BRAIN METASTASES IN MALE GERM CELL TUMORS (GCT): A LARGE RETROSPECTIVE ANALYSIS ON BEHALF OF THE SWENOTECA AND THE G3 CONSORTIUM


1Department of Oncology, Universitätsspital Zürich, Zurich, SWITZERLAND
2Urology, University of Düsseldorf, Duesseldorf, GERMANY
3Medical Oncology, St. Bart’s Hospital & Medical School, London, UK
4Biostatistics, Centre Oscar Lambret, Lille, FRANCE
5Dept. Genitourinary, Fondazione IRCCS - Istituto Nazionale dei Tumori, Milan, ITALY
6Oncologia Do, Azienda Ospedaliera Universitaria Integrata Verona, Verona, ITALY
7Medical Oncology, Indiana University Simon Cancer Center, Indianapolis, IN, USA
8Oncology Department, Centre Léon Bérard, Lyon, FRANCE
9Medical Oncology Department, La Fe University Hospital, Valencia, SPAIN
10Radiation Oncology, Princess Margaret Hospital, Toronto, ON, CANADA
11Royal Marsden Hospital Institute of Cancer Research, Sutton, UK
12Dept. Hemato/oncology, UKK Universitätshospital Hamburg-Eppendorf KMTZ, Hamburg, GERMANY
13Clinical Pharmacology and Chemotherapy, N. N. Blokhin Russian Cancer Research Center, Moscow, RUSSIAN FEDERATION
14Medical Oncology, University of Western Ontario London Regional Cancer Center, London, ON, CANADA
15Medical Oncology, Dana Faber Institute, Boston, MA, USA
16Klinik für Onkologie, Städtisches Klinikum München GmbH, München, GERMANY
17Medical Oncology, University of Washington Seattle Cancer Care Alliance, Seattle, WA, USA
18Medical Oncology, MSKCC, New York, NY, USA

Aim: Characteristics, treatment and outcome of patients (pts) with brain metastases (BMet) from GCT are largely unknown due to a lack of data. We addressed these issues in a large international retrospective cohort.

Methods: Data on pts diagnosed with BMet between 1990 and 2013 was retrospectively collected across 46 institutions worldwide. Data collection and analyses followed a predefined protocol and had obtained appropriate ethical approval. Univariate analysis was used to identify prognostic factors. The Kaplan Meier method was used to assess outcome.

Results: Data on 523 patients were collected: 228 (44%) in pts with BMet at initial diagnosis (group A) and 295 (56%) in pts with BMet at relapse (group B). 150 (31%) pts were asymptomatic at presentation. Median age was 29 years (range 16-67 years). Median follow-up after diagnosis of BMet was 7 years. Pts from group A had a significantly better PFS (median 6.9 versus 3.6 months, HR 0.60: 95%CI: 0.49 – 0.73; P < 0.0001) and OS (median 29.5 versus 8.0 months, HR 0.50: 95%CI: 0.40 – 0.62); P < 0.0001) compared to pts from group B. Pts with multiple BMet from both groups had a worse OS than those with single BMet (HR 1.77: 95%CI: 1.17 – 2.68; P < 0.005 in group A and HR 1.89: 95%CI: 1.42 – 2.51; P < 0.0001 in group B, respectively). Presence of liver and/or bone metastases also negatively impacted on survival. Surgery and to a lesser degree radiotherapy in addition to chemotherapy were associated with improved OS in both groups. The combination of chemotherapy, radiotherapy and surgery was associated with improved survival only in group B. High-dose chemotherapy (HDCT) was also associated with improved survival only in group B.

Conclusions: Conclusions: Pts with GCT and BMet can be cured. Pts with BMet at initial diagnosis and those with solitary BMet have superior outcomes compared to pts with BMet at relapse or with multiple BMet lesions. Surgery and/or radiotherapy in addition to chemotherapy as well as HDCT in pts with BMet at relapse may improve survival.

Disclosure: All authors have declared no conflicts of interest.