Thromboxane A2 receptor α promotes tumor growth through an autoregulatory feedback pathway

Run-Yue Huang1,2,*, Ming-Yue Li1,*, Calvin S.H. Ng1, Innes Y.P. Wan1, Angel W.Y. Kong1, Jing Du3, Xiang Long3, Malcolm J. Underwood1, Tony S.K. Mok4, and George G. Chen1,*

1 Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong SAR, China
2 The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
3 Peking University Shenzhen Hospital, Shenzhen 518036, China
4 Department of Clinical Oncology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin N.T., Hong Kong SAR, China
* These authors contributed equally to this work.

Tobacco smoking can cause a number of cancers. The role of thromboxane synthase (TxAS) in smoking-related cancers is largely unknown. In this study, 37 pairs of tumor and non-tumor lung tissues of non-small-cell lung cancer, 5 lung cancer cell lines, and a mouse tumor model were used to study TxAS and its related molecules. A mouse model of smoking carcinogen 4-methylnitrosamine-1-3-pyridyl-1-butane (NNK)-induced lung tumor showed an increase in TxAS. Thromboxane A2 receptor (TP) was aberrant in lung cancer tissues of smokers. TxAS and TP were increased in lung tissues of NNK-treated mice. The in vitro studies showed that TPα rather than TPβ promoted tumor growth, and NNK increased TPα. NNK-induced TxAS, which depended on activation of cyclooxygenase-2 (COX-2), ERK and NF-κB, could be inhibited by miR-34b/c. TPα played a positive role in NNK-induced COX-2/ERK/NF-κB activation, leading to the upregulation of TxAS expression and thromboxane A2 (TxA2) synthesis. The newly synthesized TxA2 could further activate TPα, forming an autoregulatory feedback loop for TPα activation. Collectively, NNK promotes lung tumor growth via inducing TxAS and TPα, which constitutes an auto-positive feedback loop to exaggerate the growth. This study suggests that TPα and TxAS are the ideal targets against smoking-related lung cancer.

Keywords: thromboxane synthase, thromboxane A2 receptor, autoregulation, cancer, smoking, lung

Introduction

Smoking causes a number of cancers worldwide (Jha, 2009). Among the smoking carcinogens, NNK is the most tumorigenic (Huang and Chen, 2011; Huang et al., 2011). The contribution of NNK to cancer initiation and progression has been observed in many types of cancers, especially lung cancer (Huang and Chen, 2011). Tobacco smoke and its carcinogen NNK can affect the production of cyclooxygenase (COX) and its downstream products in cancer cells (Huang et al., 2011). COXs, including COX-1 and COX-2, catalyze the conversion of arachidonic acid into prostaglandin H2, which is further converted into various bioactive prostaglandins via different downstream isomerases (Cathcart et al., 2010; Huang and Chen, 2011). Lung cancer tissues obtained from smokers show the elevated expression of COX-2 with concomitant increase in TxAS and TxA2 when compared with that from non-smokers (Mclennore et al., 1988; Ermert et al., 2003; Chen et al., 2006). Therefore, COX-2 and its derived TxA2 may have a role in the progression of the smoking-related lung cancer. The inhibition of COX-2 is well known as an effective approach to prevent and treat certain cancers including lung cancer. In the past decade, the idea that targeting the downstream molecules in the COX-2 pathway has gained increasing attention as it can be more effective and also avoid or reduce the side-effects associated with COX-2 inhibitors such as myocardial infarction and stroke (Bäck et al., 2012). This strategy has been evidently supported by the studies showing that the inhibition of TxAS and/or its receptors can effectively suppress the growth and progression of bladder, prostate, lung, and glioma cancers (Moussa et al., 2008; Nie et al., 2008; Cathcart et al., 2011; Ekambaram et al., 2011; Huang et al., 2011). For example, TxAS is over-expressed in non-small-cell lung cancer (NSCLC) and inhibition of this enzyme suppresses the tumor cell proliferation via inducting apoptosis (Cathcart et al., 2011).

TxA2 acts through its signature receptors, thromboxane A2 receptor (TP) (Ekambaram et al., 2011; Huang and Chen, 2011). Two alternatively spliced human TP isoforms, TPα and TPβ, were identified. We previously demonstrated that NNK increased the expression of COX-2 and TxAS and stimulated TxA2 production in human lung cancer cells (Huang and Chen, 2011; Huang et al., 2011). Blockade of TxA2 synthesis or its action could significantly reduce NNK-promoted lung cancer cell survival and proliferation.
Results
TP expression is much higher in human lung cancer tissues of smokers than non-smokers
The expression of TP was immunohistochemically evaluated. The lung cancer tissues, in particular those obtained from smokers, presented strong cytoplasmic staining for TP, whereas the adjacent non-cancer tissues showed weak or vacant cytoplasmic staining for TP (Supplementary Figure S1). A higher TP staining score was showed in 30 cases of cancer tissues than their paired corresponding non-cancer tissues (81.1%, 30 of 37 cases, \(P < 0.001 \)) (Supplementary Table S1). Importantly, all tissues (cancer and non-cancer) from smokers presented positive-staining for TP. When the score 1 (<20%) of TP-positive staining was used as the cut-off value, the Fisher’s exact test showed that in cancer tissues, TP expression was much higher in smokers than that in non-smokers (93.1%, 27 of 29 cases vs. 37.5%, 3 of 8 cases, \(P = 0.002 \)).

NNK upregulates TP and TxAS in lung tissues of A/J mice
In a mouse model, NNK-induced lung hyperplasia occurs at 26 weeks after NNK treatment and the lung tumor is formed at 30 weeks (Li et al., 2010b). The lung tissues were thus collected at various points accordingly for detection of TP and TxAS expression. It is noted that two TP isoforms exist in human beings, while mice have only single TP isoform, whose nuclear acid sequence is similar to human TPs (Nakahata, 2008). TP mRNA level was not significantly affected by NNK, whereas TxAS mRNA was upregulated by 1.8 folds at 34 weeks and 6.0 folds at 38 weeks compared with the respective control (Figure 1A). At the protein level, both TxAS and TP were increased in NNK-treated mice in a time-dependent manner (Figure 1B). We also confirmed that NNK upregulated COX-2 but not COX-1 expression in mouse lung tissues (Supplementary Figure S2).

NNK induces Tpα and TxAS rather than TPβ
Both NCI-H23 and A549 are lung adenocarcinoma cell lines. NCI-H460 is a large cell lung carcinoma cell line. CRL-2066 and NCI-H69 are small-cell lung cancer cells. TPα protein was expressed in all these five human lung cancer cell lines that represent different subtypes of lung cancer (Figure 2A). However, only A549, NCI-H23, and CRL-2066 expressed TPβ protein. NCI-H23 and CRL-2066 cells, which express both TPα and TPβ, were selected as models for the following study. TPα constituted 73.87% and about 50.71% of total TP proteins in NCI-H23 and CRL-2066 cells, respectively (Figure 2B). In both cell lines treated with NNK, TPα protein level was increased in a time-dependent manner, whereas the level of TPβ protein was not significantly changed (Figure 2C). It appears that the change in TPα expression by NNK is similar to the NNK-mediated change in TxAS (Huang et al., 2011). However, at mRNA level, TxAS was time-dependently increased by NNK, while the expression of either TPα or TPβ was not significantly changed (Figure 2D and E). These findings are in agreement with those observed in lung tissues from A/J mice treated with NNK (Figure 1). Thus the data strongly suggest that NNK may induce TxAS and TPα via transcriptional and post-transcriptional mechanisms, respectively.

The positive roles of NF-κB, ERK, and COX-2 in NNK-induced TPα and TxAS expression
NF-κB is constitutively activated in lung cancer (Saitoh et al., 2010) and NNK is able to activate it (Li et al., 2010a; Huang et al., 2011). However, the mechanisms underlying the role of TxA2 in the development of lung tumor associated with smoking remain largely unknown.

Figure 1 The expression of TxAS and TP in lung tissues obtained from A/J mice treated with NNK. TP and TxAS were monitored during the course of NNK-mediated lung carcinogenesis in A/J mice. (A) The mRNA expression of TxAS and TP was measured by real-time PCR in lung tissues. The fold change in the expression of TxAS or TP mRNA was calculated by the 2-ΔΔCT method, and the controls at each time-point are represented by the dotted line of 1 in the figure. Data are expressed as mean ± SEM of three independent experiments in triplicates. *\(P = 0.02 \) and **\(P = 0.0021 \) vs. control. (B) TxAS and TP were measured by western blotting. Actin was set up as a loading control and representative results from three independent experiments are shown.

Downloaded from https://academic.oup.com/jmcb/article-abstract/5/6/380/865482 by guest on 07 January 2019
We therefore tested whether NF-κB was responsible for the NNK-induced TPα and TxAS expression in lung cancer cells. Western blot analysis showed that the NF-κB inhibitor SN50 completely suppressed NNK-induced TxAS expression but had no effect on TPα (Figure 3A), indicating that NF-κB signaling is required for NNK-induced TxAS expression. In our previous report, PI3K/Akt and ERK were found to be activated by NNK (Li et al., 2010a, b; Huang et al., 2011). We thus asked whether Akt or ERK signaling could affect NF-κB activation. As shown in Figure 3B, wortmannin, a specific PI3K/Akt inhibitor, did not affect p-ικB level, whereas the ERK inhibitor U0126 abrogated p-ικB expression induced by NNK in both tested cell lines. These results demonstrate that NF-κB

![Figure 2](image-url) NNK induces TPα and TxAS rather than TPβ. (A) Cells were cultured for 24 h and total protein was extracted. TPα and TPβ were examined by western blotting. (B) The differential expression of TP isoforms was quantified by densitometry and normalized with actin. (C – E) Cells were serum-starved for 24 h, and then stimulated with 10 μM NNK for 0–12 h. Cells without treatment were set up as controls. (C) Total protein was extracted and subjected to western blotting for TPα and TPβ. (D and E) TxAS, TPα, and TPβ mRNA were evaluated by real-time PCR. The fold change in the expression of target mRNAs was calculated by the 2-ΔΔCT method, and the controls at each time point are represented by the dotted line of 1. Data are expressed as mean ± SEM of three independent experiments in triplicates. *P < 0.05 and **P < 0.01, when compared with the control. (F) Transiently transfected cells were serum-starved for 24 h. Total protein was extracted and western blotting was performed to detect target proteins. (G) miR-21 was evaluated by real-time PCR in cells treated with NNK (10 μM) for 2 and 4 h. Data are expressed as mean ± SEM from triplicates. *P < 0.05 and **P < 0.01, when compared with the control. Actin was set up as a loading control in all western blots and representative results from three independent experiments are shown.
role in lung cancer growth (Tai et al., 2007). COX-2 is able to induce COX-2 expression in lung cancer (Tai et al., 2007), but it is unknown whether TP activation can affect COX-2 expression. We thus assessed the role of TP in COX-2-mediated growth of NNK-treated cells. Figure 3C shows the biosynthesis of TxA2 by the TP agonist U46619 almost restored NNK-induced cell growth and ERK activation in the presence of COX-2 siRNA. These data strongly suggest that TP functions as a key mediator in ERK/COX-2-mediated growth of NNK-treated cells.

Mechanisms used by NNK to induce TPalpha and TxA2

To explore the possible post-transcriptional mechanism responsible for NNK-mediated TPalpha upregulation, we determined TPalpha mRNA level in cells treated with inhibitors of several key transcriptional factors. As shown in Supplementary Figure S3, the level of TPalpha mRNA and protein in both tested cell lines was not significantly changed by the PPARgamma ligand PGZ, NF-kB inhibitor BAY-117082, SP1 siRNA, or CREB siRNA in the presence of 10 μM NNK, indicating that the transcription does not account for the upregulation of TPalpha by NNK. Moreover, actinomycin D (AcD) and cycloheximide (CHX), the general transcriptional and translational inhibitors, respectively (Zhang et al., 2008), were used. NNK-induced TPalpha expression was not affected by AcD, but completely abrogated by CHX (Figure 5A), strongly suggesting that the translational rather than the transcriptional mechanism is the major cause of NNK-induced TPalpha expression.

Unlike TPalpha, the expression of TxA2 is positively associated with the NF-kB activity (Figure 3A), supporting a transcriptional regulation mechanism in NNK-induced TxA2 expression. In addition, post-transcriptional mechanism was also examined. It has been
reported that miR-34c is downregulated in the lung exposed to cigarette smoke (Izzotti et al., 2009). Moreover, according to our miRNA data mining using several public programs, we found that there are binding sites for miR-34b and miR-34c in the 3′-UTR of TxAS (Figure 5B). We thus asked whether NNK could affect the potential TxAS regulator miR-34b/c to alter the activity of 3′-UTR of TxAS. The result showed that NNK markedly reduced the levels of both miR-34b and miR-34c (Figure 5C and D). Importantly, in parallel with the reduction of both miRNAs, NNK significantly induced 3′-UTR activity of TxAS (Figure 5E). These findings indicate that miR-34b/c function as suppressors of TxAS and that NNK upregulates TxAS via inhibiting these two suppressors, suggesting a translational regulation mechanism in NNK-induced TxAS expression in lung cancer cells. In conclusion, NNK induces TxAS expression by both transcriptional and translational regulation mechanisms.

TPα auto-activation pathway in lung cancer cells stimulated with NNK

ERK signaling is the key mediator for TPα function in lung tumor (Li and Tai, 2009; Wei et al., 2010; Huang et al., 2011), and NF-κB functions at the downstream of ERK signaling to regulate TxAS in cells treated with NNK (Figure 3). These observations together with the fact that TxA2 is the natural and specific ligand of TPα raise the possibility that, in lung cancer cells stimulated with NNK, TPα activation may induce TxAS expression and subsequent TxA2 synthesis via the COX-2/ERK/NF-κB pathway, thereby constituting a positive feedback loop to further activate TPα in
NNK-stimulated lung cancer cells (Figure 6A). To test this possibility, we first examined whether p-IκB could be affected by TPα activation. TPα-transfected cells had a higher basal level of p-IκB and NNK treatment further increased it (Figure 6B). The TP antagonist SQ29548 abolished the NNK-mediated expression of p-IκB. However, in TPβ-transfected cells, the level of p-IκB was similar to that in control cells, and neither NNK nor SQ29548 had any additional effect on p-IκB expression when compared with control cells. These findings indicate that the NNK-initiated NF-κB signaling is, at least in part, dependent on TPα but not TPβ. Furthermore, NNK-induced upregulation of TxAS/COX-2/TxA2 and NNK-induced downregulation of PTEN were aggragated in TPα-transfected cells, when compared with the control vector- or TPβ-transfected cells, and such effects were significantly reversed by the TP antagonist SQ29548 (Figure 6B and C). However, similar changes were not observed in TPβ-transfected cells. Since TxA2 production can be abolished by TxAS inhibitor (Huang and Chen, 2011; Huang et al., 2011) and TP is concomitantly activated during the NNK-mediated TxA2 synthesis (Huang et al., 2011), the findings presented here strongly support the auto-activation of TPα in NNK-treated lung cancer cells (Figure 6A).

To verify the role of TPα auto-activation in NNK-induced growth, MTT assays were performed in cells treated with BM567 that is a dual TxA2 modulator (combined TxAS inhibitor and TP antagonist). NNK obviously induced the cell growth (Figure 6D), which was significantly abrogated by BM567 to the level much below the control. The result was further confirmed by the apoptotic assay, which showed that in the cells treated with NNK plus another dual TxA2 modulator pinane thromboxane A2 (pTxA2), the percentage of cells in early and late apoptosis increased about 6 folds and 14 folds, respectively, when compared with the NNK-treated cells (Figure 6E). Collectively, these findings demonstrate that the inhibition of TPα can significantly attenuate the NNK-mediated cell growth.

Discussion

Our initial screening of lung tissues showed that the expression of both TxAS and TP was increased in human lung cancer tissues compared with the paired non-cancer tissues. Moreover, smokers had significant higher expression of TxAS and TP in tumor tissues than non-smokers. In agreement with the data observed in human lung tissues, TxAS and TP proteins were also increased in lung tissues obtained from NNK-treated A/J mice. These findings suggest that NNK may be responsible for the smoking effects on TxAS and TP expression in lung cancer progression. Interestingly, the expression of TP mRNA in lung tissues obtained from NNK-treated A/J mice was not significantly altered. Because only single TP isoform exists in mouse (Nakahata, 2008), the subsequent mechanistic studies focused on both TP isoforms were performed on in vitro models. In human, we found that TPα, but not TPβ, was widely expressed and enhanced in several lung cancer cell lines. Because TP plays a positive role in NNK-induced lung cancer cell proliferation via PI3K/Akt and ERK pathways (Huang et al., 2011), we examined which isoform of TP was responsible for this positive role. The upregulation of p-Akt and p-ERK1/2 and the downregulation of PTEN, a well-known tumor suppressor, were found in lung cancer cells with TPα but not TPβ overexpression. The role of TPα on PTEN downregulation is verified by the inhibitory experiments, in which the TP antagonist SQ29548 fully recovers the loss of PTEN. These findings are in line with the clinical observation of PTEN loss in NSCLC (Tang et al., 2006). Interestingly, PTEN is downregulated in a progressive smoking-dependent
manner in smokers with chronic obstructive pulmonary disease, one of major risks for lung cancer (Shaykhiev et al., 2011). The downregulation of PTEN in smokers is further supported by the current study in that NNK can significantly decrease the level of PTEN. Furthermore, our finding suggests that the decreased PTEN is likely caused by NNK-mediated upregulation of miR-21, a known negative regulator of PTEN (Salmena et al., 2008; Hatley et al., 2010). Accompanied by the NNK-reduced PTEN, NNK increased Tpα at protein level but not at mRNA level. These results confirm the positive role of Tpα in lung tumor growth and also suggest that a post-transcriptional mechanism may be involved in the effect of NNK on Tpα expression.

The proposed post-transcriptional mechanism of NNK-mediated Tpα expression is further investigated using two strategies. The first is to exclude the role of possible transcriptional factors including CREB, NF-κB, PPARγ, and SP1 (Supplementary Figure S3) (Sugawara et al., 2002; Salmena et al., 2008; Li et al., 2010b; Yuan et al., 2010). The second strategy is to use general translation inhibitor CHX and general transcriptional inhibitor AcD. It was found that CHX but not AcD had an inhibitory effect on NNK-induced Tpα protein expression. Therefore, NNK mediates Tpα expression via a translational rather than a transcriptional mechanism, which is in line with a previous study showing that translational mechanism is the major cause of the upregulation of TP by lipid soluble smoking particles in organ culture of the arterial segments (Zhang et al., 2008). In support of our conclusion, TP protein elevation without significant mRNA change was also observed in bladder tumor tissues (Moussa et al., 2005).

Both mRNA and protein expression of TxAS could be induced by NNK, suggesting that, in contrast to TP, TxAS can be also controlled by transcriptional regulation, which is confirmed by the data showing that NF-κB inhibition significantly blocked the NNK-induced TxAS. Furthermore, we demonstrated the involvement of miRNAs in the NNK-mediated TxAS. We have identified the binding sites for miR-34b and miR-34c in the 3′-UTR of TxAS. NNK markedly reduced the levels of both miR-34b and miR-34c. In parallel with NNK-mediated reduction of both miRNAs, NNK significantly induced 3′-UTR activity of TxAS. These findings indicate that NF-κB upregulates TxAS, while miR-34b/c work to suppress it. These results have clearly indicated that the NNK-mediated TxAS expression is positively regulated by NF-κB at the transcriptional level and negatively regulated by miR-34b/c at the translational level.

Although NNK-mediated upregulation of Tpα is independent of NF-κB, interestingly, NNK-mediated activation of NF-κB is, at least in part, Tpα-dependent. Since TxAS expression depends on the NF-κB activation in NNK-stimulated cells, and TxA2, the product of TxAS, is the natural Tpα ligand, we thus speculate that there is a positive feedback loop of Tpα activation in NNK-stimulated cells. Such a speculation is verified by data that increased TxAS and TxA2 levels and reduced PTEN expression in response to NNK could be aggravated by Tpα overexpression, and that the effect of Tpα was almost completely inhibited by the TP antagonist SQ29548. These findings are further supported by observations that the production of COX-2 and TxA2 in endothelial cells is inhibited by SQ29548, the TxAS inhibitor carboxyheptyl imidazole, and COXs inhibitor aspirin, while it was promoted by the TxA2 analog, carbocyclic TxA2 (Caughey et al., 2001). Moreover, in Tpα-transfected cells, COX-2 expression and its downstream metabolites PGE2 and TxA2 could be induced by the TP agonist I-BOP and inhibited by the TP antagonists SQ29548 or BM567 (Tai et al., 2007). The effects of PGE2 on tumor development are, to some extent, controversial since there are several PGE2 binding receptors that produce the contrary effects (Huang and Chen, 2011). Therefore, the role of PGE2 in NNK-mediated lung cell growth needs further investigations. Collectively, our data suggest a Tpα auto-activation mechanism (Figure 6A), which is further confirmed by the data showing that COX-2, a key upstream enzyme in the formation of TxA2 (Cathcart et al., 2010; Ekambaram et al., 2011; Huang et al., 2011), could be significantly increased by Tpα overexpression, but decreased by SQ29548. In the autoregulatory feedback loop of Tpα activation, both Tpα and TxAS play a central role. Therefore, the dual suppression of TxAS and Tpα may have dramatical inhibitory effects on NNK-mediated tumor growth, which is confirmed by the finding showing that BM567, a combined TxAS inhibitor and TP antagonist, could completely suppress lung cancer cell growth induced by NNK. This was further verified by another dual blocker pTXA2.

In summary, NNK-mediated activation of Tpα stimulates the production of TxA2 via a COX-2/ERK/NF-κB/TxA2 pathway. Importantly, the newly synthesized TxA2 can further activate Tpα, forming an autoregulatory feedback loop for Tpα activation and thus exaggerate the tumor growth (Figure 6A). Obviously, the identification of this novel pathway has made Tpα and TxAS ideal therapeutic targets against smoking-related lung cancer. However, there are still some important areas remained to be explored, for example, the detailed translational mechanism responsible for NNK-mediated Tpα upregulation and a lack of a suitable in vivo model targeting Tpα and TxAS.

Materials and methods

Human lung tissues and immunohistochemical analysis

Thirty-seven pairs of tumor and non-tumor lung tissues were obtained from patients who underwent surgery for lung cancer at our hospital. Of these patients, 29 were tobacco smokers with an average smoking history of over 28 years and the other 8 patients were non-smokers. Tumor tissue samples were taken from the central part of the tumors. The tissue samples were stored in a liquid nitrogen tank until the experiments were performed. The samples included 11 pairs of squamous cell carcinoma tissues, 11 pairs of adenocarcinoma tissues, 5 pairs of large cell carcinoma tissues, and 10 pairs of poorly differentiated carcinoma tissues. All tissue specimens were confirmed by histological examination. The tissues were sectioned and immunohistochemical staining was performed as described previously (Chen et al., 2001). The sections were examined by two independent observers using the Zeiss Spot imaging system (Carl Zeiss) and graded according to the published procedure (Chen et al., 2001). This study was approved by local human research ethical committee and informed consent was obtained from all patients.
Figure 6 Identification of TPα auto-activation pathway. (A) The proposed model of TPα auto-activation mechanism. TPα is increased by NNK, leading to TxA2 expression and subsequent TxA2 synthesis via the COX-2/ERK/NF-κB pathway. Survival pathways of PI3K/Akt and ERK are initiated to activate NF-κB. When the newly synthesized TxA2 binds to its receptor TPα, a positive feedback loop for TPα activation is formed, and tumor growth is exaggerated. (B) and (C) Cells were transiently transfected with the control vector, TPα, or TPβ in the serum-free medium for 24 h. The TP antagonist SQ29548 was subsequently added for 24 h following cells untreated or treated with NNK for 15 min. (B) Total protein was extracted and subjected to western blotting. Actin was used as a loading control. Representative results and the densitometry for blots from three independent experiments are shown. *P < 0.05 and **P < 0.01, when compared with the corresponding empty pcDNA3. #P < 0.01, NNK vs. NNK + SQ29548. ^P < 0.05 and ^P < 0.01, the control vs. NNK in TPβ-transfected cells. (C) TxA2 was evaluated by measuring TxB2 in the culture medium. Results were presented as percentages of the empty pcDNA3 control. Data are expressed as mean ± SEM of three independent experiments in triplicates. *P < 0.05 and **P < 0.01, compared with the corresponding empty pcDNA3. ⁵P < 0.01, NNK vs. NNK + SQ29548. ⁶P < 0.01, the control vs. NNK in TPβ-transfected cells. (D and E) Cells were untreated or treated with BM567 or pTxA2 for 24 h following 15 min stimulation with NNK. The cells without NNK treatment were used as the control. (D) Cell growth was evaluated by MTT assay. Results were presented as percentages of the control. Data are expressed as mean ± SEM of three independent experiments in triplicates. **P < 0.001. (E) Cells were double-stained with annexin V-FITC and propidium iodide. Flow cytometric analysis was performed to measure apoptosis. The percentages of cells in early and late apoptosis are provided in the lower right and upper right quadrants, respectively.
Mouse model

Lung tumor A/J mouse model was established according to our previous publication (Li et al., 2010; Yuan et al., 2010). Briefly, the mice at 6 weeks old were i.p. injected with a single dose of NNK (100 mg/kg) to induce lung tumor and the growth of the tumor was monitored up to 38 weeks. The animals injected with PBS were used as controls. The use of mice was approved by local animal research ethical committee and in accord with our institute’s guidelines.

Cell culture and chemicals

Human lung cancer cell lines NCI-H23, A549, NCI-H460, CRL-2066, and NCI-H69 were obtained from American Type Culture Collection. NCI-H23, A549, and NCI-H460 are NSCLC cell lines. NCI-H23 was cultured in Dulbecco’s modified Eagle’s medium and both A549 and NCI-H460 were cultured in RPMI 1640 medium. Both CRL-2066 and NCI-H69 cell lines were derived from small-cell lung carcinoma and respectively cultured in Waymouth’s MB 752/1 medium and RPMI 1640 medium.

NNK was obtained from Toronto Research Chemicals, Inc. PPARγ ligand PGZ was kindly provided by Takeda. NF-κB inhibitors SN50 and BAY-117082 were purchased from Calbiochem and Cayman Chemical, respectively. The combined TxAS inhibitor and TP antagonist BM567, pTxA2, specific TP antagonist SQ 29548, COX-2 inhibitor NS398, and specific TP agonist U66169 were purchased from Santa Cruz. MEK/ERK inhibitor U0126 was purchased from A.G. Scientific. The PI3K-specific inhibitor wortmannin was purchased from Sigma Chemical. General transcriptional inhibitor AcD and translational inhibitor CHX were purchased from Santa Cruz Biotechnology. The concentrations of all chemicals used were based on the product datasheets and previous publications (Tang et al., 2006; Salmena et al., 2008; Li et al., 2010a; Maccani et al., 2010; Wei et al., 2010; Yuan et al., 2010; Huang et al., 2011), and were proven to be optimal in the present study.

Transient transfection

Lung cancer cells were seeded at the same density into a 6-well culture plate, and then incubated overnight to allow cells to attach to the plate. One microgram control small interference RNA (siRNA), SP1 siRNA, CREB siRNA, or COX-2 siRNA was transfected into the cells according to the manufacturer’s instruction (Santa Cruz). The transfection of 2 μg control vector (pcDNA3) or pcDNA3 encoding TPα or TPβ was also performed in 6-well plates using the FuGENE® HD Transfection reagent (Roche).

Tbx2 measurement

Lung cancer cells were seeded at the same density into a 6-well culture plate, and then incubated overnight to allow cells to attach to the plate. After proper treatments, the culture supernatant was collected and centrifuged. Tbx2 was detected by peroxidase-labeled Tbx2 conjugates using an enzyme immunoassay kit (Cayman Chemical).

Cell growth detection and analysis of apoptosis

Cells were seeded into 6-well plates at the same density and incubated overnight. After proper treatments, cell growth was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay. Cell apoptosis was analyzed by flow cytometry. Cell pellets were collected and washed twice with ice-cold PBS. After resuspension in 400 μl Annexin-binding buffer (10 mM HEPES/NaOH, 140 mM NaCl, 2.5 mM CaCl2, PH 7.4), cells were stained with Annexin V fluorescein dye and propidium iodide (Molecular Probe) in dark at room temperature for 15 min. The cells were kept on ice and analyzed with Becton Dickinson FACScan (BD Biosciences) within 1 h after staining.

Construction of 3′-UTR-luciferase plasmid and reporter assays

The full-length 3′-UTR of TxAS (224 bp) was amplified using cDNA from A549 cells (Primers: Forward 5′-AATCTTGGACCA GAGGCTGCGGGT-3′, and Reverse 5′-GACTCTAGACATTAGAG AGAGCAGTTG-3′), subcloned into the XbaI site of pGL3 (Promega). For the reporter assay, NCI-H23 and CRL-2066 cells were transiently transfected with the reporter plasmid using lipofectamine 2000 (Invitrogen). Reporter assays were performed 36 h post-transfection using the Dual-luciferase-assay-system (Promega), normalized for transfection efficiency by cotransfected Renilla-luciferase.

Real-time PCR

Total RNA was extracted using Trizol reagent (Invitrogen) according to the manufacturer’s protocol. cDNA was synthesized from 2 μg total RNA using a high capacity cDNA reverse transcription kit (Promega). Aliquots of cDNA were used as template for real-time PCR with gene-specific primers and SYBR Green qPCR SuperMix (Invitrogen). Real-time PCR was performed using the ABI Prism 7900 detection system (Applied Biosystems). The expression of target genes in the treatment and control groups was normalized using the house-keeping gene β-actin or U6- snoRNA, and the fold change in the expression of each target gene was calculated by the 2-ΔΔCT method.

The following primer sequences were used: β-actin, (forward) 5′-GGAAATCGTGCGTGACATT-3′ and (reverse) 5′-CAGGCAGCTGGACATT-3′ and (reverse) 5′-GGAAATCGTGCGTGACATT-3′; mouse COX-1, (forward) 5′-GTGCCTGCTCCACCTTATC-3′ and (reverse) 5′-GGAATGAACCTCTCTTCTCA-3′; mouse COX-2, (forward) 5′-GATGACTGCGCCAATTCCC-3′ and (reverse) 5′-AACCA GGTCCCTGCTTA-3′; mouse TxA2, (forward) 5′-ATCCAGGAGGCAGCATC-3′ and (reverse) 5′-CAGTTTACCTCGTCTTTACT-3′; mouse TP, (forward) 5′-TTTGGCCCGTGGAACATC-3′ and (reverse) 5′-GGCT GCAGTGCCAAACA-3′; human TxA2, (forward) 5′-AAAGAAGG GAGACAGAATACT-3′ and (reverse) 5′-GGCTTGACCCCATGAG-3′; human TP (forward) 5′-ACGGAGAAGGCATCCTC-3′, human TPα (reverse) 5′-CCAGCCCTGAATCCTCA-3′, and human TPβ (reverse) 5′-CAGGAGAACGACAACTGACCACCC-3′; miR-21, (forward) 5′-GCCCCGTAGCTTATCAGACTGATG-3′; miR-34c, (forward) 5′-AGGC AGTGTAGTCTATGTCG-3′; miR-34b, (forward) 5′-GATCACTCAA CTCCACTGCAATG-3′; U6, (forward) 5′-GGCGGTTGGAAGGCGCTT-3′. Expression of mature miRNAs was determined by the NCodeTM EXPRESS SYBR® GreenERTM miRNA qRT–PCR Kit Universal (Invitrogen).

Western blot analysis

Cells were washed with ice-cold PBS, collected, and homogenized with RIPA lysis buffer containing 1× PBS, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and proteinase inhibitors. Total protein was prepared and measured by the Bio-Rad protein assay (Bio-Rad laboratories). Equal amounts of protein (20 μg) were subjected to western blot analysis and the following antibodies were used. Rabbit polyclonal antibody against TP detecting both α and β isoforms (1:200), rabbit polyclonal...
antibodies against TxAS (1:200), PTEN (1:500), and phosphorylated ERK1/2 (1:1000), and mouse monoclonal antibodies against total ERK1/2 (1:1000) and COX-2 (1:1000) were purchased from Cayman chemical. Goat polyclonal antibody against β-actin (1:1000), rabbit polyclonal antibodies against phosphorylated Akt (ser473) (1:1000), and total Akt (1:1000) were obtained from Santa Cruz. Rabbit polyclonal antibodies against phosphorylated IκBα (1:500) and total IκBα (1:500) were purchased from Cell Signaling Technology. To ensure equal protein loading, membranes were stripped and then probed with anti-total ERK1/2, anti-total Akt, anti-total IκBα, or anti-β-actin antibody.

Statistical analysis

The Wilcoxon signed-ranks test was used to compare the difference of TxAS expression in the paired tumor and non-tumor liver tissues from the same patients. Fisher’s exact test was used to compare the difference of TxAS expression in tumor tissues between smokers and non-smokers. Student’s t-test was used to analyze the difference between two groups, while One-way ANOVA followed by Dunnett's test was employed for the comparisons among three or more groups. Data are presented as the mean ± SEM for all statistical tests. A two-side P-value of <0.05 was used to reject the null hypothesis.

Supplementary material

Supplementary material is available at *Journal of Molecular Cell Biology* online.

Acknowledgements

We thank SukYing Chun, Rocky Ho, Ernest Chak and Billy Leung for their technical assistance. We acknowledge Dr Hsin-Hsiuang Tai (College of Pharmacy, University of Kentucky, Lexington, KY) and Dr Omar Moussa (Hollings Cancer Center, Medical University of South Carolina, Charleston, VA) for providing plasmids pcDNA3-TPα and pcDNA3-TPβ. PPAREγ ligand pioglitazone was kindly provided by Takeda (Tokyo, Japan).

Funding

This study was supported by a grant from the Research Grants Council of the Hong Kong SAR (project no. CUHK475211).

Conflict of interest: none declared.

References

