Time to first cigarette and lung cancer risk in Japan

H. Ito1, S. Gallus2, S. Hosono1, I. Oze1, K. Fukumoto1,3, Y. Yatabe4, T. Hida5, T. Mitsudomi6, E. Negri2, K. Yoko3, K. Tajima7, C. La Vecchia2,8, H. Tanaka1,9 & K. Matsuo9,10*

1Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan; 2Department of Epidemiology, Istituto di Ricerche Farmacologiche ‘Mario Negri’, Milan, Italy; 3Department of Thoracic Surgery, Nagoya University Graduate School of Medicine, Nagoya; 4Department of Pathology and Molecular Diagnostics; 5Department of Thoracic Oncology, Aichi Cancer Center Central Hospital, Nagoya; 6Department of Surgery, Division of Thoracic Surgery, Kinki University Faculty of Medicine, Osaka-Sayama; 7Aichi Cancer Center Research Institute, Nagoya, Japan; 8Department of Clinical Sciences and Community Health, Universita degli Studi di Milano, Milan, Italy; 9Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya; 10Department of Preventive Medicine, Kyushu University Faculty of Medical Science, Fukuoka, Japan

Received 12 March 2013; revised 22 July 2013; accepted 22 July 2013

Background: Cigarette smoking is the major cause of lung cancer (LC). Although the time to first cigarette (TTFC) of the day is a distinct indicator of nicotine dependence, little information is available on its possible relation to LC.

Patients and methods: This case–control study includes a total of 1572 incident LC cases and 1572 non-cancer controls visiting for the first time the Aichi Cancer Center Hospital between 2001 and 2005. We estimated the odds ratio (OR) and 95% confidence interval (CI) for TTFC using a logistic regression model after adjustment for several potential confounders.

Results: TTFC was inversely associated with the risk of LC. This association was consistent across histological subtypes of LC. For all LCs considered among ever smokers and after accurate allowance for smoking quantity and duration, besides other relevant covariates, compared with TTFC >60 min, the adjusted ORs were 1.08 (95% CI, 0.73–1.61) for TTFC of 31–60 min, 1.40 (0.98–2.01) for 6–30 min and 1.86 (1.28–2.71) for within 5 min (Ptrend < 0.001). Statistically marginally significant heterogeneity by histological subtype was observed (Phetrogerogeneity 0.002).

Conclusions: Nicotine dependence, as indicated by the TTFC, is associated with increased risk of LC and is therefore an independent marker of exposure to tobacco smoking.

Key words: nicotine dependence, smoking, addiction, lung cancer

Introduction

The association between cigarette smoking and lung cancer (LC) risk was firmly established in the 1950s [1], and the direct associations of risk with younger age at smoking initiation, greater number of cigarettes per day (CPD), longer duration of cigarette smoking and the inverse one with years since quitting smoking, have been well established [2–7].

The time to first cigarette (TTFC) after waking is a specific indicator of nicotine dependence [8–13] and is also associated with other aspects of smoking behavior, including difficulty in smoking cessation, smoking relapse, and tolerance. It is one of

© The Author 2013. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
the six items of the Fagerstrom Test for Nicotine Dependence (FTND) [14–16] and one of the two items of the Heavy Smoking Index (HSI) [14], which have been shown to provide a reliable measure of nicotine dependence [17, 18]. In addition, a shorter TTFC was recently associated with higher levels of cotinine in active current smokers [19]. Nicotine and its metabolite, cotinine, have been associated with LC promotion in vitro and in rodents [20], but the issue of carcinogenicity of nicotine remains open to discussion [21]. Furthermore, high correlations between urinary levels of cotinine and 4-(methylnitrosamino)-1-(3-pyrrolidyl)-1-butanol (NNAL) and 1-hydroxypyrene (1-HOP), which are respectively the metabolites of tobacco-specific carcinogens 4-(methylnitrosamino)-1-(3-pyrrolidyl)-1-butanone (NNK) and polycyclic aromatic hydrocarbons (PAH), were observed [22]. Therefore, TTFC may be an indicator of smoking exposure as well as of nicotine dependence, and thus a shorter TTFC could be associated with increased risk of smoking-related cancers. However, there are only a few studies evaluating this association [23–26].

Here, we investigate the association between TTFC and LC risk in a Japanese population, using data from a large case–control study.

materials and methods

study population

Incident LC cases (n = 1552) and non-cancer controls (n = 1552) were selected from the database of the Hospital-based Epidemiologic Research Program at Aichi Cancer Center (HERPACC) enrolled between 2001 and 2005 [27, 28]. Both case and controls had no cancer or history of neoplasia. Among the subjects, 903 cases and 1143 controls were ever smokers. The controls were selected randomly and individually matched to cases by 5-year age category and sex, with a control-to-case ratio of 1:1 from the 14 329-control pool. A total of 3144 participants (1572 cases and 1572 controls) were included in the study. The study was approved by the Institutional Ethical Committee of Aichi Cancer Center. Detailed description of subjects is given in supplemental methods, available at Annals of Oncology online.

information on time to the first cigarette of the day

Information on TTFC was collected at the first visit of the participants using a self-administered questionnaire. TTFC was asked with the following four options: ≤5 min, 6–30, 31–60 and >60 min.

evaluation of other lifestyle factors

We obtained smoking status (nonsmoker, former smoker and current smoker) with duration (years) and CPD. We defined nonsmokers as those who smoked less than 100 cigarettes in their lifetime and former smokers as those who had quit smoking at least 1 year. We also obtained other lifestyle factors, including alcohol drinking, consumption of fruits and vegetables (FV), occupation and socioeconomic status. Details are described in the supplemental materials, available at Annals of Oncology online.

data analyses

To assess the association between the TTFC and the risk of LC, we estimated the odds ratios (ORs) and 95% confidence intervals (CIs), using logistic regression models. First, we evaluated impacts of TTFC among current and former smokers separately, relative to never smokers, by using all the subjects adjusted for confounders. To allow for differences in smoking intensity and duration across levels of TTFC, we evaluated TTFC excluding never smokers. For this analysis, we used unconditional logistic regression models adjusted for the same covariates of the overall analyses after further allowance for smoking status, number of CPD and duration of smoking. We conducted stratified analyses by histological subtype. Heterogeneity across strata of confounders and across strata of histological subtypes was assessed by likelihood-ratio-tests. Mean numbers of cigarettes smoked per day were derived from analysis of variance (ANOVA) and were adjusted for confounders. We applied χ²-test when appropriate. The details of data analysis are given in supplemental method, available at Annals of Oncology online.

results

Demographic characteristics and selected lifestyle habits of the participants are shown in Table 1 and supplementary Table S1, available at Annals of Oncology online. Age and sex were matched by design. The proportion of current smokers was higher in cases than in controls. Cases smoked more CPD and for longer time, with significant trends in risk. Compared with controls, cases ate fewer portions of FV, and were more frequently blue-collar workers.

Table 2 presents the association between TTFC in former and current smokers and LC, overall and across histologies. In the analysis of LC overall, compared with never smokers, the ORs for TTFC of >60, 31–60, 6–30 and ≤5 min were 1.15 (95% CI, 0.76–1.78), 1.63 (1.09–2.42), 2.42 (1.74–3.35) and 2.76 (1.94–3.92) for former smokers, and 1.65 (0.94–2.87), 2.67 (1.73–4.11), 4.05 (3.02–5.43) and 6.57 (4.87–8.85) for current smokers. For the stratified analyses by histological subtype, the point estimates were greater in squamous (SQ)/small-cell carcinoma (SM) combined (SQ/SM) than in adenocarcinoma (AD).

When the analysis was restricted to ever smokers (Table 3) and allowance was made for smoking status plus quantity and duration of smoking, compared with TTFC of >60 min after waking, the ORs for overall LC were 1.08 for 31–60 min, 1.40 for 6–30 min and 1.86 for within 5 min. With reference to specific histological subtypes, the inverse association with TTFC was stronger for SQ/QM than for AD and the estimates between the two histological subtypes were heterogeneous (P_heterogeneity = 0.002). The ORs for TTFC within 5 min, compared with >60 min, were 1.35 (95% CI, 0.81–2.24) for AD and 3.28 (1.56–6.91) for SQ/SM. When the analysis was further restricted to current smokers, compared with TTFC of >60 min, the ORs for overall LC were 1.14 for 31–60, 1.40 for 6–30 and 2.07 for within 5 min. The corresponding values for TTFC of within 5 min compared with that of >60 min were 1.42 (95% CI, 0.65–3.09) for AD and 3.41 (1.02–11.4) for SQ/SM, in the presence of significant heterogeneity between these two histological subtypes. This association was consistently observed in stratified analyses by covariates (supplementary Table S2, available at Annals of Oncology online).

We also investigated an association between TTFC and the smoking intensity expressed in the number of cigarettes smoked per day and observed a TTFC dosage effect with the mean number of cigarettes smoked per day (supplementary Table S1, available at Annals of Oncology online). The mean number of cigarettes smoked per day was negatively correlated with TTFC among ever smokers. Data not shown, we did not observe any
In the first large case–control study in an Asian population, we found that TTFC was independently associated with the risk of lung cancer, which is one of the components of pack-years. 

Table 2. Associations between TTFC combined with smoking status and lung cancer (LC) risks stratified by histologic subtypes

<table>
<thead>
<tr>
<th>Combined categories of smoking dependence and smoking status</th>
<th>LC over all</th>
<th>Adenocarcinoma (AD)</th>
<th>Squamous/small cell carcinoma (SQ/SM)</th>
<th>Large/Other/Undetermineda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case Control OR (95% CI)</td>
</tr>
<tr>
<td>Never smokers Former smokers</td>
<td>409 649 Reference</td>
<td>342 437 Reference</td>
<td>10 115 Reference</td>
<td>57 97 Reference</td>
</tr>
<tr>
<td>&gt;60 min</td>
<td>47 100 1.15 (0.76–1.78)</td>
<td>29 42 1.18 (0.67–2.07)</td>
<td>10 39 4.87 (1.38–17.2)</td>
<td>8 19 0.94 (0.32–2.83)</td>
</tr>
<tr>
<td>31–60 min</td>
<td>62 102 1.63 (1.09–2.42)</td>
<td>34 52 1.23 (0.74–2.07)</td>
<td>11 30 9.29 (2.39–36.1)</td>
<td>17 20 2.17 (0.88–5.36)</td>
</tr>
<tr>
<td>6–30 min</td>
<td>135 133 2.42 (1.74–3.35)</td>
<td>61 68 1.49 (0.96–2.29)</td>
<td>49 40 26.3 (8.10–85.2)</td>
<td>25 25 2.39 (1.06–5.39)</td>
</tr>
<tr>
<td>≤5 min</td>
<td>120 104 2.76 (1.94–3.92)</td>
<td>64 48 2.15 (1.36–3.41)</td>
<td>41 35 27.5 (8.33–90.6)</td>
<td>15 21 2.20 (0.84–5.78)</td>
</tr>
<tr>
<td>Current smokers</td>
<td>28 41 1.60 (0.94–2.87)</td>
<td>19 18 1.60 (0.78–3.25)</td>
<td>6 13 9.66 (1.92–48.5)</td>
<td>3 10 1.11 (0.24–5.11)</td>
</tr>
<tr>
<td>&gt;60 min</td>
<td>28 41 1.65 (0.94–2.87)</td>
<td>19 18 1.60 (0.78–3.25)</td>
<td>6 13 9.66 (1.92–48.5)</td>
<td>3 10 1.11 (0.24–5.11)</td>
</tr>
<tr>
<td>31–60 min</td>
<td>64 58 2.67 (1.73–4.11)</td>
<td>34 31 1.78 (1.01–3.10)</td>
<td>18 21 17.4 (4.79–62.9)</td>
<td>12 6 8.06 (2.04–31.9)</td>
</tr>
<tr>
<td>6–30 min</td>
<td>257 175 4.05 (3.02–5.43)</td>
<td>123 96 2.30 (1.59–3.32)</td>
<td>88 45 0.96 (21.8–222.0)</td>
<td>46 34 3.88 (1.87–8.06)</td>
</tr>
<tr>
<td>Unknown subjects</td>
<td>21 32</td>
<td>7 21</td>
<td>8 6</td>
<td>6 5</td>
</tr>
</tbody>
</table>

Missing values for covariates were included in a separate category in the models.

CI, confidence interval.

aCase only. Subjects with unknown data were not included in the respective analysis.

CI, confidence interval.

aLarge, large cell carcinoma, other/undetermined, other/undetermined histological subtypes.

bORs were calculated by a conditional logistic regression model adjusted for age, alcohol consumption, fruit and vegetable intake and socioeconomic status.
Heterogeneity test was carried out by likelihood-ratio test after estimations by an unconditional logistic regression model adjusted for age, sex, CPD, duration. ORs were calculated by an unconditional logistic regression model adjusted for age, alcohol consumption, fruit and vegetable intake and socioeconomic status. Missing values for covariates were excluded in the ANOVA models.

Current smokers

Level of cotinine per cigarette smoked [19] and considered as a smoking behavior that is strongly associated with the nicotine dependency measured by TTFC. On the other hand, dependence by evidence that TTFC is highly correlated with the cotinine level [19] and in turn, the cotinine level correlates with tobacco-related carcinogens [22]. The findings of this study confirm these previous observations that TTFC is a risk factor of smoking-related cancers, independent from other indicators of tobacco consumption, including the duration of smoking, and the number of CPD. Namely, our findings and previous observations suggest that TTFC is an indicator of tobacco dependence impacting on cancer risk that is not adequately measured by the other aspects of smoking, which is supported by evidence that TTFC is significantly inversely associated with the risk of LC in a case–control study among ever smokers [23]. Using data from the same database, similar associations were reported for the risks of upper aerodigestive tract (UADT) cancers among ever smokers [24, 25]. In addition, we found a similar association between TTFC and UADT cancer risk in a large case–control study here in Japan [26].

There are few studies evaluating the association between the TTFC and the risk of smoking-related cancers, including LC. Muscat et al. found that TTFC was significantly inversely associated with the risk of LC in a case–control study among ever smokers [23]. Using data from the same database, similar associations were reported for the risks of upper aerodigestive tract (UADT) cancers among ever smokers [24, 25]. In addition, we found a similar association between TTFC and UADT cancer risk in a large case–control study here in Japan [26].

Table 3. Associations between FTTC and lung cancers (LCs) among ever and current smokers stratified by histologic subtypes

<table>
<thead>
<tr>
<th>Combined categories of smoking dependence and smoking status</th>
<th>LC over all</th>
<th>Adenocarcinoma (AD)</th>
<th>Squamous/small-cell carcinoma (SQ/SM)</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former smokers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;60</td>
<td>75</td>
<td>141</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>31–60</td>
<td>126</td>
<td>160</td>
<td>1.08 (0.73–1.61)</td>
<td>68</td>
</tr>
<tr>
<td>6–30 min</td>
<td>392</td>
<td>308</td>
<td>1.40 (0.98–2.01)</td>
<td>184</td>
</tr>
<tr>
<td>≤5 min</td>
<td>529</td>
<td>262</td>
<td>1.86 (1.28–2.71)</td>
<td>249</td>
</tr>
<tr>
<td>P for trend &lt;0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current smokers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&gt;60 min</td>
<td>28</td>
<td>41</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>31–60 min</td>
<td>64</td>
<td>58</td>
<td>1.14 (0.60–2.14)</td>
<td>34</td>
</tr>
<tr>
<td>6–30 min</td>
<td>257</td>
<td>175</td>
<td>1.40 (0.80–2.46)</td>
<td>123</td>
</tr>
<tr>
<td>≤5 min</td>
<td>409</td>
<td>158</td>
<td>2.07 (1.16–3.69)</td>
<td>185</td>
</tr>
<tr>
<td>P for trend &lt;0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORs were calculated by an unconditional logistic regression model adjusted for age, alcohol consumption, fruit and vegetable intake and socioeconomic status. Heterogeneity test was carried out by likelihood-ratio test after estimations by an unconditional logistic regression model adjusted for age, sex, CPD, duration of smoking, smoking status, alcohol consumption, fruit and vegetable intake and occupation, except for a stratifying factor. Missing values for covariates were excluded in the ANOVA models.
to a stronger association of AD with smoking than in the past, through an increase in the dose of NNK [32] and smoker compensation [33], the relative risk for smoking is highest in SM, followed by SQ and lowest in AD [2]. This may also explain the heterogeneity by histologic subtype observed in our study.

Our study has several strengths. First, the size of the study was large enough and the participation rate was almost complete for both cases and controls, and the questionnaire including smoking was satisfactorily valid and reproducible [34–36]. In addition, control participants were selected from the same hospital and almost all participants lived in the same area, it is likely that they would refer to ACCH for cancer treatment or diagnosis. We previously confirmed that the questionnaire-based lifestyle characteristics in this population are similar to those of the general population in Nagoya City [28], warranting generalizability of our findings to Japanese. Second, potential confounding by sex, alcohol drinking, fruit and vegetable intake and SES was considered by individual matching and statistical adjustment in the analyses. Potential limitations of our study are described in supplementary discussion, available at Annals of Oncology online.

In conclusion, our case–control study found that TTFC is a risk factor for LC, independent of other conventional smoking exposure measurements.

acknowledgements

We thank the doctors, nurses, technical staff and hospital administration staff at ACCH for the daily administration of the Hospital-based Epidemiologic Research Program at Aichi Cancer Center study, the staff of the Departments of Respiratory Surgery and Thoracic Oncology, ACCH, for their support.

funding

This study was supported by National Cancer Center Research and Development Fund (No. 23-A-4), Health and Labor Sciences Research Grants for Research on Applying Health Technology (No. 201136002A) from the Ministry of Health, Labor and Welfare, and Grant-in-Aid for Scientific Research on Priority Areas of Cancer (No. 17015018) and on Innovative Areas (No. 22150001) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The work of SG, EN and CLV is supported by the Italian Association for Research on Cancer (AIRC, contract No. 10068)

disclosure

The authors have declared no conflicts of interest.

references

Talactoferrin alfa versus placebo in patients with refractory advanced non-small-cell lung cancer (FORTIS-M trial)


1Department of Oncology, Robert W. Woodruff Health Sciences Center of Emory University, Atlanta; 2Department of Oncology, Duke University Medical Center, Durham, USA; 3Johns Hopkins Singapore International Medical Center, Singapore, Singapore; 4University Medical Center, Mannheim, Germany; 5Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine, New York, USA; 6Department of Medical Oncology, University of Nantes/Rene Gauducheau Cancer Center, Nantes, France; 7Department of Oncology, The Christie NHS Foundation Trust, Manchester, UK; 8Multidisciplinary Oncology & Therapeutic Innovations, Université de la Méditerranée, Marseille, France; 9Department of Oncology, Agennix, Incorporated, Princeton; 10Department of Oncology, National Cancer Institute, NIH, Bethesda, USA

Received 29 May 2013; revised 24 July 2013; accepted 25 July 2013

Background: Talactoferrin alfa is an oral dendritic cell (DC)-mediated immunotherapy (DCMI). We tested whether talactoferrin was superior to placebo in advanced non-small-cell lung cancer (NSCLC).

Patients and methods: An FORTIS-M trial was an international, multicenter, randomized, double-blind comparison of talactoferrin (1.5 g p.o. BID) versus placebo BID, in patients with stage IIIB/IV NSCLC whose disease had failed two or more prior regimens. Treatment was administered for a maximum of five 14-week cycles. The primary efficacy end point was overall survival (OS); secondary end points included 6- and 12-month survival, progression-free survival (PFS), and disease control rate (DCR).

Results: Seven hundred and forty-two patients were randomly assigned (2:1) to talactoferrin (497) or placebo (245). The median OS in the intent-to-treat (ITT) population was 7.66 months in the placebo arm and 7.49 months in the talactoferrin arm [hazard ratio (HR), 1.04; 95% CI, 0.873–1.24; P = 0.6602]. The 6-month survival rates were 59.9% (95% CI, 53.4% to 65.8%) and 55.7% (95% CI, 51.1% to 59.9%), respectively. The 12-month survival rates were 32.2% (95% CI, 26.3% to 38.2%) and 30.9% (95% CI, 26.8% to 35%), respectively. The median PFS rates were 1.64 months and 1.68 months, respectively (HR, 0.99; 95% CI, 0.835–1.16; P = 0.8073). The DCRs were 38.4 and 37.6%, respectively [stratified odds ratio (OR), 0.96; 95% CI, 0.698–1.33; P = 0.8336]. The safety profiles were comparable between arms.

Conclusions: There was no improvement in efficacy with talactoferrin alfa in patients with advanced NSCLC whose disease had failed two or more previous regimens.

*Correspondence to: Prof. Giuseppe Giaccone, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, Washington DC 20007, USA. Tel: +1-202-687-7072; Fax: +1-202-687-0313; E-mail: gg496@georgetown.edu

Published by Oxford University Press on behalf of the European Society for Medical Oncology 2013. This work is written by US Government employees and is in the public domain in the US.