Detection of the irradiated donor in the LMXBs 4U 1636-536 (=V801 Ara) and 4U 1735-444 (=V926 Sco)

J. Casares,1 R. Cornelisse,1,2⩾ D. Steeghs,3⩾ P. A. Charles,2,4⩾ R. I. Hynes,5⩾ K. O’Brien6⩾ and T. E. Strohmayer7⩾

1Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain
2School of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ
3Harvard-Smithsonian Centre for Astrophysics, Cambridge, MA 02138, USA
4South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa
5Department of Physics and Astronomy, 202 Nicholson Hall, Louisiana State, Baton Rouge, LA 70803, USA
6European Southern Observatory, 202 Nicholson Hall, Louisiana State, Baton Rouge, LA 70803, USA
7Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Centre, Greenbelt, MD 20771, USA

ABSTRACT

Phase-resolved VLT spectroscopy of the bursting low-mass X-ray binaries 4U 1636-536/V801 Ara and 4U 1735-444/V926 Sco is presented. Doppler images of the N III λ4640 Bowen transition reveal compact spots which we attribute to fluorescent emission from the donor star and enable us to define a new set of spectroscopic ephemerides. We measure $K_{\text{em}} = 277 \pm 22$ and $226 \pm 22 \text{ km s}^{-1}$ from the N III spots in V801 Ara and V926 Sco, respectively, which represent strict lower limits to the radial velocity semi-amplitude of the donor stars. Our new ephemerides provide confirmation that light-curve maxima in V801 Ara and likely V926 Sco occur at superior conjunction of the donor star and hence photometric modulation is caused by the visibility of the X-ray heated donor. The velocities of He II λ4686 and the broad Bowen blend are strongly modulated with the orbital period, with phasing supporting emission dominated by the disc bulge. In addition, a reanalysis of burst oscillations in V801 Ara, using our spectroscopic T_0, leads to $K_1 = 90–113 \text{ km s}^{-1}$. We also estimate the K-corrections for all possible disc flaring angles and present the first dynamical constraints on the masses of these X-ray bursters. These are $K_2 = 360 \pm 74 \text{ km s}^{-1}$, $f(M) = 0.76 \pm 0.47 \text{ M}_\odot$ and $q = 0.21–0.34$ for V801 Ara and $K_2 = 298 \pm 83 \text{ km s}^{-1}, f(M) = 0.53 \pm 0.44 \text{ M}_\odot$ and $q = 0.05–0.41$ for V926 Sco. Disc flaring angles $\alpha > 12^\circ$ and $q > 0.26–0.34$ are favoured for V801 Ara whereas the lack of K_1 constraint for V926 Sco prevents tight constraints on this system. Although both binaries seem to have intermediate inclinations, the larger equivalent width of the narrow N III line in V801 Ara at phase 0.5 relative to phase 0 suggests that it has the higher inclination of the two.

Key words: accretion, accretion discs – binaries: close – stars: individual: V801 Ara – stars: individual: V926 Sco – X-rays: binaries.

1 INTRODUCTION

Low-mass X-ray binaries (LMXBs) are interacting binaries where a low-mass donor transfers matter on to a neutron star or black hole. 4U 1636-536 (=V801 Ara) and 4U 1735-444 (=V926 Sco) are among the optically brighter members in the class of persistent LMXBs, characterized by $L_\lambda \approx 10^{37–38} \text{ erg s}^{-1}$ and blue spectra with weak high-excitation emission lines (mainly He II λ4686 and the C III/N III Bowen blend at λ4640). They also share similar properties: they are both atoll sources (as based on the pattern traced in X-ray colour–colour diagrams, see e.g. Hasinger & van der Klis 1989) with frequent burst activity and short orbital periods (3.80 and 4.65 h, respectively) revealed through optical photometry (Pedersen, van Paradijs & Lewin 1981; Corbet et al. 1986). Their light curves display shallow sinusoidal modulations which have been interpreted as due to the geometrically varying visibility of the irradiated donor star (e.g. van Paradijs, van der Klis & Pedersen 1988). Therefore, the photometric maxima supposedly define orbital phase 0.5 i.e. inferior conjunction of the compact object. Note, however, that this

© 2006 The Authors. Journal compilation © 2006 RAS
assumption requires confirmation because photometric maxima can sometimes be associated with asymmetries in the disc structure such as the visibility of the irradiated inner disc bulge at phase ~ 0.3 (e.g. 4U 1822-371 Hellier & Mason 1989) or superhump activity (see Haswell et al. 2001).

Only a few spectroscopic studies have been presented on these two binaries up to now. For example, Smale & Corbet (1991) report Hz spectroscopy of V926 Sco showing that the line core is dominated by emission from the disc bulge or splash region where the gas stream interacts with the outer disc rim. On the other hand, Augusteijn et al. (1998) (A98 hereafter) presented radial velocity curves of He II $\lambda 4686$ and the Bowen blend at $\lambda 4640$ for both V926 Sco and V801 Ara. They concluded that these high-excitation lines are also tracing the motion of the disc bulge.

V801 Ara is particularly remarkable since it is one of only 14 bursters where ‘burst oscillations’ (i.e. nearly coherent high-frequency pulsations) have been detected during several thermonuclear X-ray bursts (Giles et al. 2002, G02 hereafter). Furthermore, a train of burst oscillations was also discovered in a 13 min interval during a ‘superburst’, showing a frequency drift which has been interpreted as the orbital motion of the neutron star (Strohmayer & Markwardt 2002, SM02 hereafter). By fitting the frequency evolution with a circular orbit SM02 constrained the radial velocity amplitude of the neutron star to the range $90 < \nu_1 < 175 \text{ km s}^{-1}$. These constraints on ν_1 will be readdressed and improved in this paper. Further constraints on the system parameters and the component masses, however, require dynamical information on the donor star which, unfortunately, is normally overwhelmed by the optical emission from the X-ray irradiated disc.

A new indirect method to extract dynamical information from donor stars in persistent LMXBs was proposed by Steeghs & Casares (2002) (SC02 hereafter). They detected narrow high-excitation emission lines from the irradiated surface of the donor star in Sco X-1 which led to the first determination of its radial velocity curve and mass function. These lines are strongest in the Bowen blend which is used to refine the absolute phasing and systemic velocities. Further constraints on the system parameters and the component masses are obtained through the double-Gaussian technique applied to the wings of the HeII line. Using these systemic velocities, we compute Doppler tomograms of He II $\lambda 4686$ and the Bowen fluorescence NIII $\lambda 4640$ which are presented in Section 5. The NIII maps display evidence of irradiated emission from the donor star, which is used to refine the absolute phasing and systemic velocities. Finally, in Section 6 we provide an improved determination of K_1 for V801 Ara and present our constraints on the masses in the two binaries.

2 Observations and Data Reduction

V801 Ara and V926 Sco were observed on the nights of 2003 June 23 and 25 using the FORS2 Spectrograph attached to the 8.2-m Yepun Telescope (UT4) at the Observatorio Monte Paranal (ESO). A total of 42 spectra of 600s of V801 Ara and 102 exposures of 200s of V926 Sco were obtained with the R1400V holographic grating, covering a complete orbital cycle per night for each target. We used a 0.7-arcsec slit width which rendered a wavelength coverage of $\lambda \lambda 4514-5815$ at 70 km s$^{-1}$ [full width at half-maximum (FWHM)] resolution, as measured from Gaussian fits to the arc lines. The seeing was variable between 0.6 and 1.2 arcsec during our run. The flux standard Feige 110 was also observed with the same instrumental configuration to correct for the instrumental response of the detector.

The images were de-biased and flat-fielded, and the spectra subsequently extracted using conventional optimal extraction techniques in order to optimize the signal-to-noise ratio of the output spectra (Horne 1986). A He–Ne–Hg–Cd comparison lamp image was obtained in daytime to provide the wavelength calibration scale. This was obtained by a fourth-order polynomial fit to 19 lines, resulting in a dispersion of 0.64 Å pix$^{-1}$ and rms scatter < 0.05 Å. Instrumental flexure was monitored through cross-correlation between the sky spectra and was found to be very small, always within 14 km s$^{-1}$ (0.4 pix.) on each night. These velocity drifts were removed from each individual spectrum, and the zero-point of the final wavelength scale was established from the position of the strong OI $\lambda 5577.338$ skyline. All the spectra were calibrated in flux using observations of the flux standard Feige 110. However, due to light loss caused by our narrow slit and variable seeing conditions, our flux calibration is only accurate to ~ 50 per cent.

3 Average Spectra and Emission-Line Parameters

Fig. 1 presents the average spectra of V801 Ara and V926 Sco in f_λ flux units. They show a blue continuum with broad high-excitation emission lines of He II $\lambda 4686$, $\lambda 5411$, the Bowen blend at $\lambda \lambda 4514-5815$ and Hβ, which are typical of X-ray active LMXBs. Possible HeI lines at $\lambda 4922$ and $\lambda 5015$ are also identified but these are significantly weaker. Table 1 summarizes the FWHM, EW and centroid λ_c of the main emission lines obtained through simple Gaussian fits. We note that the average spectra (including the line strengths) look very similar to those presented by A98, which seems to imply that there has been no large, long-term variations between the two binaries.
data epochs. Incidentally, the EWs and FWHMs of all lines do not show any significant nigh-to-night variability nor modulation with the orbital period. Aside from the intrinsically broad Bowen blend, which is a blend of at least three C\textsc{iii}/N\textsc{iii} transitions, we note that emission lines are a factor of \~{}2 narrower in V926 Sco than in V801 Ara. Given the similarities in their orbital periods, this suggests a projection effect with a lower inclination angle for V926 Sco. In addition, the emission-line centroids in V926 Sco are significantly blueshifted, probably due to a larger (approaching) systemic velocity. This also applies to the Bowen complex since the difference in wavelength between V801 Ara and V926 Sco (\~{}110 km s−1) is consistent with the difference in velocities found for the other lines. The blue continuum is also steeper for V926 Sco, as expected because of its lower reddening (see A98).

The Bowen blend mainly consists of emissions corresponding to the N\textsc{iii} transitions at $\lambda\lambda\lambda\lambda$4634,4641,4642 and C\textsc{iii} at $\lambda\lambda\lambda\lambda$4647,4651,4652 (Schachter, Filippenko & Kahn 1989). In an attempt to estimate the relative contribution of the different transitions we have performed a combined multi-Gaussian fit to the average emission profiles of He\textsc{ii} λ4686 and the Bowen blend for the two LMXBs. The fit consists of four Gaussians, one for the He\textsc{ii} line, two for the N\textsc{iii} emissions at λ4634 and λ4641-2 and another for the C\textsc{iii} emissions at λ4647-52. Free parameters are the linewidths, which are set to be equal for all the lines, individual line centroids and intensities. The linewidths are mainly driven by the fit to the unblended He\textsc{ii} line and hence the latter is effectively used as a template to constrain the line profiles within the Bowen blend. Fig. 2 presents the results of the fit. Because widths are set to be the same for all lines, flux ratios are given by simple peak ratios. Our best fit yields N\textsc{iii} ratio $I(\lambda 4634)/I(\lambda 4641-2) = 0.31 \pm 0.10$ and 0.59 \pm 0.02 for V801 Ara and V926 Sco, respectively. This is a factor of \~{}2 lower than the theoretical N\textsc{iii} ratio of 0.71, computed by Nussbaumer (1971) for Bowen fluorescence, but consistent with the results of Schachter et al. (1989) for Sco X-1. Similarly, Hynes (private communication) finds a N\textsc{iii} ratio in the range 0.36–0.56 (depending on time) for GX 339-4 during its 2002 outburst. We can also calculate the C\textsc{iii}/N\textsc{iii} ratio $I(\lambda 4647-52)/I(\lambda 4634 + \lambda 4641-2)$ and find 0.38 \pm 0.06 and 0.35 \pm 0.01 for V801 Ara and V926 Sco, respectively. For comparison, we have performed the same analysis on average spectra of Sco X-1 and 4U 1822-371, using data presented in SC02 and Casares et al. (2003), and find 0.44 \pm 0.03 and 0.49 \pm 0.01, respectively. The lower C\textsc{iii}/N\textsc{iii} ratio in V801 Ara and V926 Sco may indicate possible evidence of CNO processed material but we have to be cautious here because of the oversimplification in our fitting model. In particular, we cannot rule out other possible transitions (most likely O\textsc{ii} lines at $\lambda\lambda\lambda\lambda$4641.8 and 4649.1; see McClintock et al. 1975) contributing to our components at \sim4641 and \sim4651 Å, which so far we have assumed to be dominated by N\textsc{iii} and C\textsc{iii} transitions. Furthermore, since the C\textsc{iii} and O\textsc{ii} lines are not powered by Bowen fluorescence but photoionization, different line ratios may stem from differences in efficiency of these two excitation mechanisms rather than true CNO abundance variations.

4 Radial Velocity Study and Orbital Variability

Fig. 3 displays the radial velocities of the Bowen blend and He\textsc{ii} λ4686 line for V801 Ara and V926 Sco, obtained by cross-correlating the individual spectra with Gaussians of fixed FWHM as given in Table 1. We have assumed $\lambda_0 = 4643.0$ for the central wavelength of the Bowen blend. The velocities are folded in orbital phase, using the ephemerides of G02 and A98 for V801 Ara and V926 Sco, respectively. For comparison, we have performed the same analysis on average spectra of Sco X-1 and 4U 1822-371, using data presented in SC02 and Casares et al. (2003), and find 0.44 \pm 0.03 and 0.49 \pm 0.01, respectively. The lower C\textsc{iii}/N\textsc{iii} ratio in V801 Ara and V926 Sco may indicate possible evidence of CNO processed material but we have to be cautious here because of the oversimplification in our fitting model. In particular, we cannot rule out other possible transitions (most likely O\textsc{ii} lines at $\lambda\lambda\lambda\lambda$4641.8 and 4649.1; see McClintock et al. 1975) contributing to our components at \sim4641 and \sim4651 Å, which so far we have assumed to be dominated by N\textsc{iii} and C\textsc{iii} transitions. Furthermore, since the C\textsc{iii} and O\textsc{ii} lines are not powered by Bowen fluorescence but photoionization, different line ratios may stem from differences in efficiency of these two excitation mechanisms rather than true CNO abundance variations.

Figure 2

Combined fit to He\textsc{ii} λ4686 and the Bowen blend using three Gaussians at \sim4634 Å (N\textsc{iii}), \sim4641Å (N\textsc{iii}) and \sim4651Å (C\textsc{iii}). See text for details.

Table 1. Emission-line parameters.

<table>
<thead>
<tr>
<th>Line</th>
<th>FWHM (km s−1)</th>
<th>EW (Å)</th>
<th>Centroid (Å)</th>
<th>ΔV (km s−1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V801 Ara</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowen</td>
<td>1848 ± 65</td>
<td>4.25 ± 0.03</td>
<td>4643.2 ± 0.4</td>
<td>–</td>
</tr>
<tr>
<td>He\textsc{ii} λ4686</td>
<td>1216 ± 45</td>
<td>3.31 ± 0.03</td>
<td>4685.6 ± 0.3</td>
<td>–9 ± 11</td>
</tr>
<tr>
<td>H\beta</td>
<td>963 ± 56</td>
<td>1.67 ± 0.02</td>
<td>4860.9 ± 0.3</td>
<td>–25 ± 21</td>
</tr>
<tr>
<td>V926 Sco</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowen</td>
<td>1662 ± 65</td>
<td>3.99 ± 0.02</td>
<td>4614.5 ± 0.4</td>
<td>–</td>
</tr>
<tr>
<td>He\textsc{ii} λ4686</td>
<td>657 ± 26</td>
<td>2.18 ± 0.02</td>
<td>4683.9 ± 0.2</td>
<td>–118 ± 12</td>
</tr>
<tr>
<td>H\beta</td>
<td>507 ± 39</td>
<td>0.43 ± 0.02</td>
<td>4859.2 ± 0.4</td>
<td>–134 ± 25</td>
</tr>
</tbody>
</table>

Irradiated donor in V801 Ara and V926 Sco

© 2006 The Authors. Journal compilation © 2006 RAS, MNRAS 373, 1235–1244
other hand, the Bowen blend in V926 Sco is rather noisy and does not exhibit any clear components that are visible by eye. The He II trailed spectra do show a clear orbital modulation with complex structure.

Following our work on Sco X-1 (SC02) and 4U 1822-371 (Casares et al. 2003), we have applied the double-Gaussian technique (Schneider & Young 1980) to the wings of the He II λ4686 line in an attempt to estimate the radial velocity curve of the compact object. The trailed spectra presented in Fig. 4 demonstrate that the line cores are dominated by strong, complex, low-velocity components associated with asymmetric emission from the outer disc and/or the donor star, which we want to avoid. Therefore, by convolving the emission line with a double-Gaussian filter of sufficiently large Gaussian separation we can extract radial velocity curves from the wings of the profile, which are expected to follow the motion of the compact star. We have used a double-Gaussian bandpass with FWHM = 100 km s\(^{-1}\) and relative Gaussian separations in the range \(a = 400 - 1400\) km s\(^{-1}\) in steps of 100 km s\(^{-1}\). In order to improve statistics, we have co-added our spectra in 15 phase bins using the photometric ephemerides. The radial velocity curves obtained for different Gaussian separations are subsequently fitted with sine waves of the form \(V(\phi) = \gamma + K \sin 2\pi(\phi - \phi_0)\), fixing the period to the orbital value. The best-fitting parameters are displayed as a function of the Gaussian separation \(a\) in a diagnostic diagram (see Fig. 5).

In both cases, we see how the line cores are dominated by high-amplitude (\(K \sim 200\) km s\(^{-1}\)) S-waves which fade as we move to the line wings, where lower \(K\)-amplitudes of a few tens of km s\(^{-1}\) are found. On the other hand, the \(\gamma\) velocities are very steady throughout the profiles, with average values of \(\sim -30\) (V801 Ara) and \(\sim -130\) km s\(^{-1}\) (V926 Sco). The blue-to-red crossing phase for V926 Sco displays a smooth decreasing trend from the line core to the wings, whereas it is rather constant for V801 Ara, with an average value of \(\phi_0 \sim 0.7\). We estimate that the velocity points start to be corrupted by continuum noise for Gaussian separations larger than \(a \sim 1000\) as indicated by the diagnostic parameter \(\sigma(\gamma)/K\) (see Shafter, Szkody & Thorstensen 1986). Therefore, we decided to adopt the average values for the parameters obtained from the last two separations before \(\sigma(\gamma)/K\) starts to rise i.e. \(a = 900-1000\) km s\(^{-1}\) for V801 Ara and 1000-1100 km s\(^{-1}\) for V926 Sco. This yields \(K_1 = 93 \pm 25\) km s\(^{-1}\), \(\gamma = -42 \pm 4\) km s\(^{-1}\), \(\phi_0 = 0.68 \pm 0.03\) for V801 Ara and \(K_1 = 96 \pm 9\) km s\(^{-1}\), \(\gamma = -121 \pm 7\) km s\(^{-1}\) and \(\phi_0 = 0.20 \pm 0.01\) for V926 Sco. The error bars have been adjusted to incorporate the scatter between different values within our preferred range. Note that \(\phi_0\) of V801 Ara is delayed by \(\sim 0.18\) with respect to the inferior conjunction of the compact object (dotted line in Fig. 5), as predicted by the photometric ephemerides. This is classically observed in interacting binaries and interpreted as contamination of the line wings by residual emission from the disc bulge/hotspot (Marsh 1998). On the other hand, \(\phi_0\) of V926 Sco...
produced on the irradiated hemisphere of the donor star, as has been shown to be the case in Sco X-1 (SC02) and 4U 1822-371 (Casares et al. 2003), we correct the previous photometric ephemerides and derive the following spectroscopic ephemerides, which will be used in the remainder of this paper:

\[T_0(\text{HJD}) = 2452813.531(2) + 0.15804693(16)E \]
\[T_0(\text{HJD}) = 2452813.495(3) + 0.19383351(32)E, \]

where the zero-phase error comes from the uncertainty in the centroid position of the spots. Equation (1) corresponds to the ephemerides of V801 Ara and equation (2) to V926 Sco. With these ephemerides, the He II \(\lambda 4686 \) maps of the two binaries show a crescent shape brightness distribution pointing towards emission from an extended disc bulge.

Following SC02, we have used the He II Doppler maps to refine the systemic velocities derived in the previous section. The \(\chi^2 \) value of the map was calculated for a range of values of \(\gamma \), and the best fit in terms of minimal \(\chi^2 \) was achieved for \(\gamma \approx -39 \text{ km s}^{-1} \) (V801 Ara) and \(\gamma \approx -132 \text{ km s}^{-1} \) (V926 Sco). The use of an incorrect systemic velocity has the effect of blurring bright spots into, as opposed to V801 Ara, elongated ‘defocused’ features in Doppler images. Therefore, as a further test, we have also computed N III \(\lambda 4640 \) maps for a set of \(\gamma \)-velocities in the range \(-200\) to \(+200 \text{ km s}^{-1}\) and we looked for the best focused N III spots by computing the skewness using box sizes of 5, 10 and 20 pixels. We find that the most symmetric and compact spots are found for \(\gamma \) values in the range \(-29\) to \(-39 \text{ km s}^{-1} \) (V801 Ara) and \(137-143 \text{ km s}^{-1} \) (V926 Sco). Therefore, we decided to adopt \(\gamma = -34 \pm 5 \text{ km s}^{-1} \) (V801 Ara) and \(\gamma = -140 \pm 3 \text{ km s}^{-1} \) (V926 Sco) and these are the values that we have used in the final Doppler maps, which are presented in Fig. 6. The N III maps reveal compact bright spots which we interpret as irradiated emission from the inner hemisphere of the donor star. These spots are obviously located along the vertical axis because of our ephemerides definition. We have calculated the position of these spots by computing their centroids using the centring algorithm CENTROID in IRAF\(^2\) and find \(K_{em} = 277 \pm 22 \text{ km s}^{-1} \) (V801 Ara) and \(226 \pm 22 \text{ km s}^{-1} \) (V926 Sco). We note that \(K_{em} \) is very weakly dependent on \(\gamma \), with only a \(10 \text{ km s}^{-1} \) drift when \(\gamma \) varies by \(\pm 20 \text{ km s}^{-1} \) around our central value. Therefore, our \(K_{em} \) determinations seem very robust and they represent strict lower limits to the true radial velocity semi-amplitude \(K_2 \) of the donor stars because they must arise from the irradiated hemisphere facing the neutron star. Further confirmation of our system parameters is provided by the appearance of the sharp C III/N III transitions after co-adding all the spectra in the rest frame of the N III \(\lambda 4640 \) emission-line region (see Fig. 7). Note that we have not attempted to compute Doppler images of the He II lines because these are contaminated by phase-variable absorption components, as was also the case in 4U 1822-371 (e.g. Casares et al. 2003). Absorption violates the principles of Doppler tomography and makes it very difficult to interpret the corresponding Doppler images.

6 DISCUSSION

The detection of N III \(\lambda 4640 \) fluorescence emission from the irradiated donor in V801 Ara and V926 Sco provides new absolute

1 Note that the grey-scale in the N III maps have been set to enhance the contrast of the sharp components. This is the reason why these maps do not show any trace of emission from the underlying broad component.

2 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
the other hand, light-curve maxima in V926 Sco are located at orbital phase 0.68 ± 0.06. This is in between the maximum visibility of the irradiated donor and the disc bulge and hence it would imply that light-curve maxima arise by a combination of these two emitting regions. However, we note that the uncertainty in the photometric ephemerides of V926 Sco is likely to be higher than stated in A98 due to the limited number of arrival times fitted and their large scatter (Augusteijn, private communication). Therefore, it is possible that light-curve maxima in V926 Sco are also consistent with superior conjunction of the irradiated donor star. This is the most likely scenario because it would be hard to understand an emission source peaking at phase ~0.8 in an irradiation-dominated environment without invoking some strange (and stable) disc configuration.

We have also determined the systemic velocities for the two binaries i.e. −34 ± 5 km s⁻¹ (V801 Ara) and −140 ± 3 km s⁻¹ (V926 Sco). These can be compared with v_r, the radial velocity, relative to the local standard of rest, due to Galactic rotation at the location of the binaries. For the case of V801 Ara, we take $l = 332.9°$, $b = -4.8°$ and $d = 6–7$ kpc, based on peak fluxes of radius-expansion X-ray bursts for $M_1 = 1.4–2 M_\odot$ (Galloway et al. 2005). Assuming the Galactic rotation curve of Nakaniši & Sofue (2003) we find v_r in the range −103 to −111 km s⁻¹. This is much larger than our systemic velocity which could be explained through the recoil velocity gained by the binary during the supernova explosion which formed the neutron star. Thus, we can set a lower limit to the kick velocity in V801 Ara of −70 km s⁻¹. Regarding V926 Sco, we take $l = 346.1°$, $b = -7.0°$ and a distance $d = 9.1$ kpc (for a canonical 1.4 M_\odot neutron star, see A98). The Galactic rotation curve at the position of V926 Sco yields $v_r = -111$ km s⁻¹, close but significantly lower than our systemic velocity. The difference might also be ascribed to a kick velocity received by the neutron star at birth or, alternatively, a neutron star mass of ≥1.7 M_\odot. Note that the latter implies a larger distance of $d = 10$ kpc and hence $v_r = -140$ km s⁻¹.

6.1 System parameters for V801 Ara

The N_\text{iii} λ4640 spot in the Doppler map yields $K_{em} = 277 ± 22$ km s⁻¹. It must arise on the inner hemisphere of the donor and hence it sets a lower limit to the velocity semi-amplitude of the companion’s centre of mass K_2. In order to find the real K_2 we need to calculate the K-correction or K_{em}/K_2 for the case of emission lines in illuminated atmospheres, which depends mainly on the binary mass ratio $q = M_2/M_1$ (with M_2, M_1 the masses of the donor and compact star, respectively) and the disc flaring angle α. The K-correction has been calculated by Muñoz-Darias, Casares & Martínez-Pais (2005) using an irradiation binary code which includes shadowing by an axisymmetric flared disc. The results are tabulated as a function of q, α and the inclination angle i in table 1 of their paper, although the dependence on i is very weak. The K-correction is constrained between $\alpha = 0$ (i.e. we neglect disc shadowing) and the geometric limit set by emission from the irradiated limb of the donor, i.e. $K_{em}/K_2 < 1 - 0.213 \sqrt{1 + q^{1/3}}$ (see Muñoz-Darias et al. 2005).

An upper limit on q is established by taking $M_1 \geq 1.4 M_\odot$ and $M_2 \leq 0.48 M_\odot$, the largest possible zero-age main-sequence (ZAMS) star fitting in a 3.79 h period Roche lobe (Tout et al. 1996), which leads to $q \leq 0.34$. As a first approach, one can assume the empirical mass–radius relation for low-mass stars in cataclysmic variables and LMXBs (see e.g. Warner 1995; Smith & Dhillon 1998) which yields $M_2 \leq 0.32$. This, combined with a canonical neutron star of $M_2 \simeq 1.4 M_\odot$, would lead to a plausible $q \sim 0.23$. The K-correction for $K_{em} = 277 ± 22$ km s⁻¹ and $q \sim 0.23$ would yield...
303 < K z < 404 km s⁻¹, where we have adopted the coefficients for the case i = 40° in table 1 of Muñoz-Darias et al. (2005) because V801 Ara is not eclipsing.

A more refined K-correction requires a knowledge of q. This can be constrained by the rotational broadening V rot sin i of the companion star which, for the case of synchronous rotation, is related to q through

\[V_{\text{rot}} \sin i \simeq 0.462 K q^{1/3} (1 + q)^{2/3} \]

(Wade & Horne 1988). A lower limit to V rot sin i can be estimated from the width of the sharp N iii fluorescence emission in the Doppler-corrected average spectrum. This is because emission lines arise not from the entire Roche lobe but from the irradiated part only. A multi-Gaussian fit to the Bowen profile presented in Fig. 7 gives FWHM (N iii λ4640) = 140 ± 21 km s⁻¹, which includes the effect of our intrinsic instrumental resolution (70 km s⁻¹). This has been accounted for by broadening a Gaussian template of FWHM = 70 km s⁻¹ between 10 and 200 km s⁻¹, in steps of 10 km s⁻¹, using a Gray rotational profile (Gray 1992) without limb-darkening, because fluorescence lines arise in optically thin conditions. Our simulation indicates that V rot sin i = 92 ± 16 km s⁻¹ is equivalent to FWHM = 140 ± 21 km s⁻¹. On the other hand, by substituting V rot sin i ≥ 76 km s⁻¹ and the K-correction for α > 0° into equation (3), one finds a secure lower limit q ≥ 0.08.

An upper limit to the rotational broadening of the donor star is set by V rot sin i = 2π R z sin i / P. By assuming that the donor must be more evolved than a ZAMS star within a 3.79-h Roche lobe, then R z ≤ 0.44 R ⊙ (Tout et al. 1996). This, together with i ≤ 78° (lack of X-ray eclipses for q ≥ 0.08), yields V rot sin i ≤ 138 km s⁻¹.

Further constraints are provided by the study of burst oscillations which can set limits to the neutron star’s projected velocity K i (= qK z). SM02 derived 90 ≤ K z ≤ 700 km s⁻¹ by fitting the frequency drift of highly coherent X-ray pulsations observed in an 800 s interval during a superburst. They used a circular orbit model and fixed the zero phase to the ephemeris of G02. We have used our new spectroscopic ephemeris to reanalyse the superburst pulsation data in order to better constrain K z. Based on our spectroscopic ephemeris, the pulsation interval during the superburst from V801 Ara comes slightly earlier in orbital phase by 0.03 cycles as compared to the G02 ephemeris. We fit the pulsation data (see SM02 for details on the phase timing analysis) to a circular orbit model with the reference epoch fixed to our new T 0, and we also fixed the orbital period (using the G02 value). This leaves two free parameters, the projected neutron star velocity, K i, and the rest-frame spin frequency, ν i. We find acceptable fits with a reference epoch within the ±1 σ range for our spectroscopic T 0. The inferred K z velocity ranges from 90 to 113 km s⁻¹ as T 0 ranges over ±1σ. The best-fitting x² values range from 14.6 to 10.6 (with seven degrees of freedom) over this same range, that is, higher velocities are modestly favoured, but given the shortness of the pulse train compared to the orbital period, we do not consider these differences as significant. With the reference epoch fixed, the statistical error on the velocity is much smaller than the range given above, so 90–113 km s⁻¹ is a robust range for K z at the ±1σ limits of T 0. The best-fitting ν i ranges from 582.041 43 to 582.095 48 Hz, and which may help constrain future searches for a persistent millisecond pulsar in V801 Ara. Fig. 8 summarizes the results of the new timing analysis.

Fig. 9 summarizes all our restrictions in the K z – q parameter space i.e. 0° ≤ α ≤ max, V rot sin i = 76–138 km s⁻¹ and K z = 90–113 km s⁻¹. The shaded area indicates the region allowed by our constraints, which yields q = 0.21–0.34 and K z = 286–433 km s⁻¹. These imply a mass function f(M) = M i sin³ i / (1 + q)² = 0.76 ± 0.47 M ⊙ and hence M i sin³ i = 1.24 ± 0.77 M ⊙. Clearly the large uncertainties are dominated by the error in K em and the uncertainty in the disc flaring angle.

6.2 System parameters for V926 Sco

The same reasoning can be applied to V926 Sco. The spot in the N iii λ4640 map yields K em = 226 ± 22 km s⁻¹ whereas the ZAMS mass–radius relation for a 4.65-h Roche lobe leads to M z ≤ 0.58 M ⊙ (Tout et al. 1996) and hence q ≤ 0.41. On the other hand, we measure FWHM (N iii λ4640) = 115 ± 23 km s⁻¹ which, after deconvolution of the instrumental resolution using Gray rotation profiles as above, yields V rot sin i ≥ 71 ± 21 km s⁻¹. This lower limit, combined with the K-correction for α > 0° and equation (3), yields q ≥ 0.05 and,
have produced Doppler-corrected averages for V801 Ara and V926 Sco, respectively. In addition, the physical model of Frank, King & Lasota (1987) indicates i \leq 60^\circ due to the lack of X-ray dips.

6.3 Constraints on the inclination

Further constraints on the stellar masses require the knowledge of the binary inclination. While strict upper limits are set by the absence of X-ray eclipses, lower limits can be established by combining $M_1 \leq 3.1 \, M_\odot$ (the maximum mass allowed for a stable neutron star, Rhoades & Ruffini 1974) with our mass function and q restrictions. This leads to $i = 36^\circ$–74$^\circ$ and 27$^\circ$–80$^\circ$ for V801 Ara and V926 Sco, respectively. In addition, the physical model of Frank, King & Lasota (1987) indicates $i \leq 60^\circ$ due to the lack of X-ray dips.

On the other hand, we mentioned in Section 3 that the factor of ~ 2 narrowness of the He II $\lambda 4686$ profile in V926 Sco with respect to V801 Ara indicates a lower inclination. To test this hypothesis, we have produced Doppler-corrected averages for V801 Ara and V926 Sco by co-adding all the spectra in two bins centred at orbital phases 0.0 and 0.5, when the visibility of the irradiated face of the donor is minimum and maximum, respectively. These spectra are presented in Fig. 11 and show a marked difference for the two binaries: the narrow C iii/N iii lines become significantly enhanced around phase 0.5 (top spectra) for V801 Ara, but not much difference is seen in V926 Sco between phases 0.5 and 0. This clearly supports a higher inclination angle in V801 Ara. Furthermore, the relative contribution of the N iii $\lambda 4640$ line with respect to the broad base, as estimated through a multi-Gaussian fit, is a factor of ~ 2 larger for V801 Ara than for V926 Sco. This can be taken as the relative contributions of the heated donor and disc, and hence, strongly suggests that V801 Ara is seen at a higher inclination angle than V926 Sco. This seems at odds with the fact that the optical light curves in V801 Ara and V926 Sco display similar amplitudes, $A \simeq 0.2$ mag (van Amerongen, Pedersen & van Paradijs 1987; van Paradijs et al. 1990). However, de Jong, van Paradijs & Augusteijn (1996) have shown that light-curve amplitudes are more sensitive to α than i, which might simply imply a thicker disc in V926 Sco and hence light-curve amplitudes cannot be taken as a simple indication of the inclination angle.

6.4 Mass estimate and evolutionary scenarios

Meyer & Meyer-Hofmeister (1982) analysed the effects of X-ray heating in the vertical structure of discs and demonstrated that these are strongly correlated. Even in the absence of irradiation, they found a disc opening angle of $\sim 6^\circ$. de Jong et al. (1996) modelled the effects of irradiation in optical light curves and, by comparing with observations of LMXBS, they inferred a mean disc opening angle of 12°. Most of their systems are short-period LMXBs, just like V801 Ara and V926 Sco, and hence it seems justified to speculate what our system parameters would be in this particular case.

Regarding V801 Ara, $\alpha = 12^\circ$ leads to $q \simeq 0.25$–0.30, $K_2 \simeq 356$–375 km s$^{-1}$ (see dashed line in Fig. 9) and hence $f(M) \simeq 0.81 \pm 0.07 \, M_\odot$ and $M_1 \sin^3 i \simeq 1.32 \pm 0.13 \, M_\odot$. Assuming that the donor star is a 0.48–1.6 M\odot ZAMS, then $M_1 \simeq 1.6$–1.9 M\odot and $i \simeq 60$–71$^\circ$. On the other hand, a canonical 1.4 M\odot would imply an evolved donor with $M_2 \simeq 0.35$–0.42 M\odot and $i \geq 71^\circ$, which is difficult to reconcile with the absence of X-ray eclipses, dips and the low amplitude of the optical modulation (see Section 6.3). Therefore,
a flaring angle of $\alpha \simeq 12^\circ$ seems to support scenarios with ZAMS donors and massive neutron stars. These masses can be reproduced by recent evolutionary scenarios where some LMXBs are supposed to descend from binaries with high-mass donors (Schenker & King 2002). These are significantly evolved at the beginning of the mass-transfer phase and mass is transferred in a thermal time-scale until mass ratio reverses, which can result in the accretion of several tenths of solar masses by the neutron star. This would make V801 Ara similar to other LMXBs such as 4U 1822-371 (Muñoz-Darias et al. 2005).

However, it is also possible to accommodate a canonical neutron star with a MS donor and a plausible inclination angle by pushing the disc flaring angle to higher values. For instance, a star with a MS donor and a plausible inclination angle by pushing the disc flaring angle to higher values. For instance, $\alpha = 16^\circ$ leads to $q \simeq 0.30 - 0.34$, $f(M) \simeq 0.51 M_{\odot}$ and $M_1 \sin^3 i \simeq 0.88 M_{\odot}$. Then, for $M_1 = 1.4 M_{\odot}$, $M_2 \simeq 0.45 M_{\odot}$ and $i \simeq 57^\circ$. These masses would be consistent with standard evolutionary pictures where donors in LMXBs descend from slightly evolved low-mass stars through dynamically stable mass transfer and result in slightly undermassive stars.

Note also that $\alpha < 12^\circ$ are virtually ruled out because this would imply higher K_2 and $f(M)$ values which result in massive neutron stars and very high inclinations. For instance, $\alpha = 8^\circ$ leads to $f(M) \simeq 0.96 M_{\odot}$ and $M_1 \sin^3 i \simeq 1.5 M_{\odot}$. Then, for $i \lessgtr 76^\circ$ (lack of X-ray eclipses), $M_1 \simeq 1.7 M_{\odot}$ whereas a plausible $i \simeq 57^\circ$ yields $M_1 \simeq 2.6 M_{\odot}$.

The case of V926 Sco is unfortunately unconstrained because of the lack of an X-ray mass function. For example, assuming $\alpha = 12^\circ$ leads to $q \simeq 0.09 - 0.38$, $f(M) \simeq 0.22 - 0.68 M_{\odot}$ and $M_1 \sin^3 i \simeq 0.29 - 1.07 M_{\odot}$. The allowed range in M_1 and M_2 is too wide as to impose any useful restriction on possible evolutionary scenarios. More, higher resolution data are required to measure the N III $\lambda 4640$ flux and $V_{\text{em}} \sin i$ as a function of orbital phase, from which tighter constraints on the inclination and disc flaring angle can be set. This, together with the determination of the X-ray mass function for V926 Sco through pulse delays of burst oscillations and smaller errors in the K_2 determinations, is expected to provide stronger limits on the stellar masses and the evolutionary models for these two LMXBs (see e.g. Muñoz-Darias et al. 2005).

7 CONCLUSIONS

The main results of this paper are summarized as follows.

(i) We have presented the first detection of the donor stars in the bursters LMXBs V801 Ara (=U 1636–536) and V926 Sco (=4U 1735–444) through N III $\lambda 4640$ fluorescent emission caused by irradiation.

(ii) The narrow N III $\lambda 4640$ spots in the Doppler maps define $K_\text{em} = 277 \pm 22$ km s$^{-1}$ (V801 Ara) and $K_\text{em} = 226 \pm 22$ km s$^{-1}$ (V926 Sco), and a new set of spectroscopic ephemerides which lend support to the assumption that photometric modulation is driven by the visibility of the irradiated donor stars. On the other hand, the phasing of the radial velocity curves of He II $\lambda 4684$ and the Bowen blend suggests that these lines are mainly associated with the disc bulge. Our spectroscopic ephemerides, combined with burst oscillations data for V801 Ara, enables us to refine the neutron star’s projected velocity to $K_1 = 90 - 113$ km s$^{-1}$ for this particular system.

(iii) Following Muñoz-Darias et al. (2005), we have computed the K-corrections for the two LMXBs and obtain $K_2 = 360 \pm 74$ km s$^{-1}$, $q = 0.21 - 0.34$, $f(M) = 0.76 \pm 0.47 M_{\odot}$ (V801 Ara) and $K_2 = 298 \pm 83$ km s$^{-1}$, $q = 0.05 - 0.41$, $f(M) = 0.53 \pm 0.44 M_{\odot}$ (V926 Sco). Both systems are seen at intermediate inclination angles in the range $i \simeq 30 - 60^\circ$, with V801 Ara having the higher inclination of the two.

(iv) Regarding V801 Ara, disc flaring angles $\alpha \lesssim 8^\circ$ seem to be ruled out because of the high inclinations implied. Opening angles $\alpha \simeq 12^\circ$ support massive neutron stars and main-sequence donors which may descend from intermediate-mass X-ray binaries as predicted by some evolutionary models (Schenker & King 2002). Alternatively, higher opening angles $\alpha \simeq 16^\circ$ are consistent with canonical neutron stars and main-sequence (or slightly evolved) donors which have evolved from standard LMXBs through a dynamically stable mass-transfer phase.

(v) The lack of an X-ray mass function in V926 Sco prevents setting tighter constraints to the K-correction, mass estimates and evolutionary history in this LMXB.

ACKNOWLEDGMENTS

We thank the referee Thomas Augusteijn for helpful comments to this manuscript. MOLLY and DOPPLER software developed by T. R. Marsh is gratefully acknowledged. JC acknowledges support from the Spanish Ministry of Science and Technology through the project AYA2002-03570. DS acknowledges a Smithsonian Astrophysical Observatory Clay Fellowship as well as support through NASA GO grants NNG04GG96G and NNG04G014G Based on data collected at the European Southern Observatory, Monté Paranal, Chile.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.