes and hierarchy was maintained</td>
</tr>
<tr>
<td>Performed by the panellists together with the CG</td>
<td></td>
</tr>
<tr>
<td>Application of GRADE methodology</td>
<td></td>
</tr>
<tr>
<td>Summary of the evidence through qualitative tables for each included study</td>
<td></td>
</tr>
<tr>
<td>Outcome measures</td>
<td></td>
</tr>
<tr>
<td>A mean number of seven outcomes for each question were selected including efficacy, safety and QoL measures. Nearly all the outcomes were voted has having ‘critical importance; except for QoL and few others which received ‘moderate importance’b</td>
<td></td>
</tr>
<tr>
<td>Strength of recommendation</td>
<td></td>
</tr>
<tr>
<td>Classified in five levels</td>
<td>Classified in four levels:</td>
</tr>
<tr>
<td>Strong positive</td>
<td>Strong positive</td>
</tr>
<tr>
<td>Weak positive</td>
<td>Weak positive</td>
</tr>
<tr>
<td>Weak negative and Strong negative</td>
<td>Weak negative and Strong negative</td>
</tr>
<tr>
<td>No recommendation</td>
<td></td>
</tr>
</tbody>
</table>

*aG Radeprofiler.com.

bsee GRADE criteria for the selection and hierarchy of outcomes [11].

cG, coordinating group; GRADE, Grading of Recommendations Assessment, Development and Evaluation; MAs, meta-analyses; MG, methodological group; QoL, quality of life; RCTs, randomised controlled trials; SR, systematic reviews; ToEs, table of evidence.
In 2007, the ERHCA decided to update the recommendations. The first task was to plan the update strategy taking into account the limits and criticisms identified during the development of the recommendations in 2005. Table 1 summarizes the main features of the process and methods used in the two rounds (2005 and 2008) of recommendations production and update, respectively.

In brief, the main novelties in the update phase were (i) the discharge of the ‘innovative drug’ panel and the subsequent redistribution of its members into the remaining panels, (ii) the introduction of a methodological group (MG) supporting both the coordinating group (CG) and the panels, (iii) a quantitative synthesis of evidence beside the qualitative presentation of the results of individual studies and (iv) the elimination of the ‘no recommendation’ option from the categories of the ‘strength of recommendations’, which forced panellists to take position even in absence of strong evidence. Minor changes were the replacements across all panels of 15% of ‘old’ panelists who stepped down with ‘new’ ones.

The GRADE system was used both for the original development and for the update. During the latter, the GRADE profiler (http://ims.cochrane.org/revman/gradepro), a recently released software, drove the assessment and synthesis of evidence in relation to recommendations. This software allows users to develop structured table of evidence (ToEs): every outcome included was quantitatively and qualitatively synthesised following a standardised approach. We never discussed any explicit cost data or cost-efﬁcacy analyses related to assessed interventions.

results
panel process and participation
At the end of 2007, through an email consultations involving all members of the 2005 panels, it was decided that 9 (60%) out of the original 15 clinical questions, involving 10 different drugs, needed updates. Only six got through the complete update process and were released in September 2008. This happened because for two questions (see Box 3), only new unpublished results were found (excluded by our criteria) and for a third one (bevacizumab), it was decided to postpone the publication until the new regulatory indication by European Medicines Agency (EMA) was released.

Overall, each panel had three meetings all-day long. At the first meeting, panellists were informed about the new eligible studies and discussed which studies fully met inclusion criteria and for which outcome the studies provided relevant information. At the second meeting, the CG presented the results of the quality assessment and the quantitative data; their interpretations were also discussed. At the third meeting, panels voted on the recommendations. Meetings were chaired by representatives of the CG. The MG participated in all meetings to solve any doubt or inconsistency about the evidence presented in ToEs.

Tables 2, 3 and 4 illustrate the recommendations in the 2005 and 2008 rounds together with their direction and strength.

Ad hoc search strategies for each clinical question targeted the retrieval of SRs and randomised controlled trials (RCTs). Medline, Embase, CENTRAL and databases for conference proceedings (American Society of Clinical Oncology, San Antonio, ESCO) were investigated. Overall, the total number of records screened was 686; 47 papers were eligible and further evaluated for inclusion (4 SRs and 43 RCTs). In the end, 24 papers (2 SRs and 22 RCTs) were included in the update. This led to the production of 56 ToEs summarising 30 outcomes in total, a median of 5 outcomes for recommendation. Twenty-six ToEs summarised efficacy outcomes and 30 adverse events.

For the majority of questions, results from a single RCT were summarised in the ToEs. Exceptions regarded breast cancer recommendations: (i) taxanes where evidence come from a recently updated Cochrane SRs with meta-analysis (MA) [11]; (ii) trastuzumab where the MG carried out an original MA using the retrieved RCTs and (iii) aromatase inhibitors where the results of an SR with MA [12] and two single RCTs [13, 14] not previously included in that SR were summarised.

Table 2. Clinical questions, benefit/risk profile and strength of recommendations on breast cancer in 2005 and 2008

<table>
<thead>
<tr>
<th>Year</th>
<th>Question</th>
<th>Benefit/risk profile</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>In women with HR+ breast cancer in postmenopause, are aromatase inhibitors recommended instead of tamoxifen?</td>
<td>Strong positive</td>
<td>Recommendation: probably use it, weak positive</td>
</tr>
<tr>
<td>2008</td>
<td>Letrozolo upfront</td>
<td>Benefit/risk profile: uncertain</td>
<td>Recommendation: probably use it, weak positive</td>
</tr>
</tbody>
</table>

...
In patients with metastatic colorectal cancer, should bevacizumab be used?

Recommendation: probably use it,
Benefit/risk profile: positive

In patients with stage III colon cancer, should oxaliplatin be used in association with FU + folinic acid?

Recommendation: no
Benefit/risk profile: uncertain

In patients with stage III colon cancer, should oxaliplatin be used in association with FU + folinic acid or irinotecan, FU + folinic acid as first-line treatment?

Recommendation: probably use it, weak positive

In patients with metastatic colorectal cancer, should bevacizumab be used in association with FU + folinic acid or irinotecan, FU + folinic acid as first-line treatment?

Recommendation: probably use it, weak positive

In EGFR + patients with metastatic colorectal cancer, should cetuximab be used in association with irinotecan after irinotecan therapy failure?

Recommendation: probably use it, strong positive

Table 3. Clinical questions, benefit/risk profile and strength of recommendations on colorectal cancer in 2005 and 2008

Table 4. Clinical questions, benefit/risk profile and strength of recommendations on non-small-cell lung cancer in 2005 and 2008

impact of the update on the recommendations

The update process influenced the recommendations in different ways. In two cases, the additional evidence allowed to move the strength of the recommendations from weak to strong positive (i.e. oxaliplatin for stage III colorectal cancer). However, having more information available did not necessarily translate into a change: despite the increased certainty about the positive risk/benefit profile of taxanes for breast cancer from 2005 to 2008 and the overall good ‘quality of evidence’, the panel confirmed a weak positive recommendation. The decision to rule out the ‘no recommendation option’ led panellists to agree on a weak positive recommendation in two cases of three (i.e. fluoropyrimidine for stage II colorectal cancer in high-risk patients) and led to a weak negative one in only one case (i.e. fluoropyrimidine for stage II colorectal cancer in low-risk patients).

In a few cases, the availability of new or additional evidence resulted in an opportunity to refine the original clinical questions allowing for more clinically specific recommendations (directness) [15]. For instance, the question about aromatase inhibitors, originally presented as ‘In women with HR+ breast cancer in postmenopause, are aromatase inhibitors recommended instead of tamoxifen?’, was transformed into five subquestions according to the type of class agent and administration schedules (letrozole upfront or late switch, anastrozole upfront or early switch and exemestane early switch). Split recommendations referred to more homogeneous trials populations in terms of adopted design and methods and facilitated the grading of the quality of evidence.

In Boxes 1–3, we present in details the cases of three recommendations, one for each type of cancer.

discussion

In 2005, we produced 15 recommendations. In 2008, panellists agreed that nine recommendations required updates and six of them have been subsequently published in 8 months time. Overall, the majority of recommendations that underwent a complete update were somewhat modified (five of six). This was due in part to more information coming from new evidence and in part to the way recommendations were classified (the classification of the strength of recommendations changed from five to four levels, removing the no recommendation option). In particular, three recommendations were refined (trastuzumab, aromatase inhibitors and adjuvant chemotherapy for stage II colorectal cancer) and the questions better specified making them more suitable for application in clinical practice. In two cases (trastuzumab in high-risk population and oxaliplatin for stage III colorectal cancer), the strength of the recommendations was increased, while in other two cases, it remained the same. The main pros and cons of our update experience are shown in Box 4.
As in Eccles et al. [9] study, it seems that the improvement in the recommendations [24]. Members are all coming from the oncological community of the oncologists. Moreover, the fact that the panels’ with the evidence but also oriented to the ordinary practicing shown in other experiences [24], the input coming from the they already were familiar with all phases of the activities. As a better understanding of its task and of the methods used as allowed the update process to take advantage of a group with panellists (85%) served both in the 2005 and in the 2008 round allowed the update process to take advantage of a group with a better understanding of its task and of the methods used as they already were familiar with all phases of the activities. As shown in other experiences [24], the input coming from the panels not only allowed to develop recommendation consistent with the evidence but also oriented to the ordinary practicing of the oncologists. Moreover, the fact that the panels’ members are all coming from the oncological community of the Emilia-Romagna region could help in the final adoption of the recommendations [24]. The update, however, was neither time nor resources saving. As in Eccles et al. [9] study, it seems that the improvement in methodology (i.e. development of original MAs) and tools (i.e. ToEs developed using GRADE profiler) led to an increase in people involved and in time needed to complete a rigorous process.

The use of the GRADE system for the update followed the encouraging experience of 2005 [10]. Main insights proposed by GRADE are (i) a clear demarcation between the concepts of quality of evidence and strength of recommendations, (ii) the introduction of new dimensions as indicators of quality of evidence (i.e. consistency, directness) and (iii) the outcome level as opposed to study-specific assessment[15]. All in all, this is intended to bring greater transparency to the whole process going from SRs to formulation of recommendations by expert panels. These achievements are so promising that different international organizations (i.e. World Health Organization)
have started to use GRADE to produce their guidelines and the Cochrane Collaboration is implementing the GRADE’s Summary of Findings format to improve and standardise the outputs of its SRs [25, 26]. However, the application of this method is challenging and needs optimal skills and experience in clinical epidemiology and research methodology. In 2005, the criteria adopted by panellists to judge the quality of evidence, the net benefit of drugs and the strength of the recommendations were extremely variables [10]. Guideline panels critically appraised the quality of the RCTs in a free format discussion and such process was obviously vulnerable to different types of bias. Therefore, a more systematic and explicit approach was deemed necessary to reduce variability among panellists, value minority opinions and foster communication of this information. The support of the MG in the retrieval and assessment of the evidence allowed systematisation and reproducibility to the update process, but this cause an increase in terms of people and expertise involved.

Moreover, in 2008, the GRADE Working Group released the GRADE profiler software: this led to a considerable amount of additional work because the studies already included in the 2005 recommendations had to be standardised according to the new format too. The ToEs alone were initially supposed to be self-explanatory for the synthesis of studies, but at first sight, they were perceived as rather unfriendly by panellists. It was therefore decided to provide panels with descriptive tables for each included study and main results were always presented by clinical epidemiologists during face-to-face meetings to facilitate discussion and deeper understanding.

Ideally, the update process should take advantage of the availability of more evidence matured after the first edition. Unfortunately, in the rapidly evolving field of anticancer drugs, new drugs are often registered and introduced in the market with limited evidence of effectiveness and safety (i.e. only one or two RCTs), SRs are rarely available or up to date requiring that ad hoc SRs are carried out or at least updated. The update process indeed may help to overcome criticisms emerged during the initial development when evidence was still largely immature, but it does not always solve the uncertainty. For example, during the production of the recommendation on cetuximab, the CG and the panellists had different views that remained the same also after long discussion (Box 3). This particular case highlights the differences in intellectual paradigms and decision rules between different partners (methodologists, frontline clinicians, licensing authorities and policy makers) [27]. In our update, the final decision about the strength of the recommendations was always the result of a split vote that could be solved using a rigid majority rule; the CG and the MG never voted.

conclusions

New anticancer drugs represent a difficult topic for guidelines because of the rapid evolution of knowledge in this field and because new drugs are often approved and registered with limited evidence available [28–31]. Besides allowing the incorporation of new evidence if available, the update process allowed us to refine the methodology of critical appraisal, the quantitative synthesis of the studies and the directness of the recommendations, but the time and resources needed to complete the exercise were not less as it could be expected.

Few empirical data, about the rate at which clinical practice guidelines become outdated is available and there is a lack of practical methods for assessing guidelines for current validity [6].

Given the different speed of evolution of the evidence in different medical fields, research on the methodology of guideline update should focus particularly on the survival time of research products.

funding

Programma straordinario oncologia—Ministero della salute (Programma Integrato ‘Come coniugare innovazione e appropriatezza nell’assistenza al paziente oncologico’, Progetto ‘Valutazione delle innovazioni nel campo dei farmaci antitumoralì’).

acknowledgements

We thank Dr Fausto Roila for his useful contributions during the different phases of the project. We would like to express our deep appreciation to Prof. Martin Eccles for his helpful comments on an earlier version of this article. The following individuals (clinicians, public health doctors, pharmacists and consumers representatives) were members of the multidisciplinary panels: breast cancer—D Amadori, F Artioli, D Beccati, E Berri, E Bertoni, G Bisagni, P Calzoni, C Caserta, PF Conte, B Di Blasio, M Donadio, E Durante, V Eusebi, G Frezza, L Gianni, M Grappa, M Malpighi, A Martoni, CA Morì, G Natalini, B Petocchi, G Spagnoli, M Taffurelli; colorectal cancer—L Armaroli, A Balduzzi, F Bazzoli, G Biasco, C Boni, F Cartei, T Casseti, L Cavanna, G De Marco, R Fagiuolo, F Francioni, W Gianessi, G Lanza, G Lelli, F Leopardi, G Luppi, A Maestri, M Maltoni, O Nanni, K Petropulacos, O Triossi, D Valenti; lung cancer—A Ardizzoni, M Boarom, S Betti, L Busatti, C Calandri, Q Cuzzo, F Falcone, I Manghi, M Marangolo, P Mazzetti, Gaito, M Minguzzi, E Pasquini, V Poletti, R Polico, G Rossi, C Vanzo.

disclosure

None of the authors declare conflicts of interest.

references

