14% to 20%) in light drinkers [3]. Besides lower cancer mortality, light drinkers indeed experience lower cardiovascular mortality.

If any public health conclusion can be drawn from currently available evidence, it is that light drinking is associated with decreased overall mortality, and perhaps even decreased cancer mortality. This should not be concealed by a misplaced emphasis on a slightly increased incidence of several cancers possibly associated with light drinking.

O. Steichen1,2,*, J. Demay1 & G. Grateau1,2
1Service de Médecine Interne, Hôpital Tenon, 4 rue de la Chine, Paris;
2Faculty of Medicine, Université Pierre et Marie Curie, Paris 6, Paris, France
(*E-mail: olivier.steichen@tnn.aphp.fr)

disclosure
The author has declared no conflicts of interest.

references

doi: 10.1093/annonc/mdt100
Published online 15 March 2013

Re: light drinking has positive public health consequences

We read with interest the letter by Steichen et al., who discussed the results of our meta-analysis [1]. We reported that light drinking increases the risk of some types of cancer, and that this might have important consequences on the public health. The authors of the letter pointed out two limitations: (i) the increased incidence of some cancers in light drinkers will not necessarily translate into increased attributable mortality and (ii) even increased cancer mortality in light drinkers will not inevitably translate into increased overall mortality.

With regard to the first point, classic incidence studies in epidemiology to determine relative risk comprise both the onset of disease and mortality as end points, especially in disease categories with high-case fatality such as cancer. Therefore, we assumed that the relative risk of cancer incidence could be used for the estimation of the alcohol attributable cancer mortality. In other words, we assumed that light alcohol drinking does not affect cancer survival. Of course, this assumption could be wrong, but de facto the association of light alcohol drinking with both cancer stage at diagnosis and cancer prognosis is still unknown. In other disease categories, there has been a separation between the relative risk functions for onset and mortality, and it turned out that the respective risks were not always the same [2].

Quite opposite to the results of our study were the findings of another meta-analysis published in this journal, which reported that the relative risk of overall cancer mortality is reduced by 9% in light drinkers when compared with occasional/non-drinkers [3]. We believe that the protective effect of light drinking on overall cancer mortality could be subject to several biases. The most important is that light drinking can be part of a generally healthy lifestyle which is protective against many types of cancer: light drinkers might smoke less, be more educated and health-aware, and follow a healthier diet than non-drinkers and heavy drinkers [4]. Despite these potential biases, a strong positive dose–response relationship between alcohol and cancer risk had been reported for all the cancer sites we considered in our meta-analysis [5]. Moreover, while it is hard to find plausible biological carcinogenic mechanisms to explain the protective effect of alcohol on cancer risk, more and more robust explanations have been proposed to sustain its detrimental effect [6, 7].

Regarding the second limitation raised by Steichen et al., many epidemiologic studies have consistently shown that light-to-moderate consumers of alcohol have a reduced risk of all-cause mortality in comparison with non-drinkers and heavy drinkers, mainly due the protective effect of alcohol consumption against coronary heart diseases [8]. Therefore, we agree with the authors of the letter that the existing balance between harmful and beneficial effects of alcohol, particularly at low doses, still needs to be clarified. However, we did not attempt to estimate the effect of light drinking on total mortality. Obtaining the best estimate of the effect of light drinking on cancer risk, which is what we have aimed at doing, is an important but by no means exclusive component of the separate exercise of estimating the effect of this habit on general mortality.

V. Bagnardi1,2,*, E. Botteri3, M. Rota3, C. Pelucchi4, G. Corrao5, J. Rehm5,6,7, P. Boffetta8,9 & C. La Vecchia4,8,10
1Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan;
2Division of Epidemiology and Biostatistics, European Institute of Oncology, Milan;
3Department of Clinical Medicine and Prevention, Centre of Biostatistics and Clinical Epidemiology, University of Milan-Bicocca, Monza;
4Mario Negri Institute for Pharmacological Research ‘Mario Negri’, Milan, Italy;
5Centre for Addiction and Mental Health (CAMH), Toronto;
6Institute of Medical Science (IMS);
7Dalla Lana School of Public Health (DLSPH), University of Toronto, Toronto, Canada;
8International Prevention Research Institute, Lyon, France;
9The Tisch Cancer Institute and Institute for Translational Epidemiology, Mount Sinai School of Medicine, New York, USA;
10Department of Occupational Health, University of Milan, Milan, Italy
(*E-mail: vincenzo.bagnardi@unimib.it)
disclosure

The authors have declared no conflicts of interest.

references


doi: 10.1093/annonc/mdt103
Published online 13 March 2013