Star formation density and Hα luminosity function of an emission-line-selected galaxy sample at $z \sim 0.24^*$

Eduard Westra1† and D. Heath Jones2†

1Research School of Astronomy & Astrophysics, The Australian National University, Cotter Road, Weston Creek ACT 2611, Australia
2Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia

Accepted 2007 October 3. Received 2007 September 12; in original form 2007 May 28

ABSTRACT

We use narrow-band imaging (full width at half-maximum = 70 Å) to select a sample of emission-line galaxies between $0.20 \lesssim z \lesssim 1.22$ in two fields covering 0.5 deg2. We use spectroscopic follow-up to select a subsample of Hα-emitting galaxies at $z \sim 0.24$ and determine the Hα luminosity function and star formation density at $z \sim 0.24$ for both of our fields. Corrections are made for imaging and spectroscopic incompleteness, extinction and interloper contamination on the basis of the spectroscopic data. When compared to each other, we find the field samples differ by $\Delta \alpha = 0.2$ in faint-end slope and $\Delta \log [L^* \,(\text{erg}\,\text{s}^{-1})] = 0.2$ in luminosity. In the context of other recent surveys, our sample has comparable faint-end slope, but a fainter L^* turnover. We conclude that systematic uncertainties and differences in selection criteria remain the dominant sources of uncertainty between Hα luminosity functions at this redshift.

We also investigate average star formation rates as a function of local environment and find typical values consistent with the field densities that we probe, in agreement with previous results. However, we find tentative evidence for an increase in star formation rate with respect to the local density of star-forming galaxies, consistent with the scenario that galaxy–galaxy interactions are triggers for bursts of star formation.

Key words: surveys – galaxies: luminosity function, mass function – galaxies: starburst.

1 INTRODUCTION

It is now widely accepted that the amount of star formation in the Universe as a whole has increased since the formation of the first galaxies, peaking around redshifts $z \sim 2–3$ and subsequently declining by a factor of 10 (e.g. Hopkins 2004, and references therein). Cosmic star formation history provides strong constraints on models of galaxy formation and evolution (Pei, Fall & Hauser 1999; Somerville, Primack & Faber 2001), because it directly traces the accumulation of stellar mass and metal fraction (Pei & Fall 1995; Madau et al. 1996) to their present-day values (Cole et al. 2001; Panter, Heavens & Jimenez 2003). Its rapid decline over the past 8 Gyr is consistent with ‘downsizing’ scenarios (Cowie et al. 1996) in which the more-massive galaxies have produced their stellar mass at earlier times than the less-massive galaxies (Heavens et al. 2004; Juneau et al. 2005; Thomas et al. 2005; Fardal et al. 2007). The star formation history of the Universe has also been used to constrain allowable stellar initial mass functions (Baldry & Glazebrook 2003; Hopkins & Beacom 2006) and cosmic supernova rates (Gal-Yam & Maoz 2004; Daigne et al. 2006).

Star-forming galaxies exhibit a strong ultraviolet (UV) continuum, courtesy of newly formed OB stars in sites of star formation. This newborn population can be inferred from the UV directly (e.g. Lilly et al. 1996; Treyer et al. 1998) or through a host of indirect calibrators spread across the electromagnetic spectrum (Condon 1992; Schaerer 2000; Rosa-González, Terlevich & Terlevich 2002). At low redshifts, the most-direct calibrator – and of the optical calibrators the least affected by internal extinction – is the Hβ recombination line, which emits when stimulated by ionizing UV radiation (e.g. Kennicutt 1998).

Narrow-band surveys at optical wavelengths have long been recognized as a powerful way of yielding large samples of emission-line galaxies, including those selected by Hα at redshifts $z \lesssim 0.4$ (Jones & Bland-Hawthorn 2001; Ly et al. 2007; Pascual, Gallego & Zamorano 2007). They are advantageous in that they select galaxies in exactly the same quantity as they seek to measure, and are optimized for the detection of the faint emission-line signatures indicative of star formation. Narrow-band surveys also have the advantage of a simplified selection function, with filters that probe only a very narrow redshift slice, thereby yielding a volume-limited sample at a

*Based on observations made with European Southern Observatory (ESO) telescopes at the La Silla Observatory (Programmes 67.A-0063, 68.A-0363 and 69.A-0314) and the Anglo-Australian Telescope.

†E-mail: westra@mso.anu.edu.au (EW); heath@aao.gov.au (DHJ)
common distance. Many recent emission-line surveys have targeted Lyman α (Lyα) at high redshift (Ajiki et al. 2003; Hu et al. 2004; Rhode et al. 2004; Gawiser et al. 2006), as well as Hα, Hβ, [O iii] and [O ii] at lower redshifts (Fujita et al. 2003; Hippelein et al. 2003; Ly et al. 2007).

Here, we describe a survey for Hα emission-line galaxies at $z \sim 0.24$, found as a by-product of the Wide Field Lyman Alpha Search (WFILAS; Westra et al. 2005, 2006). The resulting sample has been utilized to determine the Hα luminosity function at $z \sim 0.24$ and its associated comoving star formation density. In Section 2, we describe the selection of candidates using narrow- and broad-band imaging. In Section 3, we detail follow-up spectroscopy used to identify the nature of the emission and test the completeness of the sample. In Section 4, we derive the Hα luminosity function for galaxies at $z \sim 0.24$ and explore its variation with the local environment in Section 5. A summary and concluding remarks are made in Section 6.

Throughout this paper, we assume a flat Universe with Ω_m, $\Omega_{\Lambda} = 0.3, 0.7$ and a Hubble constant $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$. All quoted magnitudes are in the AB system (Oke & Gunn 1983).1

2 CANDIDATE SELECTION

2.1 Narrow-band imaging

The observations were done with the Wide Field Imager (WFI) on the ESO/MPFI 2.2-m telescope at the Cerro La Silla Observatory, Chile. The WFI consists of a 4 x 2 array of 2k x 4k CCDs giving a total field size of 34 x 33 arcsec2 with a pixel scale of 0.238 arcsec pixel$^{-1}$. Imaging data were taken from WFILAS (Westra et al. 2005, 2006), a wide-field narrow-band survey designed to find Lyα emitters at $z \sim 5.7$. We refer the reader to Westra et al. (2006, hereafter W06) for a more detailed description, but give the important features of the survey below.

Three fields spaced around the sky were observed in three narrow-band filters [full width at half-maximum(FWHM) = 7 nm] centred at 810, 817 and 824 nm, an intermediate width filter (FWHM = 22 nm) centred at 815 nm and broad-bands B and R. For one of the fields with missing 817-nm data it was not possible to apply the selection criteria uniformly and so it was excluded from this analysis. The two fields used were the well-studied Chandra Deep Field South (CDFS; e.g. Rosati et al. 2002; Rix et al. 2004) and the COMBO-17 S11 field (Wolf et al. 2003). The width of our narrow-band filters is essentially half that of other surveys (e.g. Fujita et al. 2003; Ly et al. 2007) with a corresponding reduction in background and enhancement in the contrast of observations of emission-line galaxies. Table 1 gives an overview of the emission lines redshifted into these narrow-band filters, the associated luminosity distances and comoving volumes.

The data were processed using a combination of standard IRAF2 routines (MSCRED) and some custom designed for our data. Image frames were bias-subtracted, flat-fielded and background-subtracted. A fringe pattern present in the intermediate-band and narrow-band images, which remained after the flat-fielding, was removed using a fringe frame created from 10–30 science frames. Finally, an astrometric correction was applied using the USNO CCD Astrograph Catalogue 2 (UCAC2; Zacharias et al. 2004) and the IRAF task MSCMATCH with a resulting rms of 0.15 arcsec.

To ensure the quality of the final deep images, we only included frames with a seeing of less than 5 pixels (=1.2 arcsec) and without significant fringing. The images were weighted according to their exposure time and combined using the IRAF MSCSTACK routine rejecting deviant pixels.

2.2 Photometry and completeness corrections

We used SEXTRACTOR (version 2.3.2; Bertin & Arnouts 1996) in double-image mode to create the initial source catalogues. Each resulting catalogue contains the photometry for the sources in all six filters. Sources were selected when at least 5 pixels were 0.8σ above the noise level in the narrow-band image used for detection. All photometry was measured in apertures with a 10 pixel diameter (=2.4 arcsec). W06 describes the procedure in detail.

Detection completeness was determined using galaxy number-counts in each of the narrow-band images as a function of AB-magnitude and that of the Hubble Deep Field (HDF) in the F814W filter (Williams et al. 1996). Completeness is defined in this instance as the ratio of the number of detected galaxies to that of expected, and the completeness correction is its reciprocal. The expected number-counts were fitted by a simple linear function over the magnitude range [20, 25]. For all the objects that are selected as our candidates, this correction is less than 0.1 per cent.

1 $m_{AB} = 2.5 \log f_\nu - 48.590$, where m_{AB} is the AB magnitude and f_ν is the flux density in erg s$^{-1}$ cm$^{-2}$ Hz$^{-1}$.

2 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Incorporated, under cooperative agreement with the National Science Foundation.

Table 1. Redshift coverage, luminosity distance D_L, and comoving volume for each emission line in each of our narrow-band filters N_{810}, N_{817} and N_{824} using the central wavelength and FWHM of each filter (70 Å). The CDFS and S11 fields span differing volumes (V$^{\text{CDFS}}$ and V$^{\text{S11}}$, respectively). For [O iii], we used the wavelength of the [O iii] λ 5007 line and for [O ii] and [S ii] the average wavelength of the individual lines of each doublet.

<table>
<thead>
<tr>
<th>Emission line</th>
<th>Hα</th>
<th>Hβ</th>
<th>[O ii]</th>
<th>[O iii]</th>
<th>[S ii]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redshift range in N_{810}</td>
<td>0.229–0.239</td>
<td>0.659–0.673</td>
<td>0.610–0.624</td>
<td>1.163–1.182</td>
<td>0.199–0.210</td>
</tr>
<tr>
<td>Redshift range in N_{817}</td>
<td>0.239–0.250</td>
<td>0.673–0.687</td>
<td>0.624–0.638</td>
<td>1.182–1.201</td>
<td>0.210–0.220</td>
</tr>
<tr>
<td>Redshift range in N_{824}</td>
<td>0.250–0.261</td>
<td>0.687–0.702</td>
<td>0.638–0.652</td>
<td>1.201–1.219</td>
<td>0.220–0.230</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D_L (Mpc)</th>
<th>V$^{\text{CDFS}}$ (10^3 Mpc3)</th>
<th>V$^{\text{S11}}$ (10^3 Mpc3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1203.1</td>
<td>9.4 68.7 53.6 137.2 6.4</td>
<td>8.3 53.2 47.1 120.6 6.4</td>
</tr>
</tbody>
</table>

Downloaded from https://academic.oup.com/mnras/article-abstract/383/1/339/1069946 by guest on 20 February 2019
2.3 Selection criteria and star/galaxy disambiguation

The following four criteria were applied to select our candidate emission-line galaxies from the initial source catalogues.

(i) The narrow-band image used as the detection image must have the most flux of all the narrow-band images and the source must have a 4σ detection or better in the detected narrow band.

(ii) There must be at least a 2σ detection in the intermediate-band image.

(iii) The broad-band image R needs to have a 2σ detection or better.

(iv) The emission-line flux calculated from the narrow-band images should be $F_{\text{line}} \geq 10^{-16}$ erg s$^{-1}$ cm$^{-2}$.

Criterion (iii) removes emission-line objects with a very low continuum. These objects were classified as Lyα emitters at $z \sim 5.7$. The Lyα emitters are discussed in W06. The emission-line fluxes that we use in this paper were measured from the narrow-band photometry. The background (or underlying continuum) was determined by averaging the flux measured in the two narrow-band images that were not used for the detection of the source. This was subtracted from the flux measured in the narrow-band detection image, which is emission line and continuum flux combined. An aperture correction was calculated according to

$C = \max \left(0.2, \text{erf} \left(\frac{10}{2a} \times \text{erf} \left(\frac{10}{2b} \right) \right) \right)$

and applied to the line fluxes. Here, C is the fraction of light of the object contained within the 10-pixel aperture, and a and b are the profile widths along the major-axis and minor-axis, respectively (assuming that the galaxy profile is adequately represented by a two-dimensional Gaussian) and erf(x) is the error function. To ensure that the fluxes of certain large objects were not overcorrected, we limited C to at least 0.2. Dividing the calculated emission-line flux by C gives the emission-line flux F_{line} used in criterion (iv).

The emission-line flux limit of 10^{-16} erg s$^{-1}$ cm$^{-2}$ is a factor of 2 higher than the detection limit of our earlier search for high-redshift Lyα emitters using the same imaging data ($F_{\text{lim}} = 5 \times 10^{-17}$ erg s$^{-1}$ cm$^{-2}$; W06). This is because we are no longer limited by the night-sky background, but rather by the brightness of the object continuum. This limit was chosen in part to ensure that emission-line candidates were within the sensitivity limits of our follow-up confirmation spectroscopy. We note that we used a flux limit rather than an equivalent width cut-off. The lowest equivalent width values as determined from the narrow-band imaging in our candidate sample is ~ 1 Å, with a peak at ~ 3 Å.

Stars represent a significant fraction of contaminants. We found that standard star/galaxy classification from SExtractor works satisfactorily for objects brighter than $R = 21$. However, it breaks down for the large number of faint ($R > 21$) objects. Therefore, additional criteria were applied. We examined the size of the objects (major-axis and minor-axis), in combination with their shape (the ratio of the major-axis and minor-axis) as additional star/galaxy discriminants. Since this size/shape information could potentially lead to the unwanted removal of unresolved line-emitting galaxies, we used an additional cut in ($B - R$) colour as a safeguard to prevent this. We decided to restrict the size/shape discrimination to sources with ($B - R$) ≥ 1.4 based on the ($B - R$) colour distribution of Hα emitters at $z \sim 0.24$ and [SII] emitters at $z \sim 0.21$ obtained from spectroscopic observations. This size/shape/colour criterion was added after initial spectroscopic follow-up to improve removal of stellar contaminants. Furthermore, the colour of ($B - R$) $= 1.4$ corresponds to the model of an instantaneous starburst with an age of ~ 1 Gyr. We determined this colour using GALAXEV (Bruzual & Charlot 2003). We finalized our stellar selection criteria as follows.

(i) The SExtractor CLASS_STAR parameter is ≥ 0.95 and $R < 21$. At $R > 21$, sources are too faint for SExtractor to reliably distinguish between stars and galaxies.

(ii) The SExtractor A_IMAGE and B_IMAGE parameters (the profile in pixels along the major-axis and minor-axis, respectively) are ≤ 4 pixels; the ratio of these parameters is $A_{\text{IMAGE}} / B_{\text{IMAGE}} \leq 1.06$ and the object has a ($B - R$) colour ≥ 1.4. This is redder than almost all star-forming galaxies at $z \sim 0.24$.

(iii) The object showed obvious imaging artefacts, such as diffraction spikes or ghost images, in any of its thumbnails.

Fig. 1 shows the distribution of spectroscopically observed objects that satisfy these criteria as a function of observed ($B - R$) colour for the CDFS field. The forward cross-hatched histograms represent objects satisfying criterion (i), the backward cross-hatched those for criterion (ii), and the horizontal cross-hatched those for criterion (iii). The histogram outlined by the thick solid line represents the observed ($B - R$) colour distribution of securely confirmed Hα and [SII] emitters ($z \sim 0.24$ and $z \sim 0.21$, respectively), by way of comparison. All objects selected in this way were deemed to be stellar and removed from the candidate list. Finally, all candidates were inspected to remove sources that were contaminated by image artefacts.

From initial candidate numbers of 786 and 848 for the CDFS and S11 fields, respectively, 414 and 513 candidates were removed because they met one or more of the stellar criteria. Our final sample yielded 372 candidate emission-line galaxies for the CDFS field and 335 for the S11 field.

3 The error function is defined as erf(x) = $\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt$.

4 We note that this colour selection will also reject quasi-stellar objects. This is of no consequence to our selection of a star-forming sample.
3 SPECTROSCOPIC FOLLOW-UP

3.1 Observations and reduction

The emission-line selection criteria established in Section 2.3 are sensitive to almost any galaxy with emission lines that have been redshifted into the wavelength range of our narrow-band filters, and are bright enough to be detected. The one exception is Lyα, which does not yield detectable flux bluewards of the Lyman limit and hence in our broad-band images. The main emission lines to expect in our narrow-band filters are (from bluest to reddest), [O III] 4959, 5007, Hα, 4863, [O II] 3727, 3729, Hγ 4342 (although usually too faint, or too much underlying absorption), Hβ 4861, [O III] 4959, 5007, Hα 6564 and [S II] 6716, 6731. Since the goal of this paper is to establish the star formation density at z ∼ 0.24, we concentrated only on those galaxies detected as Hα. Alternative approaches by other groups (e.g. Ly et al. 2007) have separated objects based on their broad-band colours. Unfortunately, in the case of [S II] galaxies (z ∼ 0.21) the colours are indistinguishable from those with Hα (z ∼ 0.24) due to their similar redshifts. Fig. 2 shows how the Hα and [S II] galaxies occupy the same range of colour [(B − R) ≥ 0.5], given their near-identical redshifts. Based on this, we classify all of the single-line emitters outside this range [(B − R) ≤ 0.5] as likely O II line-emitters at z ∼ 1.2. It is worth pointing out that when the [S II] doublet falls inside our narrow-band filter set, an extra volume of about 50 per cent of our entire sample of candidates in each field.

Our approach was to target as large a sample as possible of our candidates to test how successful our candidate selection was. An additional aim was to measure the fraction of the observed candidates with Hα in our narrow-band filters. To do this, we ensured that the spectroscopic sample was representative of the narrow-band sample as a whole. A two-sided Kolmogorov–Smirnov test yielded probability levels of 99.8 and 49.3 per cent for the CDFS and S11 fields, respectively. Once measured, we applied the determined fraction to our entire sample of candidates in each field.

The spectroscopic data were taken with AAOmega (Sharp et al. 2006), an optical multi-object spectrograph. It is fibre-fed from the prime focus of the Anglo-Australian Telescope (AAT) by the 2dF facility (Lewis et al. 2002a) to a dual-beam spectrograph, which in our case was used with spectral ranges 3800–5700 and 5700–8700 Å. The resolving power was δλ = 3.5 Å in the blue arm and δλ = 5.3 Å in the red arm. It has 392 fibres available to observe spectra of objects within a 2′ field of view. The fibres have a minimum placement separation of 0.5 arcsec, although the actual limiting separation depends on the orientation of fibre buttons when placed on the field plates. For fields with a high density of targets, such as our 0.5 × 0.5 fields, only ~250 fibres could be allocated per configuration, due to such placement limitations. In general, the number of fibres allocated depends on the target distribution in the field and the choice of algorithm in the configure5 software. We found that using the Simulated Annealing algorithm (Miszalski et al. 2006) allowed a larger fraction of fibres to be allocated to candidates than the older Oxford algorithm.

The data were taken during four separate runs. The first observations were done in classical mode during two nights, 2006 March 23 and 24. During this run the S11 field was observed. The other three occasions were done in service mode on 2006 October 10, 2006 November 10 and 2007 March 26. During these runs both fields were targeted. We used the 580V and the 385R volume phase holographic (VPH) gratings for the blue and red arm, respectively. Table 2 summarizes the observations. In total, 301 and 255 candidates were observed in the CDFS and S11 fields, respectively.

Basic spectral reductions, including bias-subtraction, flat-fielding and wavelength-calibration were done using the 2dF reduction pipeline drccontrol.5 The final one-dimensional spectrum for each object was obtained by averaging the reduced spectra of the object in the different observations using our own IDL scripts.

The spectra of several standard stars (LTT 7379, LTT 7987 and CD-32 9927; Bessell 1999) were taken during the final night of the 2006 March run and were reduced in the same fashion as the science data. System throughput as a function of wavelength was derived using each standard star and its sensitivity curve. These curves were scaled to a common level and averaged to give the overall sensitivity. This was applied to all the science spectra to flux-calibrate each relative to one another. Unfortunately, absolute flux calibrations are very difficult to do reliably with fibre-based spectrographs, due to the changing configurations of the fibres and the effect this has on their throughput. For this reason, we used the line fluxes measured from our narrow-band photometry rather than the fibre spectroscopy.

3.2 Spectroscopic completeness

We used a Monte Carlo simulation that combined the background of real spectra of our securely confirmed Hα-emitting galaxies with transplanted and scaled emission lines to assess our spectroscopic completeness as a function of line flux. We took the spectrum of each Hα emitter and fitted the Hα and [N II] lines together with the continuum. Each line was fitted by a Gaussian and the galaxy continuum (or background sky) was approximated by a first-order polynomial. The line centres were parametrized by redshift. The widths of the [N II] lines were set equal and the flux ratio between the red and blue [N II] lines was fixed to 2.96 (Mendoza 1983). The remaining fit parameters were left unconstrained. The model of the Hα–[N II] complex was subtracted from our data, leaving only the

Figure 2. Observed (B − R) colour distribution for various sets of emission-line galaxies within our sample: (a) Hα at z ∼ 0.24 (forward cross-hatching), (b) [S II] at z ∼ 0.21 (backward cross-hatching) and (c) single-line emitters of indeterminate origin (horizontal cross-hatching).
underlying noise. To the noise, we added a randomly scaled version of our model with a random offset in wavelength. We then attempted to re-identify any emission line. We did this multiple times for each secure Hα-emitting galaxy.

This exercise demonstrated that it was possible to identify at least 90 per cent of the galaxies at a line flux of \(\log F_{\text{line}} = -16.0 \) (\(F_{\text{line}} \) in erg s\(^{-1}\) cm\(^{-2}\)) for all spectroscopic runs. In Fig. 3, the recovered fraction as a function of line flux is shown for the CDFS and S11 fields. The uncertainties indicated in Fig. 3 were derived using the following relation:

\[
\sigma_{\text{frac}} = \frac{\sqrt{N_{\text{tot}}(N_{\text{det}} + 2)(N_{\text{tot}} - N_{\text{det}} + 1)}}{N_{\text{tot}}(N_{\text{tot}} + 3)},
\]

(2)

where \(\sigma_{\text{frac}} \) is the calculated uncertainty, \(N_{\text{tot}} \) is the total number of objects in that bin and \(N_{\text{det}} \) is the number of objects which have a detection of the emission line (after equation 4 from Jones et al. 2006). The spectroscopic completion rate as indicated in Fig. 3 is well fitted by a function of the form

\[
\eta(F) = \begin{cases}
\exp[-\gamma(F - F_c)^2] & F < F_c, \\
1 & F \geq F_c.
\end{cases}
\]

(3)

where \(\gamma \) represents the speed at which the function drops off and \(F_c \) is the flux at which the function reaches 1.0.

3.3 Hα emission-line fraction

In almost all cases, the spectra of confirmed emission-line galaxies should show additional emission lines elsewhere except cases of Ly\(\alpha \) at \(z \sim 5.7 \) (which are filtered out through their absence of \(B \) and \(R \) flux) or [O II] at \(z \sim 1.2 \). This is demonstrated in Fig. 4, where we show the stacked spectra of all our confirmed Hα and [S II] galaxies in the CDFS. Hα is usually accompanied by the [N II] \(\lambda \lambda 6550,6585 \) and [S II] \(\lambda \lambda 6733,6718 \) doublets, whereas H\(\beta \) and the [O III] \(\lambda \lambda 4959,5007 \) doublet are almost always seen together. Our spectral resolution (\(R \sim 1500 \) at 8150 Å) is not enough to fully resolve the [O III] doublet, but high enough to show it as broader than a single emission line. The signal-to-noise ratio (S/N) of the spectra is not always high enough to clearly determine if a line is broad (in this sense) or not. Alternatively, these galaxies could be Hα-emitting galaxies with all other emission lines too faint to be detected.

There are a few galaxies which show only one emission line. Although we expect many of them to be [O II] emitters at \(z \sim 1.2 \), we cannot rule out the possibility of single-line Hα galaxies at \(z \sim 0.24 \) without the use of additional information. In Fig. 2, we show the observed \((B - R) \) colour distribution of galaxies in the CDFS where the emission line in the narrow-band filters has been confirmed as Hα or [S II] through the presence of additional lines. We also indicate the colour distribution of galaxies for which we have only one emission-line feature. Some of the single-line detections are bluer than the combined Hα/[S II] distribution. We therefore identify all single-line galaxies with \((B - R) \lesssim 0.5 \) to be [O II] emitters at \(z \sim 1.2 \) and those with \((B - R) > 0.5 \) to be Hα emitters at \(z \sim 0.24 \).

Of the candidates for which we have spectroscopically confirmed an emission line (189 and 117 out of the total 301 and 255 observed in the CDFS and S11 fields, respectively), just under a half are Hα at \(z \sim 0.24 \), a quarter are [S II] at \(z \sim 0.21 \), roughly a sixth are H\(\beta \) or [O III] at \(z \sim 0.6-0.7 \) and the remainder are [O II] at \(z \sim 1.2 \).

Fig. 5 shows the fraction of confirmed Hα emitters in our full spectroscopic sample as a function of narrow-band flux. It peaks around \(\log F_{\text{line}} \sim -15.3 \) (with \(F_{\text{line}} \) in erg s\(^{-1}\) cm\(^{-2}\)), below which increasing numbers of [O II] galaxies at \(z \sim 1.2 \) begin to dominate.

Table 2. Details of the spectroscopic follow-up observations.

<table>
<thead>
<tr>
<th>Observing dates</th>
<th>Field observed</th>
<th>Number of configurations</th>
<th>Total exposure time (s)</th>
<th>Seeing (arcsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006/03/23</td>
<td>S11</td>
<td>2</td>
<td>11 700</td>
<td>0.9–1.5</td>
</tr>
<tr>
<td>2006/03/24</td>
<td>S11</td>
<td>3</td>
<td>14 400</td>
<td>1.3–1.8</td>
</tr>
<tr>
<td>2006/10/10</td>
<td>CDFS</td>
<td>1</td>
<td>9900</td>
<td>1.8–2.2</td>
</tr>
<tr>
<td>2006/11/10</td>
<td>CDFS</td>
<td>1</td>
<td>11 700</td>
<td>1.2–1.5</td>
</tr>
<tr>
<td>2007/03/26</td>
<td>S11</td>
<td>1</td>
<td>6300</td>
<td>2.5</td>
</tr>
</tbody>
</table>

E. Westra and D. H. Jones

Figure 4. Mean spectrum of emission-line galaxies from the CDFS field. Spectra from 114 galaxies between $z = 0.19$ and 0.27 were de-redshifted before stacking. The most-prominent features have been labelled. The apparent absorption feature just bluewards of the [O I] $\lambda 6302$ line is the remnant of the telluric A band of the individual spectra being de-redshifted and stacked. This spectrum was used to fit the emission lines to derive the mean extinction as described in Section 3.4. Only red-arm data from AAOmega (observed wavelength \sim5700–8700 Å) are shown.

Figure 5. The Hα fraction of our candidates for the CDFS (top panel) and S11 (bottom panel) fields. The data have been binned to have a minimum of 10 galaxies per bin and a minimum width of 0.1 dex. The dotted line is the four-parameter fit to the data points. The horizontal error bars represent the width of the bins and the vertical bars the uncertainty in the fraction calculated using equation (2).

3.4 Extinction corrections

Star-forming regions are some of the dustiest galaxy environments, making correction for internal obscuration necessary. Many emission-line surveys apply a general extinction correction of $A_{H\alpha} \sim 1$ (e.g. Tresse & Maddox 1998; Fujita et al. 2003). However, it has been shown that there are large variations in extinction between galaxies (e.g. Jansen, Franx & Fabricant 2001). Furthermore, Massarotti, Iovino & Buzzoni (2001) state that applying an average extinction correction always underestimates the true extinction correction. Since our spectra cover a large wavelength range (3800–5700 Å in the blue and 5700–8700 Å in the red), we are able to observe Hα and Hβ simultaneously. We therefore calculate the extinction individually for each galaxy through Hα and Hβ when both lines are detectable. The S/N is not always high enough to show Hβ clearly in emission. Therefore, we grouped available spectra according to the B magnitude of the source, obtained an average spectrum, and measured the Balmer decrement value from these.

The colour excess $E(B - V)$ can be calculated using

$$E(B - V) = 2.5 \log \frac{R_{\alpha\beta}}{k(H\beta) - k(H\alpha)},$$

where $R_{\alpha\beta}$ is the ratio of the observed value of the Balmer decrement to its theoretical value, and $k(H\beta) - k(H\alpha)$ is the differential extinction between the wavelengths of Hβ and Hα. The theoretical value for the Balmer decrement is 2.87 (for $T = 10^4$ K and case B recombination; table 2 of Calzetti 2001, which uses a Cardelli,
Clayton & Mathis 1989 extinction law) and the value for the differential extinction is 1.163. This assumes $k(V) = 3.1$ and $k(Hα) = 2.468$. We adopt these values throughout the rest of this paper.

In Fig. 6, we plot the resulting values for $E(B - V)$ as a function of the B magnitude for two cases: without and with correction for absorption due to the underlying stellar population. The AAOmega spectra have a resolution of $\sim 5.3 \, \text{Å}$ throughout the red arm meaning that we are unable to resolve the Hβ absorption line directly. If we assume no stellar absorption, the colour excess has values up to $E(B - V) \sim 1$, corresponding to $A_{Hβ} = 2.5 \, \text{mag}$ (or $A_V = 3.1 \, \text{mag}$) using $A_V = k(\lambda) \times E(B - V)$. This is far higher than the average extinction of $A_{Hα} \sim 1$ as assumed elsewhere (e.g. Tresse & Maddox 1998; Fujita et al. 2003). If we instead adopt the median equivalent widths for stellar absorption in Hα and Hβ as measured by Hopkins et al. (2003), 1.3 and 1.6 Å, respectively, then the average extinction as shown in Fig. 6 is roughly $A_{Hα} \sim 0.85$. We note that there is a trend of a decreasing extinction with increasing apparent magnitude (see Fig. 6). Observe that our sample has a restricted range in redshift, making apparent magnitude B a proxy for absolute magnitude M_B. Similar trends of change in $E(B - V)$ have been found by Jansen et al. (2001). We attribute this trend to the fact that either fainter (and therefore smaller) galaxies potentially contain less dust, or the Hβ flux might be overestimated in the mean spectrum of the faintest galaxies as a result of a low S/N of the Hβ line. We derive an extinction of $A_{Hβ} = 0.96^6$ from the Balmer ratio in the mean spectrum of all emission-line galaxies as shown in Fig. 4. Since the trend might be due to a low S/N of the Hβ line, we use a constant value throughout to correct for extinction.

6 Alternatively, the extinction law of Calzetti et al. (2000) gives $A_{Hβ} = 1.18$, where $k(V) = 4.05, k(Hα) = 3.325$ and $k(Hβ) - k(Hα) = 1.163$. This correction results in Hα fluxes roughly 20 per cent higher than the values used in the text.

4 LUMINOSITY FUNCTION AND STAR FORMATION DENSITY

4.1 Derivation and fit

With the final emission-line catalogue in hand, and the various selection and completeness effects accounted for, our approach to calculating the Hα luminosity function is as follows. We take our measured distribution of line emitters (all emission lines from all redshifts) from the narrow-band candidate sample and apply the spectroscopically measured fraction of Hα emitters as a function of flux (Section 3.3). We correct for incompleteness in both the spectroscopic identifications (Section 3.2) and the original narrow-band imaging. The corrections for the latter are less than 0.1 per cent (Section 2.2). Finally, we correct our line fluxes for the effects of extinction (Section 3.4).

Fig. 7 shows separate luminosity functions for both the CDFS and the S11 fields. We fit a Schechter function (Schechter 1976) to the data points using a minimized $χ^2$ fit. The Schechter function is given by

$$\phi(L) dL = \phi^* \left(\frac{L}{L^*} \right)^{-\alpha} \exp \left(-\frac{L}{L^*} \right) \, d \left(\frac{L}{L^*} \right),$$

where ϕ^* represents the normalization constant of the galaxy density, α is the faint-end slope, and L^* is the characteristic luminosity where the Schechter function rapidly declines at bright luminosities. We used a Levenberg–Marquardt method for finding the minimum $χ^2$ fit to the binned data points, courtesy of the IDL routine MPFITFUN from the Markwardt7 library. Since the three parameters α, L^* and ϕ^* are highly correlated, we used the correlation matrix and the partial derivatives of the Schechter function to calculate the formal uncertainty in the integrated luminosity density L,

$$\sigma_L^2 = \sum_{i,j=1}^{3} \left[\frac{\partial \phi}{\partial x_i} \frac{\partial \phi}{\partial x_j} \right]_{x = \mu} V_{ij},$$

Here, x_1, x_2 and x_3 correspond to the Schechter parameters $\alpha, \log L^*$ and $\log \phi^*$ (Cowan 1998). V_{ij} is the covariance matrix, which relates to the correlation matrix $ρ_{ij}$ as $V_{ij} = ρ_{ij}σ_iσ_j$. $σ_i$ is the formal uncertainty in the ith parameter. We list the resulting values of the parameters and the formal uncertainties, together with the correlation matrices in Table 3.

The luminosity density over luminosities $L \geq L_{\text{lim}}$ can be calculated by integrating equation (6), yielding

$$L = \phi^* L^* \Gamma \left(\alpha + 2, \frac{L_{\text{lim}}}{L^*} \right).$$

In the case where limiting luminosity $L_{\text{lim}} = 0$, the luminosity density reduces to $L = \phi^* L^* \Gamma(\alpha + 2)$. Using the Schechter parameters and uncertainties given in Table 3 with $\log L_{\text{lim}} = 40.6 (L_{\text{lim}} \text{ in erg s}^{-1})$, corresponding to our survey flux limit) gives $\log L = 39.17^{+0.08}_{-0.10}$ and $38.86^{+0.11}_{-0.14}$ in erg s$^{-1}$ for the CDFS and S11 fields, respectively. The uncertainties are calculated using the correlation matrices in Table 3. If we instead use the Hα luminosities of the galaxies directly and sum over all, we obtain $39.22^{+0.02}_{-0.03}$ and $38.86^{+0.03}_{-0.05}$ for the CDFS and S11 fields, respectively. The uncertainties in this case are the square-root of the sum in quadrature of individual galaxy luminosity uncertainties and does not take into account Hα emission-line fraction uncertainties and, as such, are lower limits.

Figure 7. Top panel: luminosity function for Hα galaxies at $z \sim 0.24$ for the CDFS (left-hand panel) and S11 (right-hand panel) fields. The solid line in each of these panels is the fit to the data points, while the dotted line indicates the fit of other field for reference. Bottom panel: confidence levels for the parameters α, L^* and ϕ^* of the CDFS (left-hand panel) and S11 (right-hand panel) fields. Contours are drawn for each plane in which one of the parameters is held constant. The 1, 2 and 3 σ contours indicated correspond to 68.3, 95.4 and 99.7 per cent confidence limits, respectively.

Table 3. Schechter parameters for the Hα luminosity functions for each field determined using a Levenberg–Marquardt χ^2 minimization. The correlation matrices ρ_{ij} for each are shown below.

<table>
<thead>
<tr>
<th></th>
<th>CDFS</th>
<th>S11</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>-1.33 ± 0.34</td>
<td>-1.11 ± 0.51</td>
</tr>
<tr>
<td>$\log L^*$</td>
<td>41.43 ± 0.22</td>
<td>41.24 ± 0.25</td>
</tr>
<tr>
<td>$\log \phi^*$</td>
<td>-2.23 ± 0.32</td>
<td>-2.28 ± 0.33</td>
</tr>
</tbody>
</table>

4.2 Comparison to previous surveys

In Fig. 8, we compare our Schechter fits to the results of other surveys using Hα as a measure for star formation. The survey parameters are summarized in Table 4. We restricted the comparison to Hα surveys with $z \lesssim 0.40$ in order to limit the systematic uncertainties which play into the comparison when different star formation indicators are involved. It can be seen that there is a large range in each of the Schechter parameters between surveys. α ranges from ~ -1.1 to -1.6, $\log L^*$ from ~ 41.3 to 42.2 and $\log \phi^*$ from ~ -3.7 to -2.2. Some of these surveys cover different redshifts from those in our survey. The wide span of the parameters could be attributed to evolution of the luminosity function, as has been suggested by Hopkins (2004) and Ly et al. (2007), who compare surveys over a wider redshift range using different indicators. However, a number of systematic uncertainties exist between surveys that could also attribute to the scatter between the luminosity functions. We now explore each in turn.

The details of galaxy selection inevitably vary from survey to survey. For example, Tresse & Maddox (1998) have selected their galaxies from an I-band-selected sample, while Sullivan et al. (2000) used UV imaging to select theirs. It is well known that galaxy selection based on different passbands results in a different faint-end slope of the galaxy luminosity distribution (Madgwick et al. 2002; Jones et al. 2004). Passbands that favour bluer and/or star-forming galaxies generally yield higher faint-end counts and thus steeper slopes. This undoubtedly has a similar influence on the faint-end slope of the Hα luminosity function.
It is also important to note that any survey using an equivalent width selection (or equivalently, a narrow-band — broad-band colour, e.g. Fujita et al. 2003 and Ly et al. 2007), unlike our survey which rather applies a flux limit, will tend to be biased against galaxies with low equivalent widths. This will affect mostly the selection of galaxies with a high star formation rate per unit continuum characteristic of the line flux on its own.

In Section 3.4, we discussed the amount of extinction correction for our survey and concluded that it agrees with values found by other surveys. However, there is still a large spread in the extinction values. A range of $A_H = 0.5–1.8$ is typical of those found (Ly et al. 2007; Kennicutt 1998, and references therein), which translates directly into an uncertainty of 0.3 in log L^\ast. The exception is when all galaxies have individually been corrected for extinction, which imposes large observational overheads. None of the surveys indicated in Fig. 8 has been able to do so.

Table 5 shows resulting uncertainty in the number density of an elongated prism, while the derivation is for a spherical volume (Somerville et al. 2004). The cosmic variance is calculated by

$$\sigma_v = b \sigma_{DM},$$

where b is the bias parameter (defined as the ratio of the root variance of the haloes and the dark matter) and σ_{DM} is the variance of the dark matter. Using a number density of 0.05 Mpc$^{-3}$ (Ly et al. 2007) yields a bias of $b \sim 0.7$ for all surveys at $z \lesssim 0.4$. The corresponding variance over our survey volumes (of 9.4×10^7 and 8.3×10^7 Mpc3) is $\sigma_{DM} \sim 0.7$ and thus $\sigma_v = 0.49$. This translates to an uncertainty in log $\psi(L)$ of $+0.2/–0.3$, which is ample to account for the difference between the luminosity functions of the two fields.

Many of the narrow-band surveys exhibit similar uncertainties which are sufficiently large to account for the differences between each other. Table 5 shows resulting uncertainty in the number density due to the cosmic variance for a sample of narrow-band surveys with well-defined survey volumes. Despite the low redshift, Gallego

<table>
<thead>
<tr>
<th>Reference/field</th>
<th>Redshift</th>
<th>α</th>
<th>$\log L^\ast$</th>
<th>$\log \psi^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallego et al. (1995)</td>
<td>0.022 ± 0.022</td>
<td>-1.30 ± 0.20</td>
<td>41.87 ± 0.08</td>
<td>-2.79 ± 0.20</td>
</tr>
<tr>
<td>Tresse & Maddox (1998)</td>
<td>0.200 ± 0.100</td>
<td>-1.35 ± 0.06</td>
<td>41.92 ± 0.13</td>
<td>-2.56 ± 0.09</td>
</tr>
<tr>
<td>Sullivan et al. (2000)</td>
<td>0.150 ± 0.150</td>
<td>-1.62 ± 0.10</td>
<td>42.42 ± 0.14</td>
<td>-3.55 ± 0.20</td>
</tr>
<tr>
<td>Fujita et al. (2003)</td>
<td>0.242 ± 0.009</td>
<td>-1.53 ± 0.15</td>
<td>41.95 ± 0.25</td>
<td>-2.62 ± 0.34</td>
</tr>
<tr>
<td>Hipplein et al. (2003)</td>
<td>0.245 ± 0.022</td>
<td>-1.35</td>
<td>41.45</td>
<td>-2.32</td>
</tr>
<tr>
<td>Pérez-González et al. (2003)</td>
<td>0.025 ± 0.025</td>
<td>-1.20 ± 0.20</td>
<td>42.43 ± 0.17</td>
<td>-3.00 ± 0.20</td>
</tr>
<tr>
<td>Ly et al. (2007)</td>
<td>0.0735 ± 0.0075, 0.0055 ± 0.0055</td>
<td>-1.59 ± 0.02</td>
<td>42.05 ± 0.07</td>
<td>-3.14 ± 0.09</td>
</tr>
<tr>
<td>Ly et al. (2007)</td>
<td>0.242 ± 0.009</td>
<td>-1.71 ± 0.08</td>
<td>42.20 ± 0.12</td>
<td>-3.70 ± 1.06</td>
</tr>
<tr>
<td>Ly et al. (2007)</td>
<td>0.401 ± 0.010</td>
<td>-1.34 ± 0.06</td>
<td>41.93 ± 0.19</td>
<td>-2.75 ± 0.16</td>
</tr>
<tr>
<td>This paper, CDFS</td>
<td>0.245 ± 0.016</td>
<td>-1.33 ± 0.34</td>
<td>41.43 ± 0.22</td>
<td>-2.23 ± 0.32</td>
</tr>
<tr>
<td>This paper, S11</td>
<td>0.245 ± 0.016</td>
<td>-1.11 ± 0.51</td>
<td>41.24 ± 0.25</td>
<td>-2.28 ± 0.33</td>
</tr>
</tbody>
</table>
et al. (1995) span a large enough volume that their uncertainty due to cosmic variance is somewhat lower than the surveys at higher redshift. Comparing the uncertainties $\Delta \log \phi(L)$ to the spread of luminosity functions in Fig. 8, we observe that cosmic variance is one of the dominating factors in the determination of an average Hα luminosity function at these redshifts.

Finally, we make the observation that there is a high degree of correlation between the three Schechter parameters. This is clearly demonstrated by the confidence limit contours in the bottom panels of Fig. 7 and the correlation matrices in Table 3.

4.3 Star formation density

The amount of extinction-corrected Hα luminosity from an H II region is directly proportional to the quantity of UV ionizing flux produced by newborn stars. As such, it can be used to estimate the number of new stars and hence the star formation rate. We can thus derive global star formation densities from the Hα luminosity densities of Section 4.1. We use the star formation rate calibration of Kennicutt (1998),

$$\dot{\rho} (\text{M}_\odot \text{yr}^{-1}) = 7.9 \times 10^{-42} L(\text{H} \alpha) (\text{erg s}^{-1} \text{cm}^{-2}),$$

which assumes a Salpeter initial mass function, case B recombination and an electron temperature of 10^4K.

In the case of some surveys (Gallego et al. 2002; Hipplelein et al. 2003; Pérez-González et al. 2003; this paper), the faint-end slope of the Hα luminosity function is poorly constrained, thus having important consequences for the integrated luminosity density. To overcome these, and in order to make a fair comparison, we calculate the star formation density of other Hα emission-line surveys at the same redshift by assuming a common fixed limit rather than integrating from zero luminosity. We choose $L_{\text{lim}} = 0.33 \text{M}_\odot \text{yr}^{-1}$, which corresponds to the limit of our survey ($\log F_{\text{lim}} = -16.0$ with F_{lim} in erg s$^{-1}$ cm$^{-2}$, or $L_{\text{lim}} = 40.6$ with L_{lim} in erg s$^{-1}$), and avoids faint-end extrapolations or assumed faint-end fits of some other surveys. This yields $\log \dot{\rho}(L > L_{\text{lim}}) = -2.24 \pm 0.11$ and -1.93 ± 0.08 for the S11 and CDFS fields, respectively.

Our two fields are indicated in Fig. 9. The other results included in this figure are derived in the same way as described with equation (8) in Section 4.1. We included only star formation densities from surveys based on emission lines and transformed to the same cosmology. The majority of these points were calculated using the compilation of Ly et al. (2007). We also included the least-squares fit to the $z < 1$ points of Hopkins (2004) as a point of reference. Note that this fit assumes $L_{\text{lim}} = 0$.

![Figure 9](https://example.com/figure9.png)

Figure 9. Star formation density as a function of look-back time derived from emission-line surveys, where the Schechter function has been integrated from the star formation rate corresponding to the flux limit of our survey, $1 \times 10^{-16} \text{erg s}^{-1} \text{cm}^{-2}$ (0.33 M\odot yr$^{-1}$). The solid symbols represent the star formation density derived from the Hα line, the open symbols from either the [O II] or the [O III] line. The solid circles are the star formation density from the CDFS and S11 fields of this paper (top and bottom symbol, respectively). Other data are Fujita et al. (2003, open and solid diamonds), Sullivan et al. (2000, open and solid upward-pointing triangle), Tresse et al. (2002, solid downward-pointing triangle), Ly et al. (2007, open and solid squares), Hipplelein et al. (2003, open and solid right-pointing triangles), Gallego et al. (1995, solid left-pointing triangle), Gallego et al. (2002, open left-pointing triangle), Tresse & Maddox (1998, solid upward-pointing star) and Pérez-González et al. (2003, solid downward-pointing star). The dotted and dashed lines are the least-squares fit from Figs 1 and 2 of Hopkins (2004), respectively. They are not corrected for the fact that Hopkins (2004) integrated the Schechter function down to $L = 0$ erg s$^{-1}$ and are indicated for comparison purposes only. The parameters used to make this figure are given in Table 4.

Observe that the star formation density in both our fields agrees quite well with other Hα emission-line surveys at the same redshift. Nevertheless, there is a difference of almost 1 dex between the highest and lowest values for the star formation density. The highest value comes from Fujita et al. (2003), which (according to Ly et al. 2007) suffers from contamination of higher redshift emission-line galaxies, pushing their value upwards accordingly. It is observed in Fig. 9 that we have also plotted the star formation density fits of Hopkins (2004) which, unlike the points, make use of star formation density values integrated down to zero luminosity. This serves to illustrate the extent to which extrapolation of the faint-end fit
effects the final determination of star formation density: typically up to \(\lesssim 50\) per cent for \(\alpha \sim -1.3\) (larger for steeper values). As discussed earlier, the luminosity functions of several surveys have ill-constrained faint-end values.

Obviously, the same systematic uncertainties discussed in Section 4.2 will also play a role here. Furthermore, since we compare the star formation density over a larger redshift range, other emission-line star formation indicators have been used (most notably [O II]), thereby introducing their own sources of systematic uncertainty. In the case of [O II], extinction corrections are larger and its star formation rate calibrator depends on the abundance of the ionized gas (Kewley, Geller & Jansen 2004). Corrections for both can be made with spectra covering H\(\alpha\), H\(\beta\) and [O II], as well as [O I]. However, at redshifts \(z \gtrsim 0.5\) these lines are progressively lost from the optical, giving rise to uncertainties of up to 0.4 in log (SFR), where SFR stands for the star formation rate, when applying the Kennicutt (1992) calibrations (Kewley et al. 2004). Beyond this, emission-line analyses are pushed into the near-infrared (Glazebrook et al. 1999; Doherty et al. 2006), where brighter night-sky background and instrument thermal contributions increase the difficulty of making observations.

4.4 Minor contaminating effects

We now turn our attention to some additional sources of contamination for which we have not included redshift, expressed as a fraction of the true H\(\alpha\) flux. The thick solid line shows the measured H\(\alpha\) flux in the absence of [N II] and approximately traces the filter transmission curve. The shaded envelope shows the effect of the [N II] line over the range H\(\alpha$/[N II] = 2.30 (dotted line) to 4.66 (dashed line), centred on 3.00 (thin solid line). The vertical dotted lines indicate where the filter transmission is 50 per cent.

Table 6. Ratio of H\(\alpha\) to combined [N II] line flux for a range of values in the literature (as indicated). The third column shows the corresponding values of log of the ratio of the [N II] λ6585 to H\(\alpha\) line flux. The last three columns indicate the mean ratio of the H\(\alpha\) flux measured in the narrow-band filters to the true flux where the filter transmission is \(\gtrsim 50\) per cent.

<table>
<thead>
<tr>
<th>H(\alpha$/[N II]</th>
<th>Reference</th>
<th>log [N II]/H(\alpha)</th>
<th>N_{510}</th>
<th>N_{517}</th>
<th>N_{624}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.30</td>
<td>Pascual et al. (2007)</td>
<td>-0.49</td>
<td>1.04</td>
<td>1.04</td>
<td>1.14</td>
</tr>
<tr>
<td>3.00</td>
<td>This paper</td>
<td>-0.60</td>
<td>0.99</td>
<td>0.99</td>
<td>1.08</td>
</tr>
<tr>
<td>4.66</td>
<td>Ly et al. (2007)</td>
<td>-0.79</td>
<td>0.93</td>
<td>0.93</td>
<td>1.00</td>
</tr>
</tbody>
</table>

found in these galaxies. A third value of 3.00 was measured from a high-quality spectrum used for emission-line fitting.

The results are shown in Fig. 10. Average values of the ratio of measured to true H\(\alpha\) flux are indicated in Table 6. The narrow-band H\(\alpha\) flux overestimates the true flux by about 10 per cent when averaged over all redshifts pertaining to a specific filter. However, the ratio can peak around 40 per cent in the innermost 15 per cent of filter coverage. This peak corresponds to the specific case of an idealized square filter containing all three lines as calculated by Pascual et al. (2007). This is a worse-case scenario that only occurs rarely in practice. In the vast majority of cases, the effect of [N II] is moderated by the sloping edges of a real filter profile, or complete absence of [N II] from the narrow-band filters altogether. Given the 70 Å width of our filters and the \(\sim 50\) Å width of the H\(\alpha$/[N II] group, the chance of having all three lines in the same filter is uncommon. As the overall effect of [N II] is approximately 10 per cent (corresponding to 0.04 in log \(L\)), we do not make any correction for it.

4.4.2 AGN contribution

The presence of an active nucleus in a galaxy can contribute H\(\alpha\) line flux in addition to that due to normal star formation. For example, Pascual et al. (2001) have found approximately 15 per cent of their luminosity density to be due to galaxies identified as AGN. We computed the fraction of H\(\alpha\) contribution due to AGN in our sample using the line diagnostic relations as determined by Kewley et al.

8 We have used Butterworth curves for the transmission profiles. The curve is given by \(T(\lambda) = [1 + (\lambda/\lambda_0)^2]^n\), where \(\lambda_0\) is the central wavelength, \(b\) is the FWHM of the filter and \(n\) controls the steepness of the filter edges. We assumed \(\lambda_0\) to be 8100, 8170 and 8240 Å for N_{510}, N_{517} and N_{624}, respectively, and FWHM = 70 Å and \(n = 3\).
Figure 11. BPT diagram for 35 galaxies where the fluxes of the emission lines Hβ, [O iii] λ5007 and [N ii] λ6585 have been measured with an S/N \(\gtrsim 2 \). Indicated by the solid line is the extreme starburst demarcation of Kewley et al. (2001) and the dashed line the demarcation of pure star formation of Kauffmann et al. (2003). The vertical line is drawn at \(\log ([\text{N} \text{II}]/H\alpha) = -0.6 \). The median uncertainty is indicated by the error bars. The galaxies indicated by the open circles lie above the Kewley et al. (2001) line and are most likely influenced by AGN activity. A third galaxy, marked by an open square, lies within the two demarcations and is a composite source. The remaining galaxies, shown by the closed circles, lie below the Kauffmann et al. (2003) relation and to the left-hand side of the line \(\log ([\text{N} \text{II}]/H\alpha) = -0.6 \) line and are pure star-forming galaxies.

(2001) and Kauffmann et al. (2003). We selected galaxies from both fields where the fluxes of the emission lines Hβ, [O iii] λ5007 and [N ii] λ6585 have been measured with an S/N \(\gtrsim 2 \). The line ratios and the line diagnostic relations are indicated in the Baldwin–Phillips–Terlevich (BPT; Baldwin, Phillips & Terlevich 1981) diagram of Fig. 11.

Two of the galaxies lie above the extreme starburst demarcation of Kewley et al. (2001, solid line) and have \(\log ([\text{N} \text{II}]/H\alpha) \gtrsim -0.6 \), which classifies them as AGN. A third galaxy, also with \(\log ([\text{N} \text{II}]/H\alpha) \gtrsim -0.6 \), lies below this demarcation, but above the pure star formation boundary of Kauffmann et al. (2003, dashed line), making this galaxy a composite case.

If we consider the total Hα contribution from the two AGN, it amounts to 5 per cent of the total Hα flux from this subsample. Overall, this AGN contribution would result in a decrease in the star formation density of \(\log \rho = 0.02 \). If we include the composite galaxy as a third AGN, the decrease is \(\log \rho = 0.04 \).

4.4.3 [S ii] contribution

Surveys that only apply colour criteria to determine the nature of the emission line are unable to distinguish between Hα emitters at \(z \sim 0.24 \) and [S ii] emitters at \(z \sim 0.21 \) (Section 3.1 and Fig. 2). The previous calculations of the Hα fraction assume that it is possible to distinguish between Hα and [S ii] emitters. Since this can only be done with spectroscopy, we have also derived the Hα luminosity function for the case where [S ii] emitters are taken to be Hα emitters. This gives an indication of the impact of having sole reliance on colour criteria and no spectroscopic follow-up. Fig. 12 shows the difference between Hα luminosity functions for the CDFS and S11 fields where the [S ii] galaxies were assumed to be Hα. The

Schechter parameters that belong to the alternative Schechter functions are given in Table 7.

The suppression of star formation rates at the centres of clusters has been well established both through direct observation (Balogh et al. 1997, 1998; Kodama et al. 2001, 2004; Lewis et al. 2002b; Gómez et al. 2003) and through changing mix of morphological types (Dressler 1980). Such high-density environments provide a range of dynamical mechanisms whereby galaxy encounters rapidly strip gas from any potential star-forming galaxies (e.g. Couch et al. 2001, and references therein). Recent observations have suggested a continuation of this trend across structures at larger scales and lower density enhancements than clusters (Gómez et al. 2003; Gray et al. 2004). Accordingly, we examine our two fields for evidence of star formation rates that are driven by either the general galaxy environment, or alternatively, the local distribution of star forming galaxies.

5 ENVIRONMENTAL PROPERTIES

The suppression of star formation rates at the centres of clusters has been well established both through direct observation (Balogh et al. 1997, 1998; Kodama et al. 2001, 2004; Lewis et al. 2002b; Gómez et al. 2003) and through changing mix of morphological types (Dressler 1980). Such high-density environments provide a range of dynamical mechanisms whereby galaxy encounters rapidly strip gas from any potential star-forming galaxies (e.g. Couch et al. 2001, and references therein). Recent observations have suggested a continuation of this trend across structures at larger scales and lower density enhancements than clusters (Gómez et al. 2003; Gray et al. 2004). Accordingly, we examine our two fields for evidence of star formation rates that are driven by either the general galaxy environment, or alternatively, the local distribution of star forming galaxies.

Usually, the amount of galaxy clustering is expressed as a function of projected density

\[
\Sigma_a = \frac{n}{\pi r_s^2},
\]

where \(r_s \) (in Mpc) is the distance to the \(n \)th (usually \(n = 10 \)) nearest neighbouring galaxy with \(M_B < -19 \). In cluster environments, the star formation rate has been observed to be quenched at galaxy densities above 1 Mpc\(^{-2}\) (Lewis et al. 2002b; Gómez et al. 2003).

In Fig. 13(a), we show the fraction of galaxies with a star formation rate exceeding 1 M⊙ yr\(^{-1}\), as well as median and mean star
were determined using the jackknife estimator,\(^9\) while in the bottom panel they are the standard deviation. We also show the 25th and 75th percentile values for each bin in the middle panel. We determined the projected density by using the usual \(r_{10}\) measure of the tenth-nearest star-forming galaxy to each ordinary galaxy. Ordinary galaxies were taken from the photometric redshift catalogues of the COMBO-17 survey (Wolf et al. 2003; K. Meisenheimer, private communication) as galaxies with \(B_{MB} < 22\) (corresponding to \(M_B = -19\)) between 0.21 \(\leq z \leq 0.29\). As the thickness of the redshift slice influences the value of projected density, we scale it using the difference in the thickness of the redshift slice of our survey and the average thickness of the 3\(\sigma\) cluster volumes (where \(\sigma\) is the velocity dispersion of the cluster) used in Lewis et al. (2002b).

Since we did not target any known clusters with our fields, we expect that there will be little or no evidence for star formation suppression in our fields. Typically, the projected density for galaxies within the virial radius of a cluster is \(~4\text{ Mpc}^{-2}\) and at the centre of some rich clusters can be as high as \(10\text{ Mpc}^{-2}\) (Lewis et al. 2002b). Indeed, as Fig. 13(a) shows, there is negligible change in the star formation rate per unit density for the galaxies in both our fields (noting that the highest density point is affected by poor number statistics). Furthermore, we confirm levels of star formation that are typical for the range of typical field galaxy densities probed by our data as found by previous surveys (e.g. Lewis et al. 2002b; Gómez et al. 2003). Generally, the distribution of star formation rates in a given density bin is rather asymmetric, making the median a more reliable measure than the mean.

In Fig. 13(b), we show the same measures as for (a), but as a function of projected density of the spectroscopically confirmed star-forming galaxies at 0.23 \(\leq z \leq 0.26\). There are roughly one-third as many star-forming galaxies as not, and so we redefine the projected density in terms of distance to the third-nearest galaxy, \(\Sigma_3\). As a consequence, \(\Sigma_3\) and \(\Sigma_{10}\) span a similar range of density values. We observe in Fig. 13(b) that star formation per galaxy increases with increasing density. Noting again that the highest-density bin is affected by poor number statistics. Although not conclusive, this is consistent with galaxy evolution scenarios that see galaxy–galaxy interactions as triggers for bursts of star formation (Alonso et al. 2004; Perez et al. 2006).

To examine the apparent relationship between star formation rate and projected density of star-forming galaxies, we plot the spatial distribution of our spectrally confirmed H\(\alpha\) galaxies in Fig. 14. The

\(^9\)The jackknife estimator is calculated as follows. Let \(\hat{\beta}_{(i)} = \hat{\beta}(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)\) be the value of the statistic with one element \(x_i\) removed, and define \(\hat{\beta}_J = (1/n) \sum_{i=1}^{n} \hat{\beta}_{(i)}\), \(\delta_J^2 = (n-1)/n \sum_{i=1}^{n} (\hat{\beta}_{(i)} - \hat{\beta}_J)^2\) is then the square of the jackknife estimate of the standard error (Efron & Gong 1983).
Figure 14. Spatial distribution of the spectrally confirmed Hα galaxies in both our fields (solid circles). The size of the circles indicates the star formation rate of the galaxy derived from the narrow-band flux and the grey-scale the redshift. The black dots are galaxies that have not been spectroscopically confirmed yet and have a colour 0.5 \(\leq (B - R) \leq 1.3 \), which corresponds to the colour interval of our confirmed Hα galaxies (Fig. 2).

size of the points indicates their star formation rate and their shade of grey the redshift. Probable (but unconfirmed) Hα candidates are also shown. These were selected on the basis of colour \([0.5 \leq (B - R) \leq 1.3] \); see Fig. 2] and having either indeterminate or non-existent spectra.

The distribution of star-forming galaxies in the CDFS field (Fig. 13b) suggests a tendency for grouping of the star-forming galaxies. However, the eye is remarkably good at making out patterns in noisy distributions and thus we should be cautious in these interpretations (e.g. p. 35 of Peebles 1993). On the other hand, the distribution of star-forming galaxies at \(z \sim 0.24 \) in the S11 field (Fig. 14) is apparently less structured than in the CDFS field. Because of this, we infer that the trend of increasing star formation with rising density of star-forming galaxies is largely attributable to the data from the CDFS field. This contrast between the fields can also be seen in differences in the Hα space densities given by

\[\alpha \sim 0.24 \text{ in the S11 field} \]

Our fields were of order the expected by cosmic variance but less than the scatter between the Hα luminosity functions of recent surveys. We surmise that while cosmic variance is a major contributor to this scatter, it is differences in methodology between surveys (mainly differences in selection criteria) that dominate discrepancies between Hα luminosity functions and its related observables at \(z \sim 0.24 \). A survey that covers 10–20 times the volume of one of our fields is required to get the uncertainty due to cosmic variance to the levels of Gallego et al. (1995).

We estimated the star formation density for both our fields to be \(\log \rho = -1.93^{+0.06}_{-0.10} \) and \(-2.24^{+0.11}_{-0.14} (\rho \text{ in } M_\odot \text{yr}^{-1}) \) for the CDFS and S11 fields, respectively, down to our survey limit of \(F_{\text{line}} = -16.0 \) (\(F_{\text{line}} \text{ in erg}\,\text{s}^{-1}\,\text{cm}^{-2} \)) or \(L_{\text{line}} = 40.6 \) (\(L_{\text{line}} \text{ in erg}\,\text{s}^{-1} \)). These values are comparable to other surveys at this redshift when calculated to the same flux limit. Correcting for AGN would decrease these values by 0.02–0.04 depending on exactly how much of the Hα flux is contributed by the AGN rather than by normal star formation.

Furthermore, we determined the star formation density in the hypothetical case where [SII] emitters at \(z \sim 0.21 \) were classified as Hα to illustrate the problems associated with solely relying on colour
selections. The star formation density log $\dot{\rho}$ of the S11 field does not change by much (+0.02). On the other hand, the star formation density in the CDFS field increases by 0.12, due to the large number of foreground [SII] galaxies at $z \sim 0.21$.

We explored the amount of star formation with respect to the local environment and found that the star formation rates were typical for the field galaxy densities probed, in agreement with the results of previous work. However, we also found tentative evidence of an increase in star formation rate per galaxy with increasing density of the star-forming galaxies. This supports scenarios where merger events are triggers for enhanced star formation, provided it can be demonstrated to be occurring on the smallest scales. We explored this trend by examining the spatial distribution of our fields individually and found that it was largely attributable to one field. A formal study of the clustering statistics of this field is required to confirm this and will be the subject of a future study.

ACKNOWLEDGMENTS

We are indebted to Rob Sharp for his suggestions on preparing and reducing the AAOmega observations and for his help during the observations. We are also grateful to AAO service observers Will Saunders and Quentin Parker. We thank Klaus Meisenheimer for providing us with the photometric redshift catalogue of the S11 field. EW is grateful to Philip Lah for help with Schechter function fitting. This research was made possible by using the ESO and AAO facilities. We appreciate the constructive report of an anonymous referee, which has helped to improve this paper significantly.

REFERENCES

Ajiki M. et al., 2003, AJ, 126, 2091

Westra E. et al., 2006, A&A, 455, 61 (W06)

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.