Meeting Report

Control of regulatory T cells and T helper cells in human diseases: from bench to bedside

Xiaohui Zhou¹, Bin Li², Huimin Fan¹,³,* and Zhongmin Liu¹,³,*

¹ Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
² Key Laboratory of Molecular Virology & Immunology, Unit of Molecular Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Shanghai 200025, China
³ Department of Cardiovascular and Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
* Correspondence to: Huimin Fan, E-mail: frankfan@tongji.edu.cn; Zhongmin Liu, E-mail: zhongmin_liu@sina.com

The Third International Conference on Regulatory T cells and Th Subsets and Clinical Application in Human Diseases was held in Shanghai, China during 13–15 October 2012. This conference, organized by Shuiping Jiang, the Conference Founder and President, and Xuetao Cao, the President of Chinese Society for Immunology, brought together many prominent experts in the field of regulatory T cells (Tregs) and T helper cells (Th) subsets immunology and highlighted the cutting-edge advancements on the development, function, homeostasis and interplay of Tregs and Th subsets, especially the latest breakthrough in therapeutic applications in clinical settings.

The balance between effector and regulatory factors in immune system is essential to prevent tissue damage during infection and control excessive or self-destructive responses. It has been proved that Tregs, characterized by the expression of transcriptional factor FoxP3, as a ‘brake’, play key roles in blocking immune responses, inflammation and tissue destruction by suppressing the functions of multiple cell types (Zhou et al., 2009). In contrast, effect or cells mediate the development and pathogeneses of infections, autoimmune diseases, tumors and transplantation rejections. Apart from conventional Th1 and Th2 cells, the newly discovered T helper cell subsets, including Th17, Th9, Th22, T follicular helper cells and innate lymphoid cells, also produce inflammatory cytokines, such as IL-17, IL-9 and IL-22. Regulating the function of these T effectors may be helpful in developing novel therapeutic strategies.

Given the indispensable role of FoxP3 in Tregs development and function, many groups are trying to explore the molecular mechanism of FoxP3-mediated gene expression. Alexander Rudensky’s group from Memorial Sloan-Kettering Cancer Center showed how FoxP3 cooperated with other regulators to ensure the stability and function of Tregs in basal and inflammatory environments. A high proportion of identified partners of FoxP3 were direct targets of FoxP3, indicating a close-circuit connectivity of reciprocal regulation of expression and cooperation between FoxP3 and several sequence-specific transcription factors. Bin Li’s group from Institut Pasteur of Shanghai found two negative regulators of FoxP3⁺ Tregs, Stub1 and DBC-1. Stub1 negatively modulates Tregs suppressive activity by promoting proteasome-mediated degradation of FoxP3, while DBC-1 is an essential subunit of the FoxP3 complex and is responsible for attenuating FoxP3 activity by a caspase-dependent mechanism during inflammation. Furthermore, a novel Foxo1-dependent transcription program was reported to control Tregs cell function by Ming O. Li at Memorial Sloan-Kettering Cancer Center. As reported in this meeting, other factors that impinged on the Tregs development and functions included the innate immune components C3aR/C5aR, NF-κB and Nrp1-Sema4A.

To extend the function of Tregs, Diane Mathis from Harvard Medical School reported that different Tregs populations in diverse tissues have distinct characteristics according to their local environment. Tregs further influence non-immune process and mediate the skeletal repair after injury, revealing an exciting possibility to develop new strategies to target disease-specific Tregs, leaving the bulk Tregs population intact.

In addition to Th1 and Th2 cells, recently identified Th17 cells, characteristic of producing cytokines IL-17A, IL-17F, IL-21 and IL-22, have been indicated playing important roles in autoimmunity diseases and cancer. Chen Dong at MD Anderson Cancer Center, who was the first to discover the Th17 subset, reported that Trim33 was required for chromatin remodeling in the IL-17 gene locus and Trim33 deficient T cells were defective in Th17 cell differentiation but not Tregs differentiation. Interestingly, high level of sodium chloride intake, a vital ingredient in our daily diet, was reported to be an inflammatory contributor to induce SGK-1 and promote the Th17 cell differentiation, and thus drives autoimmune diseases, as shown by David A. Hafler from Yale School of Medicine and Harvard Medical School. Furthermore, Nicholas P. Restifo from NIH identified a stem cell-like signature of Th17 cells capable of differentiating to Th1-like effect or cell progeny and self-renewing as IL-17A producing cells. These observations offered a mechanistic basis for the antitumor efficacy of Th17 cells and developing perspective T cell-based immunotherapy. Apart from conventional Th17 cells, Gary A. Koretzky at University of Pennsylvania found a new population of natural Th17 cells (nTh17) with innate immune cell characteristics. Different Akt pathways were involved in the development of these two different populations. Understanding the biology of nTh17 cells may provide novel insight into the role of Th17 cells in normal and abnormal immune responses.

Recent studies revealed that innate lymphoid cells (ILCs) lacking lineage markers (Lin⁻) can produce a variety of
effector cytokines, similar to that of corresponding Th subsets (Spits and Cupedo, 2012). The newly defined ILCs include Type 1 ILCs (ILC1), Type 17 ILC (ILC17) and/or Type 22 ILC (ILC22), and Type 2 ILC (ILC2). In this meeting, Hergen Spits from Tytgat Institute for Liver and Intestinal Research, University of Amsterdam showed that ectopic expression of GATA-3 by retroviral gene transfer in Lin−CD117+CD127−CRTH2− cells resulted in CRTH2 induction and acquisition of the capacity to produce high amounts of IL-5 and IL-13 as well as IL-4 in response to TSLP plus IL-33, indicating the critical role of GATA-3 in the function of ILC2s. Ror-γt+ ILCs involved in lymphoid tissue genesis were also reported to express Ror-γt, an important transcriptional factor of Th17 cell differentiation, and produce IL-17, shown that ectopic expression of GATA-3 by retroviral gene transfer in Lin−CD117+CD127−CRTH2− cells resulted in CRTH2 induction and acquisition of the capacity to produce high amounts of IL-5 and IL-13 as well as IL-4 in response to TSLP plus IL-33, indicating the critical role of GATA-3 in the function of ILC2s. Ror-γt+ ILCs involved in lymphoid tissue genesis were also reported to express Ror-γt, an important transcriptional factor of Th17 cell differentiation, and produce IL-17, indicating the critical role of GATA-3 in the function of ILC2s. Ror-γt+ ILCs involved in lymphoid tissue genesis were also reported to express Ror-γt, an important transcriptional factor of Th17 cell differentiation, and produce IL-17.

In this meeting, Yong-Jun Liu (University of Texas M.D. and Baylor Research Institute) and colleagues demonstrated that HDACI-induced OX40L inhibited the generation of IL-10-producing type 1 Tregs, providing an anti-tumor response in patients. Yong-Jun Liu further illustrated that humanized agonist mAb to human OX40 promoted effector T cell function and blocked the function of both iTregs and nTregs.

Two scientists Jun Yan (University of Louisville) and Yuping Lai (East China Normal University) presented the role of IL-17 in regulating psoriasis pathogenesis. Therefore, targeting and modulating cellular responses to IL-17 could be beneficial in certain types of IL-17 mediated diseases. In two recent Phases 2 clinical trials, anti-IL-17 and anti-IL-17 receptor antibodies indicated significant improvement of the clinical symptoms of psoriasis (Leonardi et al., 2012; Papp et al., 2012), which further illustrated the role of IL-17 in human autoimmune and inflammatory diseases. These findings substantiate the therapeutic strategy for immune diseases by using antibodies that target or block effector molecules. Indeed, Yajun Guo at Chinese Military General Hospital presented the clinical application of targeted immunotherapy for cancer by antibody.

Given the promising results from recent clinical trials, targeting on Tregs and other T effectors will become an important trend in clinic application of immunotherapy in treating human diseases. We look forward to hearing more exciting progress in next conference that will be held in 2 years.

References