Reliability of core needle biopsy for determining ER and HER2 status in breast cancer


Departments of ¹Clinical Oncology; ²Surgery; ³Pathology, Leiden University Medical Center, Leiden; ⁴Department of Pathology, Amsterdam Medical Center, Amsterdam, The Netherlands

Received 24 February 2012; revised 23 May 2012; accepted 10 October 2012

Background: Several studies have assessed the concordance of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) status between core needle biopsy (CNB) and resection specimens, usually in small patient series and with discordant results.

Patients and methods: ER and HER2 status determined on CNB and tissue micro-arrays of resected tumors were compared for patients treated at the Leiden University Medical Center (LUMC). When results were discordant, whole-sized slides were analyzed. Additionally, literature was searched for published patient series and combined with our data to assess the concordance of ER and HER2 determination between CNB and resection specimens.

Results: In the LUMC series, concordance for ER status was 99.1%. Combined concordance from 20 studies and the LUMC patient series was 93.7%. For HER2 testing, concordance was 96.2% for patients in the LUMC series. Our study and three others have investigated the concordance when HER2 was determined according to the American Society of Clinical Oncology and College of Pathology guidelines and overall concordance was 97.8%.

Conclusions: Concordance between CNB and surgical specimens was high for both ER and HER2 testing. However, we recommend retesting ER-negative CNB results on the surgical specimen and performing in situ hybridization assays on HER2 immunohistochemistry 3+ CNBs to confirm HER2 status.

Key words: breast cancer, comparative study, core needle biopsy, estrogen receptor, human epidermal growth factor 2, resection specimen

introduction

Breast cancer is the most common cancer in women with an incidence of 421 000 new cases in Europe in 2008 [1]. Due to increasing efficacy of (neo-)adjuvant systemic treatment, positive trends are observed concerning breast cancer patients survival [2]. Optimal determination of both estrogen receptor (ER) expression and human epidermal growth factor 2 (HER2) gene amplification is a subject of discussion. The American Society of Clinical Oncology and College of Pathology (ASCO/CAP) panel reported on the large number of inaccurate local HER2 testing results, which was estimated to be around 20% of all HER2 tests [3]. The ASCO/CAP panel also estimated that 20% of ER testing might be inaccurate as well, and provided recommendations to increase the reliability including lowering the positivity threshold to 1% ER-positive cells [4]. Despite these discussions, determining ER and HER2 status is still considered as standard care for all invasive breast cancers as these biomarkers are predictive for response of patients to hormonal treatment and/or HER2-inhibiting medication. ER and HER2 status can be tested on both core needle biopsy (CNB) and resection specimens. Using CNB for determining ER and HER2 has the advantage that the final result is available before the surgical procedure. Secondly, for neoadjuvant treatment, CNB is the only material available for molecular testing. Another advantage of CNB is more optimal fixation conditions. For surgical specimens, time from interruption of the blood supply to the initiation of fixation is likely longer, since surgery is a more complicated procedure than CNB. In some centers, breast resection specimens are not immediately sliced and fixed, resulting in poor fixation of the tumor. Fixation protocols are also more standardized for CNB, while many different protocols exist for the fixation of surgical specimens. A disadvantage for using CNB is the possibility of crush artifacts that may lead to false-positive results.

Several series have reported the concordance between preoperative CNB and resection specimens for ER and HER2 determinations [5–27]. These studies generally included small numbers of tumors and have reported some seemingly contradicting results, with concordance percentages ranging from 61.8% to 99.0%, leading to variable recommendations.
concerning the use of CNB for ER and HER2 testing. Because of these conflicting results, we determined the concordance of CNB and resection specimens for ER and HER2 testing in a series of patients that were treated at our hospital. To compare our results to those published in the literature and to assess the overall concordance of published cases, we combined all published patient series and determined the nature and frequency of discordant results.

methods

study population

Determination of ER and HER2 status in the Leiden University Medical Center (LUMC) was routinely carried out on preoperative CNB between 2006 and 2008. Patients that were treated for invasive breast cancer between 2006 and 2008 with ER and HER2 determined on pretreatment CNB were eligible for this study. Biopsies were taken with a 14-gauge needle. For each lesion, at least two cores were required, but more were taken on some occasions (e.g. larger tumors or cores of low quality). Patients who received neoadjuvant chemotherapy were excluded, since this may have substantial influence on the expression of ER and HER2 [28]. For all eligible patients, clinico-pathological parameters including age, tumor size, histological subtype, Bloom-Richardson grade and lymph node stage were retrieved.

TMA construction

A tissue micro-array (TMA) was created from resection materials from patients treated for invasive breast cancer between 2006 and 2008 at the LUMC. These TMAs were originally created as part of a scheme to investigate HER2 testing reliability [29]. To construct the TMA, formalin-fixed paraffin-embedded tissue blocks containing resected invasive breast carcinomas and corresponding hematoxylin and eosin-stained slides were retrieved from our pathology archives. Parts of the tumor that displayed invasive cancer were marked. From each tumor, three 0.6-mm thick cores were collected within the marked area using the Beecher TMA instrument and inserted in a donor block. The use of three cores for the TMA has been shown to correlate strongly to the protein expression as determined on whole sections [30, 31].

immunohistochemistry and evaluation

After tissues were biopsied or excised, these were kept in neutral buffered formalin overnight in order to ensure a fixation time between 6 and 72 h, which is in accordance to the ASCO/CAP testing guidelines [3, 4]. Immunohistochemistry was carried out with the 1DS antibody for ER (Dako) and A0485 (rabbit polyclonal) antibody for HER2 on Dako autostainer. Mono color silver in situ hybridization (SISH) was carried out with the Ventana SISH kit on Benchmark XT. To assess the reliability of preoperative biopsies for determining ER and HER2 status, TMA sections were stained for ER and HER2, and results were compared with the final results from the preoperative biopsies. The immunohistochemistry (IHC) results of the biopsies were determined as part of the routine patient care by multiple pathologists. The TMAs of resected specimens were scored by two observers independently, who were blinded for the biopsy result. The ER and HER2 scores for all three TMA cores were determined. If all three cores were concordant, this was considered the final TMA score. If one of the cores was discordant or if the final score differed from the preoperative CNB result, full-sized slides were stained to assess the final ER and HER2 status. This material was revised by two observers simultaneously for scoring ER status, the threshold of 10% was used for both the CNB and resection specimen. HER2 staining was scored according to the conventional guidelines, with the cut-off for HER2 positivity at 30% of cells. For determining the level of agreement between the CNB and resection score, kappa (κ) values were calculated by using the statistical package SPSS (version 16.0 for Windows, SPPS, Inc., Chicago, IL, USA).

literature search

A literature search was carried out on 16th September 2011 to identify and to review all studies that have determined the concordance between the CNB and resection specimens for determining ER and/or HER2 status as primary or secondary outcome by using IHC. The search terms used in the three different databases are summarized in supplementary Table S1, available at Annals of Oncology online.

The Pubmed database was used as the primary search database. Besides Pubmed, the same search strategy was used in Medline and Web of Science. All unique results were identified and added to a reference manager file. The abstracts from all articles were screened for relevance, and full-text articles were obtained for all articles that fitted our inclusion criteria and were available in the English language. The reference list from all articles was searched for other relevant articles. From all articles, the following parameters were noted: the number of patients, the scoring method, the cut-off point for positivity, the number of CNB+/resection specimen+ tumors, the number of CNB+|resection specimen− tumors and number of negative and positive discordant tumors. Parallel to the selection criteria for the LUMC patient series, scientific articles describing patient series that were treated with neoadjuvant chemotherapy between CNB and surgery were excluded from the literature review.

results

patient characteristics

The clinico-pathological characteristics of the 122 included patients that were treated at our hospital are summarized in Table 1. These patients were all treated for early-stage breast cancer with primary surgery at the LUMC. The mean age was 63 (range 36–91 years). T-stage was pT1 for 87 patients, pT2 for 29 and pT3 for 6. Fifty patients were found to have positive

<table>
<thead>
<tr>
<th>Table 1. Patient and tumor characteristics (LUMC series)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>N (%)</strong></td>
</tr>
<tr>
<td>Mean age (range)</td>
</tr>
<tr>
<td>T-stage</td>
</tr>
<tr>
<td>pT1</td>
</tr>
<tr>
<td>pT2</td>
</tr>
<tr>
<td>pT3</td>
</tr>
<tr>
<td>N-stage</td>
</tr>
<tr>
<td>pN0</td>
</tr>
<tr>
<td>pN1−3</td>
</tr>
<tr>
<td>Unavailable</td>
</tr>
<tr>
<td>Tumor grade</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>Unavailable</td>
</tr>
<tr>
<td>Tumor type</td>
</tr>
<tr>
<td>Ductal</td>
</tr>
<tr>
<td>Lobular</td>
</tr>
<tr>
<td>Medullary</td>
</tr>
</tbody>
</table>
lymph nodes. The most common histological subtype was ductal carcinoma, which was diagnosed in 102 patients (83.6%), followed by lobular carcinoma in 19 (15.6%) and medullary carcinoma in 1 (0.8%). For all tumors, the median number of 14-gauge cores taken was 2 (mean 2.7, range 1–11). For pT1 lesions, the median number of cores was 2 (mean 2.7, range 1–11); for pT2 lesions, the median was 2 (mean 2.5, range 1–6) and for pT3, the median was 4 (mean 3.3, range 1–5). The concordance for the TMA scoring for ER between the two observers was found in 99.1% of cases ($\kappa$-value = 0.963). The concordance for the HER2 status was found in 96.4% of cases ($\kappa$-value = 0.695). In case of discordance, the final status was resolved by two observers.

**ER concordance**

Both the CNB and resection specimen ER results were available for 115 patients. Eighteen patients (15.7%) had tumors negative for ER receptor expression on the CNB, 97 (84.3%) were found to have tumors that were positive for ER expression. The final ER result from the resection specimens was negative for 17 tumors (14.8%) and positive for 98 (85.2%) tumors (Figure 1A and B). Concordance between the CNB and resection specimen was found for 114 of 115 patients (99.1%) and the $\kappa$-value was 0.966, indicating almost perfect agreement (supplementary Table S2, available at *Annals of Oncology* online). Negative CNB result but positive resection specimen was found in 1 tumor. When CNB and resection specimen were compared for this case, marked tumor heterogeneity concerning ER expression was observed in the resection specimen (Figure 2A and B). This discordant result was thus likely the result of tumor heterogeneity.

**HER2 concordance**

HER2 testing was first carried out on all samples with IHC. For the CNB HER2 results, 80 tumors were 0, 1+, 17 were 2+ and 11 were 3+. For the resection specimens, 91 tumors were 0, 1+, 9 were 2+ and 8 were 3+. When comparing the results between CNB and resection specimens using the three IHC scores (0 or 1+, 2+, 3+), we observed a significant number of discordant results. A total of 19 tumors were discordant for these three scores and 89 were concordant (82.4%). This resulted in a $\kappa$-value of 0.505, indicating moderate agreement. However, these concordances do not all have clinical implications. We also assessed HER2 status as a dichotomous variable (HER2 negative/HER2 positive) according to the current HER2 testing protocols. If the tumor was scored as 0 or 1+, the tumor was HER2 negative. Tumors with 2+ scores

*Figure 1.* Representative images of tumors negative (A) and positive (B) for nuclear estrogen receptor expression.

*Figure 2.* Tumor that displayed tumor heterogeneity for estrogen receptor (ER) expression, while showing both ER-negative (A) and ER-positive (B) tumor fields.
were subjected to an in situ hybridization assay. Tumors with 3+ score were considered HER2 positive. For 105 tumors, HER2 status was determined for both CNB and resection specimens. Concordance was found in 96.2% of all tumors (κ-value = 0.813). The discordant cases were four tumors that were found to be positive on the CNB, but negative on the resection specimen (supplementary Table S3, available at Annals of Oncology online, Figure 3A and B).

literature review

Our search strategy resulted in 129 results in Pubmed. Additionally, 49 unique results in Embase and 35 in Web of Science were also found and evaluated. From these 213 abstracts, 25 articles were found eligible for our study. An additional eight full-text articles were found as references to these articles. These articles were published between 1996 and 2011.

The CNB–resection concordance for ER status was investigated in 22 studies [5–19, 21–27]. Two studies listed either solely the percentage of concordance or the κ-value for agreement [17, 22], so these studies were left out of our analysis. The remaining 20 studies included a total number of 2507 invasive breast tumors. Concordance was found for 2342 tumors (93.4%). While some studies merely listed the percentage and absolute number of concordant results, we were interested in the reason for the discordant results. This information was available for 16 studies, which investigated a total number of 2244 invasive breast tumors [6–9, 12–16, 19, 21, 23–27]. A number of 51 tumors had negative CNB results, whereas the resection specimen was positive (2.3%). The opposite (positive CNB and negative resection specimen) was true for 77 tumors (3.4%).

The concordance between CNB and resection specimens regarding HER2 status was investigated in 18 studies [6, 8–10, 15, 16, 22–26, 32–35]. Data concerning the concordance concerning three IHC categories (0/1+, 2+, 3+) were available in eight articles [16, 21, 22, 24, 26, 33–35]. Concordant results were observed in 1250 of 1459 tumors (85.7%). The most frequent discordant result was 2+ score on the CNB, and with negative score (0,1+) on the surgical specimen. However, these do not all represent clinically relevant discordant results, because treatment decisions are not solely based on IHC results. We investigated the number of studies that compared the concordance between CNB and resection specimens when considering tumors as either HER2 negative or HER2 positive [6, 8, 15, 17, 18, 23, 25, 32]. Some of these studies considered all 2+ cases as HER2 positive, which in contrast with current testing guidelines, and these were thus excluded from this analysis [8, 18, 25, 32]. In accordance with HER2 testing guidelines, three studies that determined HER2 status with IHC as initial testing method and in situ hybridization assays for all 2+ cases were included [6, 15, 23]. All 543 patients from these studies were pooled. Concordant negative and positive results for CNB and resection specimens were seen in 481 of 543 tumors (88.6%) and 52 of 543 tumors (9.6%), respectively. CNB HER2 positive and resection specimen HER2 negative results were seen in six tumors. Four tumors were HER2 ampliﬁed on resection specimens, but negative on the initial CNB.

combined concordance rates

To evaluate the performance of CNB as a primary method of assessing ER and HER2 status, we combined our results with those described in the literature in order to assess the combined concordance rate of the CNB results with the resection specimen. For determining ER status, the overall concordance was 93.7%, based on our series and 20 published patient series, which included a total number of 2622 patients [5–16, 18, 19, 21, 23–27] (supplementary Table S4, available at Annals of Oncology online). The number of CNB+/resection specimen+, CNB−/resection specimen−, CNB+/resection specimen− and CNB−/resection specimen+ tumors was investigated in 2089 patients. This was based on the LUMC series and 16 studies that speciﬁed this information in the report [6–9, 12–16, 19, 21, 23–27]. Concordant ER positive and ER negative results were found in 1775 (75.2%) and 455 (19.3%) patients, respectively. The most frequent discordant result was positive ER status determined in CNB, whereas the surgical specimen for the same tumor was found ER negative (77 patients, 3.3%). CNB ER negative with ER positive subsequent surgical specimens was seen in 52 patients (2.2%; Table 2).

For determining the HER2 concordance rates, we used the dichotomous categories for HER2 results (HER2 negative or...
HER2 positive). The number of studies that determined HER2 status according to the currently used HER2 testing protocols were three published reports and our study [6, 15, 23] that investigated a total of 646 tumors (supplementary Table S5, available at Annals of Oncology online). Overall concordance was found to be 97.8%, 62 tumors (9.6%) were positive on both the CNB and resection specimen, 572 (88.3%) were negative according to both the CNB and resection specimen. Discordant results were seen in 14 patients, 10 of these patients (1.5%) had positive CNB with negative surgical specimen and 4 (0.6%) were negative on the CNB, whereas the surgical specimen was positive (Table 3).

**Table 2.** Overall concordance for estrogen receptor in LUMC series combined with literature series

<table>
<thead>
<tr>
<th>CNB</th>
<th>Resection specimen</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>1775</td>
<td>77</td>
</tr>
<tr>
<td>Negative</td>
<td>52</td>
<td>455</td>
</tr>
<tr>
<td>Total</td>
<td>1827</td>
<td>532</td>
</tr>
</tbody>
</table>

**Table 3.** Overall concordance for human epidermal growth factor receptor 2 in LUMC series combined with literature series

<table>
<thead>
<tr>
<th>CNB</th>
<th>Resection specimen</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
<td>62</td>
<td>10</td>
</tr>
<tr>
<td>Negative</td>
<td>4</td>
<td>572</td>
</tr>
<tr>
<td>Total</td>
<td>66</td>
<td>582</td>
</tr>
</tbody>
</table>

**Discussion**

Accurate determination of ER expression and HER2 gene amplification on invasive breast cancers is essential for optimal choice of (neo)adjuvant therapies. Multiple studies have investigated the concordance between CNB and resection specimens, usually with small patient series and with occasionally discrepant results. We decided to investigate the concordance for ER and HER2 status for a series of patients from our hospital and to pool these data with published patient series in order to more reliably investigate the performance of CNB for determining ER and HER2 status. For ER receptor concordance, we found that this exceeded 99% in our patient series and concordance was 93.7% in the pooled patients from 21 reports including our patient series. Discordance was found for 1 patient in our patient series. This patient had a negative CNB result, whereas the resection specimen was scored positive for ER expression. Our literature search found a similar discordant result in a total number 52 other patients (2.2%) in a pooled series of 2359 patients from 18 studies and our own. These results might be a reflection of the tumor heterogeneity leading to sampling error. This group of patients is currently at risk of being misdiagnosed when solely based on the basis of CNB and might be withheld effective hormonal therapies. Due to the increasing demand for ER testing, the number of patients misdiagnosed should not to be underestimated. We therefore recommend retesting ER-negative biopsies on the surgical specimen.

In the pooled cases from the literature, CNB ER+/resection specimen ER− tumors were described in 77 patients (3.3%). These results might be explained by superior fixation of tissue of the CNB compared with resection specimens or due to over-retrieval. One of the reports that was identified in our literature search recommended testing biopsy material as it was able to identify some tumors with ER expression that were missed in the surgical specimen [16]. Since there is evidence that even patients with low-level ER expression are responsive to hormonal treatment and those with low ER expression are therefore currently considered for hormonal therapy, we feel that it is justified to offer hormonal therapy even to CNB +/resection specimen− tumors.

HER2 positivity on either CNB or surgical specimen is an indication for treatment with the HER2-inhibiting drug such as trastuzumab. Concordance for HER2 IHC testing for the three categories (0 or 1+, 2+, 3+) has revealed that significant discordance exists between CNB and resection specimens. Our study and three others examined the concordance when examining HER2 status as positive or negative (determined with both IHC and in situ hybridization for 2+ cases). We found four tumors that were positive on the CNB, but negative on the resection specimen, and this was found in 10 cases (1.5%) in our combined patient series consisting of the LUMC patient cohort and literature cases. This could be due to artifacts and no real data concerning trastuzumab response for this group of CNB 3+/resection specimen tumors exist. Our center has therefore started testing all 3+ tumors on CNB with in situ hybridization in order to assess the final score and to increase the reliability of HER2 positivity ascertained on CNB.

Our study pooled data from several studies that have investigated the concordance between CNB and resection specimens. The weakness of this approach is the heterogeneity of the studies included in our analysis. Some studies have used different methods (fixation, antigen retrieval, antibodies, etc.) and scoring methods (H-score and Allred etc.). However, these studies were included in our analysis as long as both CNB and resection specimens were treated similarly. Although by reviewing all published series in the literature our study is capable of a more reliable evaluation regarding the reliability of CNB for ER and HER2 testing, there is a danger of publication bias. Laboratories with more experience and higher patient volumes are more likely to publish their experience with ER and HER2 testing.

In conclusion, our patient series was combined with other patient series described in the literature in order to assess the frequency and nature of discordant results with more certainty. For ER testing, we have shown that the overall concordance rate described in the literature was 93.7% by pooling data from 20 published reports and our series. Since heterogeneous antigen expression might be a cause for false-negative results on the CNB, we recommend testing tumors with ER-negative biopsy results again on the surgical specimen. Our study provides strong evidence that ER status can be reliably determined on the CNB. Tumors that are ER-positive on the
CNB with ER-negative scores on the surgical specimen do exist. Since there is evidence that even patients with low-level ER expression respond to hormonal treatment, we feel that it is justified offering these patients hormonal therapy. For HER2 testing, the overall concordance rate was 97.8% in the pooled series of cases from three previously published reports and our patient series. However, there is a considerable number of tumors that are CNB positive, but negative on surgical specimens. We therefore recommend also confirming 3+ HER2 results on CNB with in situ hybridization assays in order to increase the indication for trastuzumab selection.

funding
MJVV is a member of the Pathology advisory board for Hofmann—La Roche and has received funds for research from Hofmann—La Roche.

disclosure
All authors have declared no conflicts of interests.

references
6. Amedos M, Nerurkar A, Oshin P et al.. Discordance between core needle biopsy (CNB) and excisional biopsy (EB) for estrogen receptor (ER), progesterone receptor (PgR) and HER2 status in early breast cancer (EB). Ann Oncol 2009; 20(12): 1948–1952.
33. Tsuda H, Uemura M, Uemura S et al.. HER2 testing on core needle biopsy specimens from primary breast cancers: interobserver reproducibility.
A prognostic nomogram to predict overall survival in patients with platinum-sensitive recurrent ovarian cancer


1NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia; 2Department of Obstetrics and Gynecology, University of Kiel, Kiel, Germany; 3Clinical Trials Unit, Medical Research Council, London, UK; 4Department of Medical Oncology, Institut de Cancérologie Nantes Atlantique CRIQC René Gauducheau, Boulevard Jacques Monod, Nantes Cedex/Saint-Herblain, France; 5Gynecologic Oncology, CHUQ-Hôtel Dieu de Québec, Quebec City, Canada; 6Department of Gynecologic Oncology, Norwegian Radium Hospital, Oslo, Norway; 7Division of Gynaecological Oncology, Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium; 8Hospital Barrièrge Brider Graz, Graz, Austria; 9Division of Medical Oncology, Uro-Gynecological Department, National Cancer Institute of Naples, Napoli; 10Medical Gynecologic Oncology Unit, European Institute of Oncology, Milan, Italy; 11Department of Gynecology and Obstetrics, Philipps University, Marburg, Germany; 12UCL and UCLH Biomedical Research Centre, UCL Cancer Institute, London, UK; 13University Paris Descartes; Assistance Publique-Hôpitaux de Paris, Hôpital Hôtel-Dieu, Oncologie, Paris, France; 14Department of Obstetrics and Gynecology, Dalhousie University, Halifax, Canada; 15Department of Gynecologic Oncology and Institute of Medical Informatics, Norwegian Radium Hospital, Oslo, Norway; 16Department of Gynecology and Obstetrics, Ernst Moritz Arndt University, Greifswald; 17Department of Obstetrics and Gynecology, University Hospital Carl Gustav Carus, Dresden; 18Department of Gynecology & GyneOncology, Klinikum Essen Mitte, Essen, Germany; 19Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia

Received 21 February 2012; revised 26 July 2012 & 15 August 2012; accepted 19 September 2012

Background: Patients with platinum-sensitive recurrent ovarian cancer have variable prognosis and survival. We extend previous work on prediction of progression-free survival by developing a nomogram to predict overall survival (OS) in these patients treated with platinum-based chemotherapy.

Patients and methods: The nomogram was developed using data from the CAELYX in Platinum-Sensitive Ovarian Patients (CALYPSO) trial. Multivariate proportional hazards models were generated based on pre-treatment characteristics to develop a nomogram that classifies patient prognosis based on OS outcome. We also developed two simpler models with fewer variables and conducted model validations in independent datasets from AGO-OVAR Study 2.5 and ICON 4. We compare the performance of the nomogram with the simpler models by examining the differences in the C-statistics and net reclassification index (NRI).

Results: The nomogram included six significant predictors: interval from last platinum chemotherapy, performance status, size of the largest tumour, CA-125, haemoglobin and the number of organ sites of metastasis (C-statistic 0.67; 95% confidence interval 0.65–0.69). Among the CALYPSO patients, the median OS for good, intermediate and poor prognosis groups was 56.2, 31.0 and 20.8 months, respectively. When CA-125 was not included in the model, the C-statistics were 0.65 (CALYPSO) and 0.64 (AGO-OVAR 2.5). A simpler model (interval from last platinum chemotherapy, performance status and CA-125) produced a significant decrease of the C-statistic (0.63) and NRI (26.4%, P < 0.0001).

Conclusions: This nomogram with six pre-treatment characteristics improves OS prediction in patients with platinum-sensitive ovarian cancer and is superior to models with fewer prognostic factors or platinum chemotherapy free interval alone. With independent validation, this nomogram could potentially be useful for improved stratification of patients in clinical trials and also for counselling patients.

*Correspondence to: Dr C. K. Lee, NHMRC Clinical Trials Centre, The University of Sydney, Locked Bag 77, Camperdown, Sydney, New South Wales 1450, Australia. Tel: +61-2-9562-5365; Fax: +61-2-9565-1863; E-mail: chee.lee@ctc.usyd.edu.au

© The Author 2012. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.