Cruciferous vegetables and cancer risk in a network of case–control studies

C. Bosetti1*, M. Filomeno1, P. Riso2, J. Polese3, F. Levi4, R. Talamini3, M. Montella5, E. Negri1, S. Franceschi6 & C. La Vecchia1,7

1Department of Epidemiology, Istituto di Ricerche Farmacologiche ‘Mario Negri’, Milan; 2Department of Food Science and Microbiology, Division of Human Nutrition, University of Milan, Milan; 3Unit of Epidemiology and Biostatistics, Centro di Riferimento Oncologico, Aviano (Pordenone), Italy; 4Cancer Epidemiology Unit and Registry, Fondazione Pascale, Naples, Italy; 5International Agency for Research on Cancer, Lyon, France; 6Department of Occupational Health, University of Milan, Milan, Italy

Received 5 August 2011; revised 16 November 2011; accepted 6 December 2011

Background: Cruciferous vegetables have been suggested to protect against various cancers, though the issue is open to discussion. To further understand their role, we analyzed data from a network of case–control studies conducted in Italy and Switzerland.

Patients and methods: The studies included a total of 1468 cancers of the oral cavity/pharynx, 505 of the esophagus, 230 of the stomach, 2390 of the colorectum, 185 of the liver, 326 of the pancreas, 852 of the larynx, 3034 of the breast, 367 of the endometrium, 1031 of the ovary, 1294 of the prostate, 767 of the kidney, and 11 492 controls. All cancers were incident, histologically confirmed; cases were subjects admitted to the same network of hospitals as controls were subjects admitted to the same network of hospitals as cases for a wide spectrum of acute nonneoplastic conditions.

Results: The multivariate odds ratio (OR) for consumption of cruciferous vegetables at least once a week as compared with no/occasional consumption was significantly reduced for cancer of the oral cavity/pharynx (OR = 0.83), esophagus (OR = 0.72), colorectum (OR = 0.83), breast (OR = 0.83), and kidney (OR = 0.68). The OR was below unity, but not significant, for stomach (OR = 0.90), liver (OR = 0.72), pancreatic (OR = 0.90), laryngeal (OR = 0.84), endometrial (OR = 0.93), ovarian (OR = 0.91), and prostate (OR = 0.87) cancer.

Conclusion: This large series of studies provides additional evidence of a favorable effect of cruciferous vegetables on several common cancers.

Key words: brassicaceae, cancer, case–control study, cruciferous vegetables, risk factor, vegetables

introduction

The issue of vegetables and cancer risk has long been considered in the absence, however, of definite quantification [1, 2].

Cruciferous vegetables have been of specific interest due to their content in glucosinolates, whose major breakdown products [isothiocyanates (ITCs) and indoles] have anticarcinogenic properties in in vitro and animal studies [3–5]. Glucosinolates are converted to ITCs and indoles through myrosinase activity, a β-thioglucosidase enzyme found in vacuoles and activated following mastication or cutting of plant tissue [6]. Most of the ITCs are metabolized in vivo through the mercapturic acid pathway; indole compounds can react
with ascorbic acid producing ascorbigen and, at the low pH of the stomach, a series of condensed products that may act as further bioactive compounds [6].

Relatively few epidemiological studies have evaluated the specific role of cruciferous vegetables on cancer risk [4, 7]. Inverse associations have been reported in case–control studies on cancers of the stomach, colon, lung, and breast [4, 7–12], although the evidence from cohort studies has been less convincing [4, 13]. Data are scanty and inconclusive for other selected neoplasms [1, 4, 7, 14–18].

In order to add further information on this issue, we considered the association between cruciferous vegetables and the risk of several common cancers using data from a network of case–control studies conducted in Italy and Switzerland.

materials and methods

Between 1991 and 2009, we conducted an integrated series of case–control studies on various neoplasms in different areas of Northern (the greater Milan area; the provinces of Pordenone, Padua, Udine, Gorizia and Forli; the urban area of Genoa), Central (the provinces of Rome and Latina), and Southern (the urban area of Naples) Italy. We also conducted companion studies on cancers of the oral cavity and pharynx, esophagus, colorectum, larynx, and breast in the canton of Vaud, Switzerland. The studies included a total of 1468 cases of cancer of the oral cavity and pharynx [19–21], 505 of the esophagus [22, 23], 230 of the stomach [24], 2390 of the colorectum [25, 26], 185 of the liver [27], 326 of the pancreas [28], 852 of the larynx [29], 3034 of the breast [30, 31], 367 of the endometrium [32], 1031 of the ovary [33], 1294 of the prostate [34], 767 of the kidney [35], and a total of 11,492 controls (Table 1).

Cases were incident histologically confirmed cancers, identified in the major teaching and general hospitals of the study areas. Controls were subjects admitted to the same network of hospitals as cases for a wide spectrum of acute nonneoplastic conditions unrelated to known risk factors for the corresponding cancer site. Overall, 7.2% of controls were admitted for traumatic conditions, 23.1% for nontraumatic orthopedic conditions, 32.7% for acute surgical conditions, and 37.1% for miscellaneous other illnesses. The proportion of refusal of subjects approached was <5% in Italy and Switzerland.

Table 1. Distribution of cases with selected cancers and corresponding controls by sex and median age

<table>
<thead>
<tr>
<th>Cancer site, references</th>
<th>Cases</th>
<th>Median age</th>
<th>Controls</th>
<th>Median age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral cavity and pharynx</td>
<td>1190/278</td>
<td>58</td>
<td>2553/1208</td>
<td>58</td>
</tr>
<tr>
<td>Esophagus</td>
<td>143/87</td>
<td>60</td>
<td>919/340</td>
<td>60</td>
</tr>
<tr>
<td>Stomach</td>
<td>1401/989</td>
<td>62</td>
<td>2586/2357</td>
<td>58</td>
</tr>
<tr>
<td>Colonrectum</td>
<td>149/36</td>
<td>66</td>
<td>278/126</td>
<td>65</td>
</tr>
<tr>
<td>Liver</td>
<td>174/152</td>
<td>63</td>
<td>348/304</td>
<td>63</td>
</tr>
<tr>
<td>Pancreas</td>
<td>770/82</td>
<td>62</td>
<td>1564/406</td>
<td>61</td>
</tr>
<tr>
<td>Larynx</td>
<td>–3034</td>
<td>55</td>
<td>–13392</td>
<td>56</td>
</tr>
<tr>
<td>Breast</td>
<td>–367</td>
<td>60</td>
<td>–799</td>
<td>61</td>
</tr>
<tr>
<td>Endometrium</td>
<td>–1031</td>
<td>56</td>
<td>–2411</td>
<td>57</td>
</tr>
<tr>
<td>Ovary</td>
<td>1294</td>
<td>66</td>
<td>1451</td>
<td>63</td>
</tr>
<tr>
<td>Kidney</td>
<td>494/273</td>
<td>62</td>
<td>988/546</td>
<td>62</td>
</tr>
</tbody>
</table>

and ~15% in Switzerland. The study protocols were revised and approved by the ethical committees of the hospitals involved according to the regulations at the time of study conduction, and all participants gave informed consent.

Trained personnel interviewed cases and controls during their hospital stay using a structured questionnaire, including information on sociodemographic characteristics, anthropometric measures, lifestyle habits (e.g., tobacco smoking, alcohol drinking), dietary habits, personal medical history, family history of cancer, and, for women, menstrual and reproductive factors, use of oral contraceptives (OCs), and hormone replacement therapy (HRT). Subjects’ usual diet 2 years before diagnosis (or hospital admission, for controls) was investigated using a reproducible and valid 78-item food frequency questionnaire (FFQ), which included a specific question on weekly consumption of cruciferous vegetables (cabbages, cauliflowers, broccoli, brussels sprouts, and turnip greens) [36, 37]. Seasonal consumption of cruciferous vegetables and the corresponding duration was also considered.

Odds ratios (ORs) for each cancer site according to the consumption of cruciferous vegetables and the corresponding 95% confidence intervals (CIs) were estimated by unconditional multiple logistic regression models [38]. The models included terms for sex, age, study center, year of interview, education, alcohol drinking, tobacco smoking, body mass index, and total energy intake. For breast, ovarian, and endometrial cancer, models further included parity, menopausal status, age at menopause, and OC and HRT use, and, for breast only, age at first birth. ORs were computed comparing the consumption of at least one portion of cruciferous vegetables (~125g) per week to no or occasional consumption. Continuous ORs for an increment of one portion per week were also estimated. All statistical analyses were performed with SAS 9.1 statistical software (SAS Institute, Cary, NC).

results

Table 2 gives the distribution of cancer cases and controls according to the consumption of cruciferous vegetables and the corresponding ORs (also shown in Figure 1A). The ORs for subjects consuming of at least one portion of cruciferous vegetables per week as compared with those with no or occasional consumption were significantly below unity for cancers of the oral cavity and pharynx (OR = 0.83), esophagus (OR = 0.72), colorectum (OR = 0.83), breast (OR = 0.83), and kidney (OR = 0.68). The point estimates were also below unity in the absence, however, of significant associations for stomach (OR = 0.90), liver (OR = 0.72), pancreatic (OR = 0.90), laryngeal (OR = 0.84), endometrial (OR = 0.93), ovarian (OR = 0.91), and prostatic (OR = 0.87) cancer. The continuous ORs for one portion per week were 0.82 for oral and pharyngeal, 0.78 for esophageal, 0.84 for stomach, 0.88 for colorectal, 0.94 for liver, 0.84 for pancreatic, 0.87 for laryngeal, 0.94 for breast, 0.98 for endometrial, 0.87 for ovarian, 0.87 for prostate, and 0.78 for kidney cancer, but significant only for cancers of the oral cavity and pharynx, colorectum, and kidney (Figure 1B). The estimates did not meaningfully change after adjustment for fruit or meat, while they were slightly reduced after allowance for noncruciferous vegetables. This is due to the colinearity between various types of vegetables.

Table 3 gives the ORs in strata of sex, age (<60, ≥60 years), tobacco smoking (nonsmokers and current smokers), and alcohol consumption (<3 drinks/day and ≥3 drinks/day) for
cancer sites significantly associated with cruciferous vegetables. No inverse relation with oral and pharyngeal cancer was found in women and in moderate drinkers, possibly on account of the limited number of cases in these strata; for colorectal cancer, no protection was found for subjects below age 60 years and for heavy drinkers; for kidney cancer, the inverse association was stronger in younger as compared with older subjects. However, no significant heterogeneity in risk estimates was observed across any of the other strata considered.

discussion

The present analysis confirms that cruciferous vegetables have a beneficial role on the risk of various common cancers, in particular, those of the upper digestive tract, colorectum, breast, and kidney.

Our results for colorectum are consistent with the conclusions of an International Agency for Research on Cancer working group and the results from a few subsequent publications showing that the intestine is among the cancer sites significantly associated with cruciferous vegetables.

Table 2. Distribution of cases with selected cancers and controls and corresponding OR and 95% CI, according to consumption of cruciferous vegetables

<table>
<thead>
<tr>
<th>Cancer site</th>
<th>Weekly consumption of cruciferous vegetables</th>
<th>Continuous OR for one portion/week (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weekly consumption of cruciferous vegetables</td>
<td>Continuous OR for one portion/week (95% CI)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Oral cavity and pharynx</td>
<td>1096/2397</td>
<td>372/1364</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>1096/2397</td>
<td>372/1364</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.83 (0.70–0.98)</td>
<td>0.82 (0.72–0.93)</td>
</tr>
<tr>
<td>Esophagus</td>
<td>409/874</td>
<td>96/385</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>409/874</td>
<td>96/385</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.72 (0.52–0.99)</td>
<td>0.78 (0.60–1.01)</td>
</tr>
<tr>
<td>Stomach</td>
<td>172/400</td>
<td>58/147</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>172/400</td>
<td>58/147</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.90 (0.61–1.30)</td>
<td>0.84 (0.62–1.14)</td>
</tr>
<tr>
<td>Colorectum</td>
<td>1784/3595</td>
<td>606/1348</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>1784/3595</td>
<td>606/1348</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.83 (0.74–0.94)</td>
<td>0.88 (0.80–0.97)</td>
</tr>
<tr>
<td>Liver</td>
<td>122/267</td>
<td>63/137</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>122/267</td>
<td>63/137</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.72 (0.47–1.11)</td>
<td>0.94 (0.65–1.37)</td>
</tr>
<tr>
<td>Pancreas</td>
<td>257/510</td>
<td>69/141</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>257/510</td>
<td>69/141</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.90 (0.63–1.30)</td>
<td>0.84 (0.61–1.14)</td>
</tr>
<tr>
<td>Larynx</td>
<td>634/1352</td>
<td>217/617</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>634/1352</td>
<td>217/617</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.84 (0.67–1.05)</td>
<td>0.87 (0.74–1.03)</td>
</tr>
<tr>
<td>Breast</td>
<td>2293/2384</td>
<td>741/1008</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>2293/2384</td>
<td>741/1008</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.83 (0.74–0.94)</td>
<td>0.94 (0.86–1.03)</td>
</tr>
<tr>
<td>Endometrium</td>
<td>248/562</td>
<td>119/236</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>248/562</td>
<td>119/236</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.93 (0.68–1.27)</td>
<td>0.98 (0.75–1.28)</td>
</tr>
<tr>
<td>Ovary</td>
<td>744/1816</td>
<td>287/595</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>744/1816</td>
<td>287/595</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.91 (0.76–1.11)</td>
<td>0.87 (0.74–1.03)</td>
</tr>
<tr>
<td>Prostate</td>
<td>1048/1159</td>
<td>246/291</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>1048/1159</td>
<td>246/291</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.87 (0.70–1.09)</td>
<td>0.87 (0.72–1.06)</td>
</tr>
<tr>
<td>Kidney</td>
<td>598/1129</td>
<td>169/405</td>
</tr>
<tr>
<td>Casecontrols</td>
<td>598/1129</td>
<td>169/405</td>
</tr>
<tr>
<td>OR* (95% CI)</td>
<td>0.68 (0.54–0.84)</td>
<td>0.78 (0.65–0.94)</td>
</tr>
</tbody>
</table>

a Estimates from logistic regression model adjusted for sex (when appropriate), age, study center, year of interview, education, body mass index, alcohol drinking, tobacco smoking, and total energy intake.

b Reference category.

The sum does not add up to the total because of some missing values.

d Further adjusted for age at first birth, parity, oral contraceptive and hormone replacement therapy use, and age at menopause.

e Further adjusted for parity, oral contraceptive and hormone replacement therapy use, and age at menopause.

OR, odds ratio; CI, confidence interval.
sites for which the evidence of a beneficial effect of cruciferous vegetables is more convincing [4, 7, 11]. Breast cancer has also been reported to be inversely related to cruciferous vegetables [7–9, 39]. Inverse relations for cancers of the oral cavity and esophagus have been reported in a few other (case–control) studies, although data for these neoplasms are limited [1, 4,
these cancers, however, have been consistently related to low vegetables consumption [1]. Data are even scantier for cancers, although the issue remains open to discussion [4, 7].

The beneficial effect of cruciferous vegetables on various common cancers may be due to their high content of several antioxidants and vitamins, including carotenoids, polyphenols, vitamin C, and folate [3, 4, 42]. Moreover, they contain high levels of glucosinolates, whose major breakdown products (indoles and ITCs) have been shown—in in vitro and animal studies—to have high anticarcinogenic properties, particularly on cancers of the digestive tract, liver, lung, and breast [4, 43]. In cultured human cancer cells, ITCs can induce apoptosis and arrest of cell cycle that are critical processes in the prevention of tumor growth [3]. Moreover, ITCs seem to inhibit histone deacetylase activity, which removes acetyl groups from histones, thus enabling transcription of tumor suppressor proteins that promote differentiation and apoptosis in precancerous cells [44]. ITCs can also affect xenobiotic-metabolizing enzymes that are able to modulate the access of chemical carcinogens to DNA in target tissues [4, 43, 45]. In particular, ITCs can modulate expression of phase II enzymes, while indoles act as bifunctional inducers of both phase I and phase II enzymes. This mechanism of action can explain the protection against numerous xenobiotics and carcinogens (e.g., those produced through tobacco smoke or cooked food mutagens), and it was demonstrated also in human colon cancer cell lines following the supplementation with ITCs and indoles where the induction of phase I and phase II enzymes was able to protect cells against benzo[a]pyrene-induced DNA damage [43]. Indoles can also decrease estrogen receptor-α expression [46]. Through this mechanism, estrogen-dependent signal transduction that results in breast cancer cell proliferation would be decreased, thus providing a molecular basis for the chemopreventive activity against breast cancer.

In the present study, the inverse association with cruciferous vegetables was stronger in smokers than in nonsmokers in the absence, however, of significant heterogeneity. In a recent intervention study, smokers had a reduction in both endogenous and ex vivo-induced DNA damage following the regular intake of 250 g of steamed broccoli for 10 days, and this effect was particularly evident in subjects with glutathione-S-transferase (GST) M1-null genotype [44]. GSTs are involved in the metabolism of ITCs and may modulate the effect of cruciferous vegetables on cancer risk [7]. However, we could not determine the impact of GST M1 polymorphism on our results.

It is difficult to extrapolate the contribution of a specific class of vegetables on cancer risk, and in particular, it is not possible to disentangle the specific role of cruciferous vegetables from that of all vegetables because of their high correlation.

Our FFQ was not specifically designed to investigate the consumption of cruciferous vegetables and did not allow us to investigate single items of the Brassicaceae family. The intake of cruciferous vegetables is highly variable in different populations [4]. Asian and Middle Eastern populations have relatively high intakes (40–80 g/day) as compared with European ones (5.7–32.7 g/day) with an estimate in the Italian population of ~11.5 g/day [46]. Thus, the low consumption of cruciferous vegetables in our study population—as in other European countries [47]—did not allow us to study specific levels of consumption. Apart from differences in the total amount of cruciferous vegetables, the levels of specific glucosinolate derived ITCs can vary depending on the vegetable consumed. As ITCs can have different strength of activity depending on chemical structure, this may in part explain discrepant results in the literature.

Our studies have the inherent limitations of case–control studies, including potential recall and selection bias. However, cases and controls in our studies came from comparable catchment areas, were interviewed by uniformly trained interviewers in the hospital setting, and their participation was high, thus reducing any such bias. Moreover, we took great care in excluding from the control group of all diagnoses that might have lead to long-term modifications of diet and other risk factors for the neoplasms considered. Among the strengths of the study, there are the large sample size, the use of a reproducible and valid FFQ [36, 37], and the ability to adjust for total energy intake, as well as for other major potential confounding factors for the cancers investigated.

In conclusion, this large integrated series of studies provides additional evidence of a favorable effect of cruciferous vegetables on several common cancer sites. Promoting the intake of cruciferous vegetables in populations where consumption is comparably low should be considered [46].

funding
This work was conducted with the contribution of the Italian Association for Cancer Research (AIRC) and of the Swiss League and Research against Cancer.

disclosure
The authors declare no conflict of interest.

references
7. Kim MK, Park JH. Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Nutrition and health”. Cruciferous vegetable intake and
103–110.
relation to breast cancer modified by menopause and hormone receptor status.
9. Ambrosone CB, McCarroll SE, Freudenberg JL et al. Breast cancer risk in
premenopausal women is inversely associated with consumption of broccoli, a
source of isothiocyanates, but is not modified by GST genotype. J Nutr 2004; 134:
1134–1138.
10. Lam TK, Gallicchio L, Lindsey K et al. Cruciferous vegetable consumption and
12. Tang L, Zirpoli GR, Jayaprakash V et al. Cruciferous vegetable intake is inversely
associated with lung cancer risk among smokers: a case-control study. BMC Cancer
2010; 10: 162.
13. Zhang X, Shu XO, Xiang YB et al. Cruciferous vegetable consumption is
associated with a reduced risk of total and cardiovascular disease mortality. Am
vegetables and prostate cancer. Cancer Epidemiol Biomarkers Prev 2003; 12:
1403–1409.
15. Larsson SC, Hakansson N, Naslund I et al. Fruit and vegetable consumption in
relation to pancreatic cancer risk: a prospective study. Cancer Epidemiol
cancer risk: a systematic literature review and meta-analysis. Nutr Cancer 2007;
58: 6–21.
17. Kirsh VA, Peters U, Mayne ST et al. Prospective study of fruit and vegetable
of prostate cancer in the EPIC-Heidelberg cohort study. Int J Cancer 2009; 125:
2173–2186.
19. Levi F, Pasche C, La Vecchia C et al. Food groups and risk of oral and
20. Franceschi S, Fawero A, Conti E et al. Food groups, oils and butter, and cancer of
21. Rossi M, Garavello W, Talamini R et al. Flavoroids and the risk of oral and
pharyngeal cancer: a case-control study from Italy. Cancer Epidemiol Biomarkers
22. Bosetti C, La Vecchia C, Talamini R et al. Food groups and risk of squamous cell
23. Levi F, Pasche C, Lucchini F et al. Food groups and oesophageal cancer risk in
24. Lucenteforte E, Sica V, Bosetti C et al. Food groups and alcoholic beverages and
the risk of stomach cancer: a case-control study in Italy. Nutr Cancer 2008; 60:
577–584.
25. Franceschi S, Fawero A, La Vecchia C et al. Food groups and risk of colorectal
27. Polesel J, Zucchetta A, Montella M et al. The impact of obesity and diabetes
29. Bosetti C, La Vecchia C, Talamini R et al. Food groups and laryngeal cancer risk: a
case-control study from Italy and Switzerland. Int J Cancer 2002; 100:
355–360.
30. Levi F, Pasche C, Lucchini F, La Vecchia C. Dietary intake of selected
31. Franceschi S, Fawero A, La Vecchia C et al. Influence of food groups and food
case-control study from Italy. Ann Obeset Gynecol 2009; 200: 293. e291–e297.
33. Bosetti C, Negri E, Franceschi S et al. Diet and ovarian cancer risk: a case-
control study in Italy. Int J Cancer 2001; 93: 911–915.
34. Bosetti C, Miceliotta S, Dal Maso L et al. Food groups and risk of prostate cancer
35. Bravi F, Bosetti C, Scotti L et al. Food groups and renal cell carcinoma: a case-
control study from Italy. Int J Cancer 2007; 120: 681–685.
36. Franceschi S, Negri E, Salmini S et al. Reproducibility of an Italian food frequency
questionnaire for cancer studies: results for specific food items. Eur J Cancer
37. Decarli A, Franceschi S, Ferraroni M et al. Validation of a food-frequency
questionnaire to assess dietary intakes in cancer studies in Italy. Results for
39. Lee SA, Fowke JH, Lu W et al. Cruciferous vegetables, the GSTP1 Ile105Val
genetic polymorphism, and breast cancer risk. Am J Clin Nutr 2008; 87:
753–760.
40. Fowke JH. Head and neck cancer: a case for inhibition by isothiocyanates and
41. Moore LE, Brennan P, Karami S et al. Glutathione S-transferase polymorphisms,
cruciferous vegetable intake and cancer risk in the Central and Eastern European
42. Higdon JV, Delage B, Williams DE, Dashwood RH. Cruciferous vegetables and
human cancer risk: epidemiologic evidence and mechanistic basis. Pharm Res
43. Bonnesen C, Eggleston IM, Hayes JD. Dietary indoles and isothiocyanates that
are generated from cruciferous vegetables can both stimulate apoptosis and
confer protection against DNA damage in human colon cell lines. Cancer Res
44. Riso P, Martini D, Moller P et al. DNA damage and repair activity after broccoli
45. Pelucchi C, Bosetti C, Rossi M et al. Selected aspects of Mediterranean diet and
46. Bosetti C, Negri E, Kolonel L et al. A pooled analysis of case-control studies of
thyroid cancer. VII. Cruciferous and other vegetables (International). Cancer
47. Agudo A, Ibanez R, Amiano P et al. Consumption of cruciferous vegetables and
glucosinolates in a Spanish adult population. Eur J Clin Nutr 2008; 62:
324–331.