Newly diagnosed and relapsed follicular lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up†

M. Dreyling1, M. Ghielmini2, R. Marcus3, G. Salles4, U. Vitolo5 & M. Ladetto6 on behalf of the ESMO Guidelines Working Group*†

1Department of Medicine III, University of Munich, Munich, Germany; 2Oncology Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland; 3Haematology, Kings College Hospital, London, UK; 4Service D’Hématologie, Centre Hospitalier Lyon-Sud, Pierre-Benite, France; 5Haematology II, Centro Universitario Ricerca Oncologica Ospedale Molinette, Turin; 6Divisione di Ematologia, Azienda Ospedaliera Santi Antonio e Biagio e Cesare Aringo, Alessandria, Italy

incidence and epidemiology

Follicular lymphomas (FLs) are the second most frequent subtype of nodal lymphoid malignancies in Western Europe. The annual incidence of this disease has rapidly increased during recent decades and has risen from 2–3/100 000 during the 1950s to 5–7/100 000 recently.

diagnosis and pathology/molecular biology

Diagnosis should be based on a surgical specimen/excisional lymph node biopsy. Core biopsies should only be carried out in patients without easily accessible lymph nodes (e.g. retroperitoneal bulk), keeping in mind the possible heterogeneity of FL grading difficult to appreciate on core biopsies. Re-biopsy may be required if material is not appropriate. Fine-needle aspirations are inappropriate for a reliable diagnosis.

The histological report should give the diagnosis according to the World Health Organization (WHO) classification. Grading of lymph node biopsies is carried out according to the number of blasts/high power field (Table 1). FL grade 3B (with sheets of blasts) is considered an aggressive lymphoma and treated accordingly [1], whereas grades 1, 2, and 3A should be treated as indolent disease [2]. Review, especially of grade 3A or 3B, by an expert haematopathologist is advised if the infiltration pattern is unusual (diffuse areas, even with small cells).

Extended ribonucleic acid profiling suggests a more favourable clinical course in cases with infiltrating T cells, in comparison to cases with unspecified macrophage bystander cells [3]; however, this technique is not yet applicable in clinical routine practice. In addition, several recent immunohistochemistry studies have reported conflicting data; hence, biological parameters are still investigational for prognostic assessment and are not yet suitable for clinical decision-making [4, 5]. However, if possible, additional biopsy material should be stored fresh frozen to allow additional molecular (currently still investigational) analyses.

staging and risk assessment

Since treatment substantially depends on the stage of the disease, initial staging should be thorough, particularly in the small proportion of patients with early stages I and II (10%–15%) (Table 2). Initial work-up should include a computed tomography (CT) scan of the neck, thorax, abdomen and pelvis, and a bone marrow aspirate and biopsy (Table 3). Positron emission tomography–computed tomography (PET-CT) scan is not mandatory but may contribute to identify areas with high standardised uptake values suspected of disease transformation [6], and may be used as baseline for response assessment (see below). In rare stage I/II cases, PET-CT scan may be also useful to confirm localised stage I/II disease before localised radiotherapy [IV, C].

A complete blood count, routine blood chemistry including lactate dehydrogenase, β2-microglobulin and uric acid as well as screening tests for human immunodeficiency virus (HIV) and hepatitis B and C are required. The staging is carried out according to the Ann Arbor classification system (Table 2), with mention of bulky disease >5 cm when appropriate.

For prognostic purposes, a ‘Follicular Lymphoma-specific International Prognostic Index’ (FLIPI, Table 4) has been established [I, A] [7, 8]. A revised FLIPI 2 (incorporating β2-microglobulin, diameter of largest lymph node, bone marrow involvement and haemoglobin level) has been recently suggested for patients requiring treatment [9].

treatment

first line

stage I–II. In the small proportion of patients with limited non-bulky stages I–II, radiotherapy (involved field, 24–36 Gy) is
the preferred treatment having a curative potential, whereas the 2 × 2 Gy schedule is inferior and is merely palliative [II, B] [10]. In selected cases, watchful waiting or rituximab monotherapy may be considered to avoid the side-effects of radiation (e.g. cervical: sicca syndrome; abdominal: myeloablation suppression) [11, 12].

In stage I–II patients with large tumour burden or adverse prognostic features, systemic therapy as indicated for advanced stages should be applied; a radiation consolidation may be considered depending on tumour location and expected side-effects [IV, B] [12].

stages III–IV
definition: In the majority of patients with advanced stage III and IV disease, no curative therapy is yet established. Since the natural course of the disease is characterised by spontaneous regressions in 10%–20% of cases and varies significantly from case to case, therapy should be initiated only upon the occurrence of symptoms including B symptoms, haematopoietic impairment, bulky disease, vital organ compression, ascites, pleural effusion, or rapid lymphoma progression [I, A]. In four randomised trials, an early initiation of therapy in asymptomatic patients did not result in any improvement of disease-specific survival or overall survival (OS) [13]. In a recent study, early initiation of rituximab resulted in improved progression-free survival (PFS) (80% versus 48%, \(P < 0.001\)), but the benefit on long-term outcome has to be determined [14], and the benefit of rituximab maintenance in this setting appears doubtful [15]. Thus, the current therapeutic approach is based on clinical risk factors, symptoms and patient perspective (Figure 1).

If complete remission and long PFS to be achieved, rituximab in combination with chemotherapy such as CHOP (cyclophosphamide, doxorubicin, vincristine and prednisone) or bendamustine should be used [I, B] [17, 18]. CVP (cyclophosphamide, doxorubicin, vincristine and prednisone) or ABV (cisplatin, vindesine, bleomycin) are inferior PFS, but no impact on OS was observed between these chemotherapy regimens [19]. Full courses of purine analogue-based schemes [FC (fluorouracil, doxorubicin)] are not recommended due to toxicity. Anti-CD20 monoclonal antibody (rituximab) or chimeric antigen receptor (CAR) T cells (CAR-T cells) are attractive therapeutic options, but have not been compared with the standard of care (Table 5) [20–23, 25].

A brief course of chemoimmunotherapy with full rituximab dose is an alternative in elderly patients, with good efficacy and low toxicity [II, B] [24]. Antibody monotherapy (rituximab, radioimmunotherapy) or chlorambucil plus rituximab remains an alternative in patients with a low-risk profile or contraindications for a more intensive chemoimmunotherapy [III, B] [26, 27].
In patients with positive hepatitis B serology, prophylactic antiviral medication is strongly recommended [I, A] [28].

consolidation/maintenance

Rituximab maintenance for 2 years improves PFS (75% versus 58% after 3 years, \(P < 0.0001 \)) [I, B] [29], whereas a shorter maintenance period results in inferior benefit [29, 30].

Radioimmunotherapy consolidation prolongs PFS after chemotherapy only, but its benefit seems to be inferior in comparison to rituximab maintenance for 2 years [II, B] [31, 32].

Myeloablative consolidation followed by autologous stem-cell transplantation (ASCT) prolongs PFS after chemotherapy only, but its benefit after a rituximab-containing induction is minor and no OS has been observed [33]. Therefore, such an approach is not recommended in first-line therapy of responding patients [I, D].

relapsed disease

A repeated biopsy is strongly recommended with consideration of a PET-guided biopsy to rule out a secondary transformation into aggressive lymphoma.

As at first presentation, observation is an accepted approach in asymptomatic patients with low tumour burden.

Selection of salvage treatment depends on efficacy of prior regimens. In early relapses (<12–24 months), a non-cross-resistant scheme should be preferred (e.g. bendamustine after CHOP or vice versa). Rituximab should be added if the previous

Table 4. ‘Follicular Lymphoma-specific International Prognostic Index’ (FLIPI) risk factors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition of risk factors</th>
<th>FLIPI 1</th>
<th>FLIPI 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal sites</td>
<td>>4 lymph node regions (definition in [7])</td>
<td>Long diameter of largest lymph node >6 cm</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>Above 60 years</td>
<td>Above 60 years</td>
<td></td>
</tr>
<tr>
<td>Serum marker</td>
<td>Elevated LDH</td>
<td>Elevated (\beta)-microglobulin</td>
<td></td>
</tr>
<tr>
<td>Stage</td>
<td>Advanced (III–IV according to Ann Arbor classification)</td>
<td>Bone marrow involvement</td>
<td></td>
</tr>
<tr>
<td>Haemoglobin</td>
<td><12 g/dl</td>
<td><12 g/dl</td>
<td></td>
</tr>
</tbody>
</table>

With 0–1 risk factors, low risk; 2, intermediate risk; 3–5, high risk. LDH, lactate dehydrogenase.

Figure 1. Therapeutic algorithm. Modified from [16]. Reproduced with permission of Informa Healthcare, copyright ©2009, Informa Healthcare.

In patients with positive hepatitis B serology, prophylactic antiviral medication is strongly recommended [I, A] [28].
antibody-containing scheme achieved >6 months duration of remission [IV, B].

In symptomatic cases with low tumour burden, a rituximab monotherapy may be applied. Radioimmunotherapy (90yttrium-ibritumomab-tiuxetan) represents an effective therapeutic approach, especially in elderly patients with comorbidities not appropriate for chemotherapy. Otherwise, it should be applied preferably as consolidation [IV, B].

Rituximab maintenance for up to 2 years has a favourable side-effect profile and, based on a systematic meta-analysis, substantially prolongs PFS and OS in relapsed disease even after antibody-containing induction in patients who have not received antibody as first-line therapy [I, A] [34]. A second-line maintenance treatment has not been investigated in the setting of maintenance use in first-line and probably should not be used for those patients who had relapsed during their first maintenance period [IV, D].

High-dose chemotherapy with ASCT prolongs PFS and OS and should be considered, especially in patients with short-lived first remissions after rituximab-containing regimens, but its role has to be redefined in the rituximab era [I, B] [4, 35, 36]. A subsequent rituximab maintenance may achieve some benefit [II, B] [37]. In selected younger patients with high-risk profile or relapse after ASCT, a potentially curative allogeneic stem-cell transplantation (preferably with dose-reduced conditioning) may be discussed in relapsed disease, especially in early relapses and refractory disease [IV, B] [4].

response evaluation

Adequate radiological tests should be carried out midterm and after completion of chemotherapy. Patients with insufficient or lacking response [less than partial response (PR)] should be evaluated for early salvage regimens. PR patients may convert to complete response after post-induction treatment.

No consensus could be reached on the routine application of PET-CT for response evaluation. PET-CT identifies a small group (20%-25%) of patients with a poorer prognosis [38, 39]; however, optimal interventional approaches for this group of patients remain undefined.

| Table 5. Combined chemoimmunotherapy in follicular lymphoma (first line) |
Study	Total no. of patients	Median follow-up (months)	Overall response	Time-to-treatment failure (months)	Overall survival
Marcus et al. [20] R-CVP	321	53	81% (P < 0.0001)	27 (P < 0.0001)	83% (4 years) (P = 0.029)
Hiddemann et al. [21] R-CHOP	428	58	96%	NR (P < 0.001)	90% (2 years) (P = 0.0493)
Herold et al. [22] R-MCP	201	48	92% (P = 0.0009)	NR (P < 0.0001)	87% (P = 0.0096)
Bachy et al. [23] R-CHVP-IFN	358	99	81% (P = 0.035)	66 (P = 0.0004)	79% (8 years) (P = 0.076)
Rummel et al. [17] BR	139	34	93%	NR	84% (4 years)
Vitolo et al. [24] 4x R-FND + 4x R ± R maintenance	234	42	86%	NR	89% (3 years)

P: Significance levels in comparison to chemotherapy only.
R-CVP, cyclophosphamide, vincristine and prednisolone; R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone; R-MCP, methotrexate, procarbazine and lomustine; R-CHVP-IFN, rituximab, cyclophosphamide, doxorubicin, etoposide, prednisone, interferon; BR, bendamustine-rituximab; R-FND, cyclophosphamide, vincristine and prednisolone; NR, no response.

| Table 6. Recommended follow-up after end of therapy |
Examination	Details	Year 1–2	Year 3–5	Year >5
History	B symptoms	Every 3 months	Twice annually	Annually
Physical examination	Particular: peripheral lymph nodes, liver, spleen	Every 3 months	Twice annually	Annually
Laboratory work-up	Blood and differential count	Every 3 months	Twice annually	Annually
Imaging	LDH	Every 3 months	Twice annually	Annually
	Abdominal ultrasound	Twice annually	Every 12 months	If progress suspected
Imaging	CT neck, chest, abdomen, pelvis	Optional: twice annually	Optional: every 12 months	If progress suspected

LDH, lactate dehydrogenase; CT, computed tomography.
Minimal residual disease (MRD) analysis by polymerase chain reaction at the end of the treatment is an independent predictor of long-term outcome, but should not guide therapeutic strategies outside clinical studies.

Personalised medicine

As various therapeutic approaches may achieve durable responses in the vast majority of patients, the selection of optimal treatment is mainly based on clinical risk factors, symptoms and patient perspective (Figure 1). PET- and MRD-based tailored treatments are currently evaluated in studies but are not yet routine clinical practice.

Paediatric FL is an FL variant originally described in children, but occurs in adults as well. It is characterised by a localised disease, the absence of B-cell lymphoma 2 aberrations, lack of t(14;18), grade 3 and a high proliferation rate. It shows a much more indolent course and should be managed with less intensity, e.g. local therapy only, despite histologically more aggressive features [40].

New agents (including PI3 kinase inhibitors and Bruton’s tyrosine kinase inhibitors) are currently being investigated [41]. Idelalisib has been approved by the United States Food and Drug Administration, and has been recommended for approval by European Medicines Agency for use for adult patients with follicular lymphoma that has not responded to two previous lines of treatments.

Follow-up and long-term implications

The following recommendations are based on consensus rather than on evidence (see Table 6):

- History and physical examination every 3 months for 2 years, every 4–6 months for 3 additional years, and subsequently once a year with special attention to transformation and secondary malignancies including secondary leukaemia [V, C].
- Blood count and routine chemistry every 6 months for 2 years, then only as needed for evaluation of suspicious symptoms.
- Evaluation of thyroid function in patients with irradiation of the neck at 1, 2 and 5 years.

Table 7. Consensus-driven recommendations outside clinical studies

<table>
<thead>
<tr>
<th>Low tumour burden</th>
<th>High tumour burden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I/II</td>
<td>Stage III/IV</td>
</tr>
<tr>
<td>Radiotherapy (involved field) 24–36 Gy In selected cases, watchful waiting</td>
<td>Watch and wait In symptomatic cases, consider rituximab monotherapy</td>
</tr>
<tr>
<td>Chemoimmunotherapy (e.g. R-CHOP, R-CVP, BR) In selected cases, rituximab monotherapy</td>
<td>Chemoimmunotherapy (e.g. R-CVP, BR, R-CHOP) or brief chemoimmunotherapy In selected cases, rituximab–chlorambucil rituximab monotherapy</td>
</tr>
<tr>
<td>CR/PR Rituximab maintenance (every 2 months, up to 2 years)</td>
<td>CR/PR Rituximab maintenance (every 2 months, up to 2 years)</td>
</tr>
</tbody>
</table>

Table 8. Summary of recommendations

| In localised stages: discuss radiation (24–36 Gy) |
| In advanced stages: treatment depends on clinical risk factors, symptoms and patient perspective |
| Standard approach in asymptomatic advanced cases: watch and wait |

In advanced symptomatic cases
- Combined chemoimmunotherapy for long-term remissions
- Rituximab maintenance for consolidation
- Relapse is frequently sensitive to conventional approaches
- Autologous (and allogeneic) transplantation should be only discussed in relapse

R-CHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone; R-CVP, cyclophosphamide, vincristine and prednisolone; BR, bendamustine–rituximab; CR, complete response; PR, partial response; ASCT, autologous stem-cell transplantation.

*According to biological age
MRD screening may be carried out in clinical studies but minimal adequate radiological or ultrasound examinations every 6 months for 2 years and annually thereafter. Regular CT scans are not mandatory outside clinical trials, especially if abdominal ultrasound is applicable. PET-CT should not be used for surveillance.

- MRD screening may be carried out in clinical studies but should not guide therapeutic strategies.

Table 9. Levels of evidence and grades of recommendation (adapted from the Infectious Diseases Society of America-United States Public Health Service Grading System*)

<table>
<thead>
<tr>
<th>Levels of evidence</th>
<th>Grades of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A: Strong evidence for efficacy with a substantial clinical benefit, strongly recommended</td>
</tr>
<tr>
<td></td>
<td>B: Strong or moderate evidence for efficacy but with a limited clinical benefit, generally recommended</td>
</tr>
<tr>
<td>II</td>
<td>C: Insufficient evidence for efficacy or benefit does not outweigh the risk or the disadvantages (adverse events, costs, …), optional</td>
</tr>
<tr>
<td>III</td>
<td>D: Moderate evidence against efficacy or for adverse outcome, generally not recommended</td>
</tr>
<tr>
<td>IV</td>
<td>E: Strong evidence against efficacy or for adverse outcome, never recommended</td>
</tr>
</tbody>
</table>

*By permission of the Infectious Diseases Society of America [42].

- Minimal adequate radiological or ultrasound examinations every 6 months for 2 years and annually thereafter. Regular CT scans are not mandatory outside clinical trials, especially if abdominal ultrasound is applicable. PET-CT should not be used for surveillance.

Conflict of interest

MD has reported scientific advisory board for Bayer, Celgene, Gilead, Janssen and Pfizer; support of academic trials for Celgene, Janssen, Mundipharma, Pfizer and Roche; speaker’s honoraria: Celgene, Janssen, Mundipharma, Pfizer and Roche. MG has reported being a member of speaker’s bureau for Roche, Mundipharma and Janssen. GS has reported honoraria for advisory board participations or conferences from Roche, Gilead, Celgene, Mundipharma, Arogen and Janssen. UV has reported advisory board participations or conferences from Roche, Gilead, Janssen, Mundipharma, Pfizer and Roche. MG has reported honoraria for advisory board participations or conferences from Roche, Gilead, Mundipharma, Pfizer and Roche. MG has reported being a member of speaker’s bureau for Roche, Mundipharma and Janssen. RM has not reported any potential conflicts of interest.

References

32. Lopez-Guillermo A, Canales MA, Dlouhy I et al. A randomized phase II study comparing consolidation with a single dose of 90Y ibritumomab tiuxetan (Zevalin) (Z) vs. maintenance with rituximab (R) for two years in patients with newly diagnosed follicular lymphoma (FL) responding to R-CHOP. Preliminary results at 36 months from randomization. ASH 2013; 122: abstr. 369.

