Clinical and molecular characteristics of non-small-cell lung cancer (NSCLC) harboring EGFR mutation: results of the nationwide French Cooperative Thoracic Intergroup (IFCT) program

Department of Chest, Centre Hospitalier Universitaire de Strasbourg, Nouvel Hôpital Civil, Strasbourg; Department of Biology and Pathology, Centre Hospitalier Universitaire de Bordeaux, Pessac; Histology and Molecular Pathology of Tumors, Université de Bordeaux, Bordeaux; Medicine Department, Gustave Roussy Cancer Campus, Villejuif; INSERM UMR-S1147, Université Sorbonne Paris Cité, Paris; Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Hôpital Européen Georges Pompidou (Hôpital Emile Muller – GHRMSA, Mulhouse; Department of Biology and Pathology, Hospices Civils de Lyon, Lyon; Université Claude Bernard Lyon 1, Lyon; Pneumology Department, Centre Hospitalier Intercommunal de Créteil, Créteil; Pathology Department, Centre Hospitalier Universitaire de Toulouse Institut Universitaire du Cancer de Toulouse, Oncopôle, Toulouse; Department of Chest, Hôpital Foch, Suresnes; Biochemistry and Oncogenetic Department, Oncoalmapth, Assistance Publique – Hôpitaux de Paris, Paris; Groupe Hospitalier des Hôpitaux Universitaires Paris-Sud, Université Paris 11, Villejuif; Medical Oncology Department, Hôpital Saint Louis, Assistance Publique – Hôpitaux de Paris, Paris; Department of Molecular Genetics and Genomics – Medical Genomics, Centre Hospitalier Universitaire de Rennes, Rennes; Department of Chest, Hôpital d'Instruction des Armées Percy, Clamart; Department of Biostatistics, Francophone de Cancérologie Thoracique, Paris; Clinical Research Unit, Intergroupe Francophone de Cancérologie Thoracique, Paris; Thoracic Oncology Unit, Centre Hospitalier Universitaire Grenoble-Alpes, Clinique de Pneumologie, Grenoble; Department of Chest, Assistance Publique – Hôpitaux de Paris, Hôpital Tenon, Paris; Sorbonne Université, UPMC Univ Paris 06, GRC n° 04, Théranostic, Paris; Assistance Publique – Hôpitaux de Marseille, Multidisciplinary Oncology and Therapeutic Innovations Department, Aix Marseille University, Centre d'Investigation Clinique, Marseille; Laboratory of Biochemistry and Molecular Biology, Centre Hospitalier Universitaire de Strasbourg, Hôpital de Hautepierre, Strasbourg.

Background: EGFR mutations cause inconsistent response to EGFR tyrosine-kinase inhibitors (TKI). To better understand these features, we reviewed all cases of EGFR-mutated non-small-cell lung cancer collected in the Biomarkers France database.

Patients and methods: Of 17,664 patients, 1,837 (11%) with EGFR-mutated non-small-cell lung cancer were retrospectively analyzed for clinical and molecular characteristics. Results were correlated with survival and treatment response for the 848 stage IV patients.

Results: EGFR exon 18, 19, 20 and 21 mutations were found in 102 (5.5%), 931 (51%), 102 (5.5%) and 702 (38%) patients, respectively. Over 50% of exon 18 and 20 mutated patients were smokers. The median follow-up was 51.7 months. EGFR mutation type was prognostic of overall survival (OS) versus wild-type (exon 19: hazard ratio [HR] = 0.51 [95% confidence interval (CI): 0.41–0.64], P < 0.0001; exon 21: HR = 0.76 [95% CI: 0.61–0.95], P = 0.002; exon 20: HR = 1.56 [95% CI: 1.02–2.38], P = 0.004). EGFR mutation type was prognostic of progression-free survival versus wild-type (exon 19: HR = 0.62 [95% CI: 0.49–0.78], P < 0.0001; exon 20: HR = 1.46 [95% CI: 0.96–2.21], P = 0.07). First-line treatment choice did not influence OS in multivariate analysis. First-line TKI predicted improved progression-free survival versus chemotherapy (HR = 0.67 [95% CI: 0.53–0.85], P = 0.001). OS was longer for del19 versus L858R, which was associated with better OS compared with other exon 21 mutations, including L861Q. TKI improved survival in patients with exon 18 mutations, while chemotherapy was more beneficial for exon 20-mutated patients.
Introduction

Epidermal growth factor receptor gene (EGFR) mutations are found in around 10% of Caucasian non-small-cell lung cancer (NSCLC) patients [1].

EGFR mutations are classified as either ‘common’ or ‘rare’, associated with different clinical patterns and outcomes. The most common mutations (85%–90%) are in-frame deletions of exon 19 (del19; 45%–50%) and the Leu858Arg (L858R) substitution in exon 21 (40%–45%) [2]. Common mutations sensitize the tumor to first- and second-generation EGFR tyrosine-kinase inhibitors (EGFR-TKI), whose superior efficacy compared with first-line chemotherapy has been demonstrated in several Phase III trials [3–10]. Exon 18 and 20 EGFR mutations are more heterogeneous, with exon 20 associated with EGFR-TKI resistance, while exon 18 mutations seem drug-sensitive, although less so than common mutations [11].

The Biomarkers France study is the largest worldwide study to have prospectively collected molecular and clinical data of 17 664 patients in 1 year [1]. We conducted a retrospective analysis in order to describe the clinical characteristics and outcomes of patients with EGFR-mutated NSCLC.

Materials and methods

Population and molecular analysis

All EGFR-mutated cases of the Biomarkers France cohort were reviewed. The methods used to assess EGFR mutations were previously described [1, 12]. Mutations were reclassified as common (del19 and L858R) or rare. Multiple mutations (EGFR with another genetic alteration) and exon 20 T790M mutations were excluded from the analysis, because they were the subject of separate studies (supplementary Figure S1, available at Annals of Oncology online). Clinical data were collected as previously described [1]. The effects of first- and second-line treatments (i.e. platinum-based doublet chemotherapy or EGFR-TKI) on objective response, disease control, progression-free survival (PFS), and overall survival (OS) were analyzed in stage IV patients. Evaluation of response and survival was done by each clinician according to the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, at the frequency of their current practice.

Statistical analysis

The descriptive statistics used included medians and ranges for continuous variables and percentages for categorical variables, the latter compared using chi-squared or Fisher’s exact tests, when necessary. Significance level was set at \(P < 0.05 \). OS, first-line PFS (PFS1) and second-line PFS (PFS2) were previously defined [1]. Survival curves were estimated using the Kaplan–Meier method. Disease control rate (DCR) was defined as the percentage of patients presenting stable disease, partial response or complete response to treatment, and overall response rate (ORR) as the percentage of patients with partial and complete response. A Cox model was applied to estimate hazard ratios (HR) and 95% confidence intervals (CI). The analyses were carried out using SAS software, Version 9.3 (SAS Institute, Cary, NC).

This study was approved by the national committee for the protection of persons (Comité de protection des personnes, CPP), according to French law.

Our funding source had no influence on study design, data collection, data analysis, data interpretation, or the preparation of this report.

Results

Molecular epidemiology of EGFR mutations in the overall population

EGFR mutations were found in 1,837 tumor specimens classified as follows: 102 (5.5%), 931 (51%), 102 (5.5%), and 702 (38%) in exons 18, 19, 20, and 21, respectively. Based on the COSMIC database (May 2017), we identified 42 previously unpublished EGFR mutations (supplementary Table S1, available at Annals of Oncology online). In exon 18, we identified only one deletion/insertion in four patients (E709_T710delinsD); the remaining mutations were substitutions, the most frequent concerning G719X (75%). Most of the exon 19 mutations were deletions (61%), the most frequently identified being the E746_A750del (51%). In exon 20, insertions (65%) were more common than substitutions. We identified one proximal insertion in one patient (E762_A763insVAS). In exon 21, L858R substitution was found in 89% of cases, whereas L861Q represented 6% of cases (Figures 1 and 2).

Stage IV patient characteristics

Most patients were not Asian (\(n = 693, 95% \)) and non-smokers (\(n = 486, 60\% \)), which is consistent with previous Caucasian cohorts [7, 13]. The proportion of current or former smokers was significantly higher in those presenting with exon 18 (59%) and exon 20 (56%) mutations, compared with those with exon 19 (36%) and 21 (42%) mutations (\(P = 0.02 \)). Family history of cancer was noted in 11/20 patients with exon 20 mutations (55%). First-line treatment was known for 818 of the 848 (96%) metastatic patients, consisting of EGFR-TKI for 481 (59%), platinum-based doublet chemotherapy for 222 (27%), other treatments for 50 (6%) (mono-chemotherapy or unspecified), and best supportive care only for 65 (8%). First-line treatment was adapted based on knowledge of EGFR mutation in 71% of cases (\(n = 582 \)). At this time, 98 had received platinum-based doublet in first-line (46 with exon 19 mutations, 31 exon 20, 17 exon 20, and 7 exon 18). Patients with exon 19 and 21 mutations were more likely to receive first-line EGFR-TKI compared with those with exon 18 and 20 mutations (60.5% and 64% versus 38% and 15%, respectively, \(P < 0.0001 \)). Of the 222 patients treated with first-line platinum-based chemotherapy, 79 (36%) did not receive second-line...
EGFR-TKI (supplementary Table S2, available at Annals of Oncology online).

Multivariate analysis of stage IV survival and treatment response

The median follow-up was 51.7 months (m) (95% CI: 51.2–52.3). The median OS was 19.0 m (95% CI: 17.8–20.8). On multivariate analysis, Eastern Cooperative Oncology Group performance status (PS) >1 [HR = 2.08, (95% CI: 1.89–2.30), P < 0.0001] and large cell histology [HR = 1.58, (95% CI: 1.14–2.19), P = 0.006] were associated with worse prognosis. Never-smokers had better prognosis than current-smokers [HR = 0.78 (95% CI: 0.64–0.94), P = 0.009]. EGFR mutation type was highly prognostic of OS, longer for patients with exon 19 [HR = 0.51 (95% CI: 0.41–0.64), P < 0.0001] and exon 21 [HR = 0.76 (95% CI: 0.61–0.95), P = 0.002] mutations compared with wild-type (WT). In contrast, patients with exon 20 mutations had worse OS compared with WT [HR = 1.56 (95% CI: 1.02–2.38), P = 0.004]. Interestingly, first-line treatment type did not influence OS on multivariate analysis (supplementary Tables S3–S5, available at Annals of Oncology online).

The median PFS was 9.8 m (95% CI: 9.0–10.7). Median PFS1-TKI was 11.0 m (95% CI: 10.2–12.9) and median PFS1-CT was 6.4 m (95% CI: 5.0–7.2). On multivariate analysis, elderly patients [HR = 0.69 (95% CI: 0.55–0.85), P = 0.0008] had better PFS compared with others, whereas patients with PS >1 [HR = 1.85 (95% CI: 1.68–2.03), P < 0.0001] and large cell carcinomas [HR = 1.56 (95% CI: 1.11–2.17), P = 0.009] exhibited worse PFS. PFS was longer for patients with exon 19 mutations [HR = 0.62 (95% CI: 0.49–0.78), P < 0.0001] and shorter for patients with exon 20 mutations, although not significantly so [HR = 1.46 (95% CI: 0.96–2.21), P = 0.07]. First-line TKI was associated with improved PFS compared with platinum-based chemotherapy [HR = 0.67 (95% CI: 0.53–0.85), P = 0.001].

Outcomes according to different EGFR mutations

The median OS values according to mutation in decreasing order were: 22.6 m for exon 19, 16.2 m for exon 21, 12.2 m for exon 18, 8.3 m for exon 20, and 7.9 m for WT (P < 0.001). Median PFS1-TKI values were: 14.6 m for exon 19, 12.9 m for exon 19, 10.1 m for exon 21, 2.7 m for exon 20, and 1.6 m for WT (P < 0.0001). Median PFS1-CT values were comparable between EGFR-mutated and WT patients (Table 1 and Figure 3A).

Focusing on common EGFR mutations only, OS was longer for del19 patients compared with those with L858R (22.6 m versus 16.9 m, P = 0.002). Of the exon 21 mutations, L858R was associated with better prognosis compared with others, including L861Q (median OS: 16.9 m versus 12.2 m, P = 0.04; median

Figure 1. EGFR mutations in overall population (n = 1837). NS: not specified.
PFS1-TKI: 10.4 m versus 4.5 m, \(P = 0.003\) (Figure 3B). Of the exon 20 mutations, median OS was longer for insertions (\(n = 28\)) than substitutions (\(n = 9\)), although not significantly so (10.1 m versus 8.1 m, \(P = 0.80\)).

Detailed PFS findings according to mutation type are presented in Figure 2.

Discussion

Of the 17,664 Biomarkers France patients [1], 1837 (11%) with EGFR mutations were analyzed in this real-life study, corresponding to 158 different EGFR mutations, 67 of which had never previously been reported. This cohort represents the largest Caucasian EGFR-mutated cohort ever analyzed.

Over 40% of EGFR-mutated patients and almost 60% of patients with exon 18 and 20 mutations, were current or former smokers, in line with previous publications [11, 14]. In contrast, in Asian cohorts, never-smoker patients are the majority [15]. Family history of cancer has been reported in a high proportion of patients with exon 20 mutations (\(n = 11, 55\%\)). To our knowledge, this has never been described, suggesting that germ-line mutations should be detected in these patients [16] in these patients.
Data on first-line treatment were available for 96% of the advanced NSCLC patients. In 30% of cases, clinicians did not consider EGFR status when initiating first-line treatment. This may be explained by (i) their having no molecular information at the beginning of the treatment, (ii) the rationale of exposing all patients to a platinum-based doublet, (iii) the fact that, at this time (2012), optimal therapeutic sequences were not extensively discussed, and (iv) the fact that the therapeutic sequence has no impact on OS.

Several studies have demonstrated that EGFR-TKI significantly delay progression compared with chemotherapy. Nevertheless, none of these studies reported any improvement on OS [17]. Recent subgroup and pooled analyses of the LUX-Lung 3 and 6 trials have indicated the importance of the therapeutic schedule, reporting OS improvement with first-line afatinib for patients with common EGFR mutations, especially del19 [18]. Most of studies recommend prescribing EGFR-TKI as the standard first-line treatment of EGFR-mutated patients, taking into account...
Figure 3. (A) Survival and curves according to different EGFR-mutated exons (18, 19, 20, 21, wild-type). upper left part: overall survival (OS); upper right part: progression-free survival (PFS) with first-line TKI; lower center part: PFS with first-line chemotherapy. (B) Survival curves according to exon 21 EGFR mutations: L858R mutations versus other exon 21 mutations (included L861Q). Left part: overall survival (OS); right part: Progression-free-survival (PFS). OS, overall survival; TKI, tyrosine kinase inhibitors; CI, confidence interval; PFS, progression-free survival; CT, chemotherapy; WT, wild-type.
clinical benefit, quality of life, safety, and the risk of missing the opportunity to use this treatment. In our study, multivariate analysis revealed no link between therapeutic schedule and OS. This confirms that what matters is not prescribing EGFR-TKI as first-line therapy, but rather the fact that all patients ultimately receive EGFR-TKI at some point in their treatment setting. However, 36% of patients treated with first-line chemotherapy never received second-line TKI in our cohort, which is consistent with previous publications [19]. Considering this risk, and the fact that chemotherapy is not more efficient than in the WT population (Figure 3A), first-line EGFR-TKI should be preferred for EGFR-mutated patients, except those with exon 20 mutations.

Patients with del19 have consistently shown improved outcomes versus those with L858R mutations when treated with EGFR-TKI [20], which is confirmed in our study. Patients with uncommon exon 21 mutations (including L861Q) exhibit worse prognosis than those with L858R, as previously suggested in a very small cohort [21]. Their prognosis is noneless better than that of the WT population, and they may slightly benefit from EGFR-TKI. The efficacy of first-line EGFR-TKI is greater for patients with exon 18 mutations (PFS1-TKI = 14.6 m versus PFS1-CT = 5.8 m). When analyzing exon 18 mutations in detail (Figure 2), we can see that response to TKI is highly variable, with greater benefit seemingly achieved for proximal exon 18 substitutions. G719X and E709X point mutations are usually associated with EGFR-TKI treatment efficacy [11, 14]. In light of our results, first-line TKI should be administrated in all exon 18-mutated patients in order to maximize the proportion of responders. Exon 20 insertions are usually associated with TKI resistance [22], and our study accordingly observed very short PFS1-TKI in these patients, whereas first-line PFS with chemotherapy is longer (2.7 versus 5.5 m, respectively). This subgroup of EGFR-mutated patients have to be considered separately, and treated with first-line chemotherapy. A recent in vivo model demonstrated that exon 20 insertions may be sensitive to dual EGFR blockade with osimertinib and an EGFR-monoclonal antibody [23]. In the BELIEF trial, combination of erlotinib plus bevacizumab increased PFS in patients with EGFR-mutant NSCLC and pretreatment T790M [13]. It should represent an interesting approach for patients with other exon 20 insertions.

This study also had some limitations. First, it was a prospective non-randomized study. Secondly, we have no information regarding the type of EGFR-TKI used in first-line. This cohort dates from 2012, at which point afatinib was only available in clinical trials, so we can assume that very few people were exposed to it here. Afatinib has since been proven active in certain types of uncommon EGFR mutations, especially G719X, L861Q, and S768I [24], as well as correlating with slight outcome improvements compared with gefinitib in first-line [25]. Similarly, we have no information concerning the use of bevacizumab or maintenance, and we know that these strategies improve patient outcomes [26].

To conclude, type of mutation should be precisely determined at diagnosis in order to select the most appropriate treatment. While PFS1-CT durations are the same regardless of EGFR-mutation status, PFS1-TKI can significantly differ, meaning it is crucial to carefully select patients who may benefit from TKI. Even the therapeutic schedule had no impact on OS in our study, yet TKI should still be prescribed in first-line due to the risk of missing the opportunity to use this treatment.

Acknowledgements

The authors thank Elisabeth Quoix (Chest Department, Centre Hospitalier Universitaire de Strasbourg), Quan Tran, Antoine Deroy, Sandy Dos Santos and Fabienne Hirchaud (French Cooperative Thoracic Intergroup, Paris, France) for their participation to data collection, monitoring and computing.

Funding

Intergroupe Francophone de Cancérologie Thoracique (IFCT): Alain Depierre Award 2015 (no grant numbers apply); unrestricted grants from the Institut National du Cancer (INCa, grant number 2011-038); AstraZeneca (no grant numbers apply).

Disclosure

BB received research funding from Novartis. DD received honoraria from Lilly, Roche, BMS, Novartis, Boehringer, MSD and AstraZeneca. He received research funding from Roche, Pfizer, BMS, AstraZeneca, Boehringer. He served as a consultant for BMS, Roche, Boehringer, MSD. He was reimbursed for travel, accommodation, and other expenses by Lilly, Roche, BMS, Pierre Fabre, Novartis, Boehringer. PPB received research funding from Institut National du Cancer (INCa) and honoraria from Astra-zeneca, Roche. IM received research funding from BMS, MSD, Astellas and was reimbursed for travel, accommodation, and other expenses by AstraZeneca, Pfizer, Novartis. AL received personal fees from Roche, AstraZeneca, Pfizer, Boehringer and was reimbursed for travel, accommodation by Boehringer and Roche. DP received honoraria from Roche, Astellas, Sanofi, Janssen, Lilly and served as a consultant for Roche, Astellas, Sanofi, Janssen. He received research funding from Pfizer, Roche, MSD, Sanofi, Novartis and was reimbursed for travel, accommodation, and other expenses by Novartis. DMS received honoraria from Roche, AstraZeneca, Pfizer, Novartis, BMS, MSD, Boehringer, Lilly. He served as a consultant for Roche, AstraZeneca, Pfizer, Novartis, Boehringer, Lilly and was reimbursed for travel, accommodation, and other expenses by Roche, BMS, MSD, Lilly. JC has received research funding from Novartis and Pfizer. He served as a consultant for Novartis, Pfizer and Roche. FB received honorarias from AstraZeneca, Roche, Clovis, Boehringer and served as a consultant for Roche, AstraZeneca, Clovis, Boehringer. All remaining authors (CL, JPM, HB, IR, SFM, JM, FV, AL, PM, FM, MBF) have declared no conflicts of interest.

References

Original article

Annals of Oncology

2722 | Leduc et al. Volume 28 | Issue 11 | 2017

Appendix

Contributors

The Biomarkers France contributors (listed here are the representatives of each regional molecular genetics center and/or the pathologist who collaborated in this project and the treating physicians who provided data for five patients or more) not included in the list of authors:

1. Audigier-Valette C (Centre Hospitalier Sainte Musse, Service de pneumologie, Toulon, France)
2. Aulliac JB (Centre Hospitalier Francois Quesnay, Service de Pneumologie, Mantes la Jolie, France)
3. Bailla L (UF Biologie Moléculaire, Structure de Génétique, CHRO & UMRE355, INEM CNRS et Université Orléans, France)
4. Beaudoux O (Institut Jean-Godinot, Laboratoire de Biologie Médicale, Reims, France)
5. Bigay-Game L (Centre Hospitalier Universitaire, Hôpital Larrey, Service de Pneumologie, Toulouse, France)
6. Boyer JC (Plateforme de génétique moléculaire des cancers, Laboratoire de Biochimie, CHU Nîmes, Nîmes, France)
7. Brun P (Centre Hospitalier de Valence, Service de Pneumologie, Valence, France)
8. Cellerin L (Centre Hospitalier Régional Universitaire, Hôpital Laennec, Service de Pneumologie, Nantes, France)
9. Chatellain P (Centre Hospitalier Alpes Léman, Service de Pneumologie, Ambilly, France)
10. Chinet T (Assistance Publique – Hôpitaux de Paris, Hôpital Ambroise Paré, Service de Pneumologie, Boulogne-Billancourt, France)
11. Cortot A (Centre Hospitalier Régional Universitaire, Hôpital Albert Calmette, Service d’Oncologie Thoracique et Pneumologie, Lille, France)
12. Daniel C (Institut Curie, Service d’OncoLOGIE Médicale, Paris, France)
13. De Fraipont F (Centre Hospitalier Universitaire, Institut de Biologie et Pathologie, Service Biochimie des Cancers et Biothérapies, La Tronche, France)
14. Denis MG (Centre Hospitalier Universitaire de Nantes, Laboratoire de Biochimie, Nantes, France)