Dark matter halo response to the disc growth

Jun-Hwan Choi,* Yu Lu,* H. J. Mo* and Martin D. Weinberg*

Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA

Accepted 2006 August 23. Received 2006 August 23; in original form 2006 April 27

ABSTRACT
We consider the sensitivity of the circular-orbit adiabatic contraction approximation to the baryon condensation rate and the orbital structure of dark matter haloes in the Λ cold dark matter (ΛCDM) paradigm. Using one-dimensional hydrodynamic simulations including the dark matter halo mass accretion history and gas cooling, we demonstrate that the adiabatic approximation is approximately valid even though haloes and discs may assemble simultaneously. We further demonstrate the validity of the simple approximation for ΛCDM haloes with isotropic velocity distributions using three-dimensional N-body simulations. This result is easily understood: an isotropic velocity distribution in a cuspy halo requires more circular orbits than radial orbits. Conversely, the approximation is poor in the extreme case of a radial orbit halo. It overestimates the response of a core dark matter halo, where radial orbit fraction is larger. Because no astronomically relevant models are dominated by low angular momentum orbits in the vicinity of the disc and the growth time-scale is never shorter than a dynamical time, we conclude that the adiabatic contraction approximation is useful in modelling the response of dark matter haloes to the growth of a disc.

Key words: methods: numerical – galaxies: evolution – galaxies: haloes – dark matter.

1 INTRODUCTION
In hierarchical structure formation, galaxies form in gravitationally collapsing dark matter haloes. The dissipative baryonic matter cools and condenses in dark matter halo (White & Rees 1978). Blumenthal et al. (1986) described the halo response to this condensation assuming a spherical profile with circular orbits and adiabatic disc growth (Barnes & White 1984). For an adiabatic change, the angular momentum is invariant: $J^2 \propto rM(r) = $ constant. Then, given the distribution of the baryonic disc $M_d(r)$ and the initial dark matter distribution $M_i(r)$, the final distribution of dark matter $M_f(r)$ must satisfy

$$M_i(r_1)r_1 = M_i(r_2)r_2$$
$$M_i(r_3) = M_d(r_3) + M_i(r_3)(1 - m_d),$$

(1)

where $m_d$ is mass fraction of the disc. Further studies of this model include Ryden (1988, 1991) and Flores et al. (1993). Recently, Jesseit, Naab & Burkert (2002) find that the adiabatic contraction approximation is in agreement with their simulations.

Despite the wide usage of the adiabatic contraction approximation, discrepancies between observations and theoretical predictions motivate a detailed check of its validity. First, Blumenthal et al. (1986) simply assume that the disc growth time is much longer than the dark matter halo dynamical time. However, individual haloes may grow simultaneously with their discs and have different assembly histories (Wechsler et al. 2002; Zhao et al. 2003; Li, Mo & van den Bosch 2005). Cosmological simulations of the galaxy formation have shown that gas accretion in cold dark matter (CDM) haloes proceeds in two distinct modes depending on the mass of the halo (Birnboim & Dekel 2003; Kereš et al. 2005). In massive haloes, gas accretion is dominated by ‘hot mode’ in which gas is first heated up to the virial temperature of the halo and then cools to settle gradually into the halo centre. By contrast, gas accretion into small haloes is dominated by ‘cold mode’ in which cold gas sinks in a dynamical time without being shock heated. These scenarios may affect the validity of the adiabatic contraction formula. Secondly, dark matter is not arranged on circular orbits and therefore $rM(r)$ is not strictly conserved. Barnes (1987), Sellwood (1999) and Sellwood & McGaugh (2005) report that the approximation overestimates the contraction measured in simulations. Moreover, recently Gnedin et al. (2004) claimed similar findings in a cosmological simulation. These authors suggest that the discrepancy is due to the circular-orbit assumption.

In this paper, we use idealized numerical experiments to investigate the effect of the two assumptions in the adiabatic contraction approximation (equation 1) and provide physical intuition for the numerical trends. In Section 2, we use one-dimensional simulations which incorporate dark matter halo mass accretion history as well as gas cooling to test the adiabatic disc growth assumption in...
realistic forming halo. We find that disc growth time-scale is always longer than dynamical time of the halo in many cases. We also show that the continued dark matter mass accretion has little affect in the inner halo. In Section 3, we test the circular-orbit assumption using high-resolution $N$-body simulations with cosmological dark matter halo initial conditions. As expected, we find that radial orbits reduce the dark matter halo response to disc growth predicted by the simple circular-orbit approach. However, in order to maintain an isotropic velocity distribution in cuspy haloes, a circular population is much larger than radial orbit population. This explains the often-observed consistency between simulations of a dark matter cuspy halo to disc growth. We study typical CDM haloes in Section 4 and summarize in Section 5.

2 ADIABATIC CONTRACTION DURING CDM HALO FORMATION

We investigate a dark matter halo response to disc growth for several different halo and disc growth time-scales using one-dimensional hydrodynamic simulations (see Appendix A and Lu et al. 2006). We use $5 \times 10^4$ equal-mass shells to represent the dark matter distribution and 500 equal-mass shells to represent the gas distribution. The evolution of every gas shell is followed until it cools below $10^4$ K; thereafter its mass is assigned to an exponential disc. The scalelength of the disc, $r_a$, is fixed to $(0.05/\sqrt{2})r_{\text{vir}}$, where $r_{\text{vir}}$ is the virial radius of the halo at $z = 0$ (Mo, Mao & White 1998). The disc is assumed to be a rigid exponential disc.

We examine both an early-time ($z = 4$) and late-time ($z = 0.25$) halo formation scenarios with $M = 10^{12} M_{\odot}$. Because the virial mass of the halo is fixed at $10^{12} M_{\odot}$, gas accretion is primarily in the ‘hot mode’ phase for this halo mass (Kereš et al. 2005). The gas is heated to the virial temperature and then slowly cools to form a disc. In order to examine the adiabatic contraction for the ‘cold mode’ gas accretion, we artificially increase cooling rate by a factor of 100. Then, the accreted gas cools rapidly and joins the disc without shock heating. In this case, the disc and its host halo have similar growth times.

For the four simulations, two redshifts and two accretion models, we measure the rotation curves at the present time, which are shown in Fig. 1. Since disc growth time is longer than dynamical time of the dark matter halo in all four, the adiabatic contraction approximation adequately predict the response of dark matter haloes. Although the host halo continues to accrete dark matter, this accretion primarily affects the outer halo. In summary, the adiabatic contraction formula gives an acceptable approximation for these standard scenarios.

3 ADIABATIC CONTRACTION FOR A NON-CIRCULAR-ORBIT DISTRIBUTION

We explore disc growth in a dark matter halo represented by a Navarro, Frenk & White (1997, hereafter NFW) profile, $\rho \propto 1/\r...
The dark matter halo is mass = 12 NFW halo and disc is fiducial disc. The solid line is for the adiabatic contraction approximation prediction, the orbit curve for the adiabatic contraction approximation prediction and the circular-orbit halo case are almost identical.

\[ r(r + r_h)^2 \] with virial radius \( r_{\text{vir}} \). We assume a concentration \( c = r_{\text{vir}}/r_s = 12 \) consistent with the rotation curve for a large spiral galaxy and examine three cases of different anisotropy to study the effects of radial orbits on the circular-orbit adiabatic prediction: a circular-orbit halo, an isotropic halo and a radial orbit biased halo. The NFW halo with pure circular orbits is constructed by assigning each of the particles at radius \( r \) a tangential velocity, \( v_t = \sqrt{GM(< r)/r} \) in a random tangential direction. The isotropic and radially biased distribution functions are computed using the Osipkov–Merritt model (Osipkov 1979; Merritt 1985; Binney & Tremaine 1987) which controls the orbital structure by an anisotropy radius \( r_a \). For an isotropic halo, \( r_a = \infty \). For the radially biased case, we choose the minimum value for \( r_a \) that results in positive density. The anisotropy profile in this model closely corresponds to the profile from a virialized collapse (Eke, Navarro & Frenk 1998; Colín, Klypin and Kravtsov 2000). The \( N = 10^5 \)-particle phase spaces are realized by a Monte Carlo procedure. Our rigid exponential disc has mass \( M_d = 0.04 M_{\text{vir}} \) and the disc scalelength is \( r_d = 0.014 r_{\text{vir}} \) motivated by galaxy formation in \( \Lambda \)CDM cosmology (Mo, Mao & White 1998; Klypin, Zhao & Somerville 2002). To mimic disc growth, we increase the disc mass from zero, keeping the disc scalelength unchanged. To ensure the validity of the adiabatic approximation, the time-scale of disc mass growth is 10 times longer than the dynamical time of the dark matter halo at the disc scalelength. The gravitational force on each dark matter particle is calculated using the self-consistent field code (SCF; Clutton-Brock 1972, 1973; Herquist & Ostriker 1992; Weinberg 1999), which solves Poisson’s equation using a set of density–potential bi-orthogonal function expansions.

Fig. 2 shows the total rotation curves after disc contraction for the circular-orbit case (long-dashed curve), the isotropic case (dotted curve) and the radial orbit biased case (dot-dashed curve). For comparison, we also show the prediction of the adiabatic contraction approximation (solid curve). The adiabatic contraction approximation is nearly exact for circular orbits, but overestimates the contraction when the eccentric orbit contribution increases. The radial orbit biased halo model is not significantly biased toward radial orbit around disc \( r_s = 0.1 r_{\text{vir}} \sim 7r_d \). Consequently the effect of radial orbit is not dramatic in Fig. 2. However, it is clear that the radial orbit reduces the dark matter halo response.

Since it is difficult to simulate pure radial orbit haloes in three-dimensional N-body simulation, we use implement one-dimensional simulation with a pure radial orbit halo. The orbits are purely radial and the density profile of the simulated halo is proportional to \( r^{-2} \) in central region. Fig. 3 shows the rotation curve of the simulated halo compared with the prediction of adiabatic contraction formula. The circular-orbit prediction overestimates the contraction by factor of 2.

### 4 Adiabatic Contraction for Typical CDM Haloes

We consider a range of halo parameters and disc masses to explore the general applicability of the circular-orbit adiabatic approximation. Recent cosmological simulations show that velocities in the inner region of dark matter haloes is isotropic (Eke et al. 1998; Colín et al. 2000; Fujishige & Makino 2001; Diemand, Moore & Stadel 2004). Therefore we explore isotropic haloes. Although an NFW halo model is currently accepted in CDM cosmology, some recent theoretical models (Mo & Mao 2002; Weinberg & Katz 2002; Oh & Benson 2003; Mo & Mao 2004) and observations (De Blok et al. 2001) suggest that dark haloes may have cores. Simulations for the core halo are also carried for the three cases, with \( c = r_{\text{vir}}/r_{\text{core}} = 15, 12 \) and 7.5, respectively. In addition to the fiducial disc, \( m_\text{d} = 0.04 M_{\text{vir}} \) and \( r_d = 0.014 R_{\text{vir}} \), we consider a low-mass disc \( m_\text{d} = 0.02 M_{\text{vir}} \) and a high-mass disc \( m_\text{d} = 0.1 M_{\text{vir}} \).

Fig. 4 compares the post-formation rotation curves for NFW haloes and core haloes with \( c = 15 \) and 7.5 with the adiabatic contraction predictions. The formula overestimates the rotation velocity for these astronomically motivated halo models although the discrepancy is modest. Fig. 5 quantifies the relative differences, \( \eta \equiv |V_{\text{ad}} - V_{\text{sim}}|/V_{\text{sim}} \), as a function of halo concentration \( c \), where \( V_{\text{sim}} \) and \( V_{\text{ad}} \) are the circular velocities at \( r = 2.2 r_d \) obtained from...
Figure 4. Rotation curves from simulations cooperated with the adiabatic contraction approximation for isotropic NFW and core haloes. The dotted line is the rotation curve from disc only, the solid line is the total (disc + dark matter halo) rotation curve from the simulation results, and the long-dashed line is the total rotation curve from the adiabatic contraction approximation. We also plot the total rotation curve predicted by the modified adiabatic contraction approximation of Gnedin et al. (2004) with $A = 0.85$ and $w = 0.8$ (dot–dashed line). The disc has the fiducial parameters: $r_d = 0.014 r_{\rm vir}$ and $m_d = 0.04 m_{\rm vir}$. The overestimation by the adiabatic contraction approximation increases as halo concentration decreases. The modified adiabatic contraction approximation provides a much better fit to the simulation results.

Figure 5. Relative difference ($\eta = |V_{\text{adia}} - V_{\text{sim}}|/V_{\text{sim}}$) between the rotation speed from the simulation and from the adiabatic contraction approximation at $2.2 r_d$ for $c = 15$, 12 and 7.5 NFW and core haloes. Three discs, $m_d = 0.1$, 0.04 and 0.01$M_{\odot}$, are considered for each halo. The relative difference depends strongly on the halo structure and the disc mass dependence is negligible.

The discrepancy is 4 per cent for NFW model with $c = 15$ and increases to 8 per cent for $c = 7.5$. The discrepancy increases with disc mass but the dependence is weak. The $c = 7.5$ case is a low value for galaxy haloes in the current CDM model, therefore, these results show that the adiabatic contraction approximation remains good for isotropic NFW haloes. For core haloes, the discrepancy is 14 per cent for $c = 15$ and increases to 23 per cent for $c = 7.5$ with weak dependence on $m_d$.

Gnedin et al. (2004) improved the agreement between the adiabatic contraction approximation and the simulation result using a modified version of the original adiabatic contraction approximation including the effect of non-circular orbits. In this model, the adiabatic invariant $M(r)r$ is replaced by $M(\bar{r})\bar{r}$, where $\bar{r} = Ar^w$. The authors suggested $A \approx 0.85 \pm 0.05$ and $w \approx 0.8 \pm 0.02$ based on cosmological dark matter halo simulations. As comparison, we show in Fig. 4 the rotation curves obtained from this modified adiabatic contraction approximation, together with those obtained from the simulation and from the original adiabatic contraction approximation. As one can see, the modified adiabatic contraction approximation agrees with the simulation results for NFW haloes. For haloes with a constant density core, there is clear discrepancy between the model and simulation, although the modified model is better than the original adiabatic contraction model. Although the Gnedin et al. (2004) model takes the effect of non-circular orbits into account, their fitting formula, $\bar{r} = Ar^w$, is not based on the orbital structure. It simply reduces the halo contraction using fitting formula with empirically suggested fitting parameters. Therefore the Gnedin et al. (2004) model estimation for core halo cases with suggested fitting parameters does not work as well as one for NFW halo cases. For
core halo, different fitting parameters and further modification in fitting formula are required.

Fig. 5 shows that the adiabatic contraction approximation is better for high-concentration halos. This trend is explained by the distribution of orbits. We describe the shape of an orbit by the ratio of the angular momentum to the angular momentum of a circular orbit at a fixed energy $\kappa = J/J_{\text{max}}(E)$. The orbit with $\kappa = 0$ (c = 1) is radial (circular). Fig. 6 describes the ensemble average of this ratio for isotropic halo in radial bins $(\kappa)(\eta)$. At a fixed energy, the mean value of $\kappa$ is 2/3 for comparison.

Fig. 6 shows that an isotropic NFW halo has more low-eccentricity orbits at fixed radius than an isotropic core halo. This can be understood as follows. The density at a given radius in a halo is contributed by particles on different orbits. In the inner region of a halo, orbits with lower energies are more circular, while those with higher energies are more radial. Assuming isotropic velocity dispersion, one can show that the energy distribution is flatter in a core halo than in a cuspy halo. Consequently, for isotropic velocity distribution a core halo requires more high-eccentricity orbits than an NFW halo.

5 SUMMARY

We study the accuracy of the circular-orbit adiabatic approximation (Blumenthal et al. 1986) in predicting halo contraction due to disc formation and provide a physical explanation for the desired trends. We consider (1) variation in the accretion time-scale; (2) variation in the accreted disc mass; (3) variation in the central concentration of both cuspy and core halo models and (4) variation in the velocity isotropy. The circular-orbit adiabatic contraction approximation is acceptable over a wide range of astronomically interesting parameters. The relative change in the rotation curve value between the simulation and circular-orbit approximation at 2.2 disc scale-lengths, $\eta$, is less than 23 per cent for our entire range of realistic parameters. We find that the disc growth is still slower than dark matter halo dynamical time in the vicinity of the disc and therefore the adiabatic approximation is maintained. The value of $\eta$ depends only weakly on the fraction of accreted baryon mass, and therefore, the dependence on halo concentration cannot be explained by disc dominance in less concentrated haloes. However, $\eta$ is strongly correlated with the fraction of eccentric orbits in the distribution. The steeper the cusp, the larger fraction of more circular orbits are required at fixed radius, and this supports the circular-orbit approximation. Although the adiabatic concentration approximation overestimates the response of dark matter haloes, as long as the dark matter halo has central cusp and isotropic velocity distribution the overestimation is negligible.

Our results have important implications for the formation of disc galaxies in the CDM scenario. In comparing theory with the observed Tully–Fisher relation, one usually uses the peak rotation velocity of galaxy discs to represent the observed rotation velocities (Mo et al. 1998). However, as shown in Mo & Mao (2000), if dark matter haloes respond to the disc growth according to the adiabatic contraction model, current CDM model predicts a Tully–Fisher relation that has a much too low zero-point (i.e. galaxies are too faint for a given peak rotation velocity). In order to match the observed Tully–Fisher zero-point, one has to assume that disc growth does not cause any contraction in dark matter haloes at all (e.g. Croton et al. 2006). This assumption is not supported by our results, which show that adiabatic contraction approximation works reasonably well for CDM haloes over a wide range of situations. However, it should be pointed out that there are other astrophysical processes, such as mergers (Dekel, Devor & Hetzroni 2003; Boylan-Kolchin & Ma 2004), dynamical heating by substructures (El-Zant et al. 2004), halo pre-processing (Mo & Mao 2004) and resonance dynamics (Weinberg & Katz 2002), that may modify halo structures but are not included in the models considered here. Unfortunately, the importance of these processes is not well understood at the present.

ACKNOWLEDGMENTS

We would like to thank our referee, Joel Primack, for many comments and suggestions that improved this paper. We would like to thank Neal Katz for useful discussions. JHC and YL thank Dusan Kereš and Yicheng Guo for reading our manuscript. MDW acknowledges the support of NASA ATP NAG5-12038.

REFERENCES

Merritt D., 1985, AJ, 90, 1027
Osipkov L. P., 1979, Pis’ma Astr. Zh., 5, 77

APPENDIX A: ONE-DIMENSIONAL HYDRODYNAMIC SIMULATIONS

We use the Lagrangian-based one-dimensional hydrodynamic code described in Lu et al. (2006) to simulate formation of a halo from an initial perturbation at a high redshift $z_i$. We assume the halo mass accretion histories proposed by Wechsler et al. (2002):

$$M(a) = M_0 \exp \left[ -2a_i \left( \frac{a_0}{a} - 1 \right) \right],$$

(A1)

where $a$ is the expansion scalefactor, $a_i$ is the scalefactor corresponding to the formation time of the halo and $M_0$ is mass of the halo at the observation time $a_0$. In this function, $a_i$ is the only free parameter to characterize the shape of a mass accretion history. Reader may refer to Lu et al. (2006) for detailed description on making the initial conditions given the mass accretion history. We choose $a_i = 200$, and the initial temperature of gas shells is set to be the CMB temperature at this epoch.

The simulation has both dark matter shells and gas shells. The gas initially follows the distribution of the dark matter but evolves differently from the dark matter due to hydrodynamics. We use the Lagrangian finite-difference scheme to follow the evolution of the shells. The numerical treatment is the same as what is described in Thoul & Weinberg (1995). To avoid numerical instability due to dark matter shell crossing, the mass of each dark matter shell is chosen to be much smaller than that of a gas shell. The baryon fraction is fixed at $f_b = 0.17$. The chemical abundance is assumed to be primordial. The radiative cooling function proposed by Katz, Weinberg & Hernquist (1996) is implemented in the simulations.

When a gas shell cools to a temperature, below $10^4$ K, the gas in the shell is considered to be cold. Since we do not include any cooling processes below this temperature, the cold gas is assumed to retain a temperature of $10^4$ K until it flows into the centre of the halo. At this point, the gas joins a central exponential disc with a scalelength $r_d = (0.05/\sqrt{2})r_{vir}$, where $r_{vir}$ is the virial radius of the halo at $z = 0$. The cold gas disc is assumed to be a rigid object, and its gravity is included in the subsequent evolution of other mass shells. At any given time, the gravitational acceleration of a shell at radius $r_i$ is given by

$$g_i = H_0^2 \Omega_m r_i \left( \frac{G M(< r_i) r_i}{(r_i^2 + r_0^2)^{3/2}} \right),$$

(A2)

where $H_0$ is the Hubble constant at the present time, $\Omega_m$ is the density parameter of the cosmological constant, $M(< r_i)$ is the total mass (dark matter, gas and exponential disc) enclosed by $r_i$ and $r_0$ is a softening length taken to be $0.0005 \times$ the virial radius of the halo at the present time. This scale is much smaller than any scale of interest. In the simulations, the density parameter of the non-relativistic matter and of the cosmological constant are $\Omega_m = 0.3$ and $\Omega_\Lambda = 0.7$, and the Hubble constant is $H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$.

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.