Observational constraints on the braneworld model with brane–bulk energy exchange

M. Sadegh Movahed1,2⋆ and Ahmad Sheykhi3⋆

1Department of Physics, Shahid Beheshti University, Evin, Tehran 19839, Iran
2School of Astronomy, IPM (Institute for Studies in theoretical Physics and Mathematics), PO Box 19395-5531, Tehran, Iran
3Department of Physics, Shahid Bahonar University, PO Box 76175-132, Kerman, Iran

ABSTRACT
We investigate the viability of the braneworld model with energy exchange between the brane and bulk by using the most recent observational data related to the background evolution. We show that this energy exchange behaves like a source of dark energy and can alter the profile of the cosmic expansion. The new supernova Type Ia (SNIa) Gold sample, Supernova Legacy Survey (SNLS) data, the position of the acoustic peak at the last scattering surface from the Wilkinson Microwave Anisotropy Probe (WMAP) observations and the baryon acoustic oscillation peak found in the Sloan Digital Sky Survey (SDSS) are used to constrain the free parameters of this model. To infer its consistency with the age of the Universe, we compare the age of old cosmological objects with that computed using the best-fitting values for the model parameters. At 68% per cent level of confidence, the combination of Gold sample SNIa, cosmic microwave background (CMB) shift parameter and SDSS data bases provides \(\Omega_m = 0.29^{+0.03}_{-0.02}, \Omega_A = -0.71^{+0.03}_{-0.02}, \mu = -0.40^{+0.28}_{-0.26} \) and \(\mu = -0.40^{+0.28}_{-0.26} \), hence a spatially flat Universe with \(\Omega_K = 0.00^{+0.04}_{-0.04} \). The same combination with SNLS supernova observation gives \(\Omega_m = 0.27^{+0.02}_{-0.02}, \Omega_A = -0.74^{+0.04}_{-0.02} \) and \(\mu = 0.00^{+0.30}_{-0.30} \) consequently provides a spatially flat Universe \(\Omega_K = -0.01^{+0.04}_{-0.03} \). These results obviously seem to be compatible with the most recent WMAP results indicating a flat Universe.

Key words: methods: numerical – methods: statistical – cosmological parameters – cosmology: observations – cosmology: theory – early Universe.

1 INTRODUCTION
Recent observations of Type Ia supernovae (SNIa) suggest the expansion of the Universe is accelerating (Riess et al. 1998; Perlmutter et al. 1999; Tonry et al. 2003; Riess et al. 2004). As it is well known, all usual types of matter with positive pressure generate attractive forces, which decelerate the expansion of the Universe. A ‘dark energy’ component with negative pressure was suggested to account for the invisible fuel that drives the current acceleration of the Universe. Although the nature of such dark energy is still speculative, an overwhelming flood of papers has appeared which attempt to describe it by devising a great variety of models (see Weinberg 1989; Armendariz-Picon, Mukhanov & Steinhardt 2000; Sahni & Starobinsky 2000; Bagla, Jassal & Padmanabhan 2003; Lima 2004; Copeland, Sami & Tsujikawa 2006 for recent reviews). Available models of dark energy differ in the value and variation of the equation of state parameter, \(w \), during the evolution of the Universe. Among them are cosmological constant \(\Lambda \), an evolving scalar field (referred to by some as quintessence), the phantom energy, in which the sum of the pressure and energy density is negative, the quintom model, the holographic dark energy, the Chaplygin gas and the Cardassion model. Another approach dealing with this problem is using the modified gravity by changing the Einstein–Hilbert action. Some of models as \(1/R \) and logarithmic models provide an acceleration for the Universe at the present time (Weinberg 1989; Carroll 2001; Bennett et al. 2003; Padmanabhan 2003; Peebles & Ratra 2003; Peiris et al. 2003; Spergel et al. 2003; Miranda et al. 2001; Rahvar & Movahed 2007; Wetterich 1998; Ratra & Peebles 1988; Frieman et al. 1995; Turner & White 1997; Caldwell, Dave & Steinhardt 1998; Liddle & Scherrer 1998; Zlatev, Wang & Steinhardt 1999; Steinhardt, Wang & Zlatev 1999; Torres 2002; Peebles & Ratra 1988; Caldwel, Kamionkowski & Weinberg 2003; Arbabi-Bidgoli, Movahed & Rahvar 2006; Wang et al. 2000; Perlmutter, Turner & White 1999a; Page et al. 2003; Doran et al. 2001; Doran & Lilley 2002; Caldwell & Doran 2004; Caldwell 2002; Dabrowski, Stachowiak & Szydłowski 2003; Amendola 2000, 2003; Amendola & Tocchini-Valentini 2001; Pietroni 2003; Comelli, Pietroni & Riotto 2003; Franca & Rosenfeld 2004; Zhang 2005; Guo et al. 2006; Li 2004; Wang, Gong & Abdalla 2006a; Wang, Lin & Abdalla 2006b;

Independent of these challenges, we deal with the dark energy puzzle. In recent years, theories of large extra dimensions, in which the observed Universe is realized as a brane embedded in a higher dimensional space–time, have received a lot of interest. According to the braneworld scenario, the standard model of particle fields is confined to the brane while, in contrast, the gravity is free to propagate in the whole space–time (Randall & Sundrum 1999; Dvali, Gabadadze & Porrati 2000). In these theories, the cosmological evolution on the brane is described by an effective Friedmann equation that incorporates non-trivially with the effects of the bulk into the brane (Binetruy, Deffayet & Langlois 2000; Sheykhi, Wang & Cai 2007a,c). An interesting consequence of the braneworld scenario is that it allows the presence of five-dimensional matter which can propagate in the bulk space and may interact with the matter content in the braneworld. It has been shown that such interaction can alter the profile of the cosmic expansion and lead to a behaviour that would resemble the dark energy. The cosmic evolution of the braneworld models with energy exchange between the brane and bulk has been studied in different approaches (Kiritsis, Tetradis & Tomaras 2002; Kiritsis et al. 2003; Apostolopoulos & Tetradis 2005, 2006; Kiritsis 2005; Kofinas, Panotopoulos & Tomaras 2006; Bogdanos, Dimitris & Tamvakis 2006; Umezu et al. 2006; Cai, Gong & Wang 2006; Ghassemi, Khakshournia & Mansouri 2006; Bogdanos & Tamvakis 2007; Sheykhi, Wang & Riazzi 2007b).

In the framework of the braneworld scenarios, many attempts to observationally detect or distinguish brane effects, on the evolution of our Universe, from the usual dark energy physics have been discussed in the literature (Capozziello et al. 2004; Pires, Zhu & Alcaniz 2006). In Sahni & Shtanov (2002, 2003), a class of braneworld models has been investigated. A new and interesting feature of this class of models is that the acceleration of the Universe may be a transient phenomenon, which cannot be achieved in the context of our current standard scenario, i.e. the ΛCDM model but could reconcile the supernova evidence for an accelerating Universe with the requirements of string/M-theory (Fischler et al. 2001). The purpose of the present work is to disclose the effect of energy exchange between the brane and bulk in the Randall–Sundrum II (RS II) braneworld scenario on the evolution of the Universe. Giving the wide range of cosmological data available, we are able to test the viability of this class of braneworld models by putting recent observational constraints on its free parameters.

We have three independent types of observational constraints for the dark energy models: (i) the supernova distance modulus (Perlmutter et al. 1998; Riess et al. 1998, 2004; Nobili et al. 2005), (ii) the dynamical evidence for matter density (Spiegel et al. 2003) and (iii) the age of the Universe (Hu et al. 2001; Knox, Christensen & Skordis 2001). Besides, great success has been achieved in high-precision measurements of CMB anisotropy, as well as in Galaxy clustering (Refregier 2003; Seljak et al. 2005; Heymans et al. 2005; Weinberg 2005). Among these observations, the age of the Universe is one of the most pressing pieces of data disclosing information about dark energy. Indeed, any limit on the age of the Universe during its evolution with redshift will reveal the nature of dark energy. This is due to the fact that dark energy influences the evolution of the Universe. However, different models of dark energy may lead to the same age of Universe at z = 0. To lift this degeneracy, we should examine the age of the Universe at different stages of its evolution and compare it with the estimated age of high-redshift objects. This procedure constrains the age at different stages, being a powerful tool to test the viability of different models (Friaca, Alcaniz & Lima 2005; Wang et al. 2006b).

This paper is organized as follows. In Section 2, we introduce a braneworld model with energy exchange between the brane and bulk, the cosmology of this model, its free parameters and background dynamics of the Universe governed by the effective Friedmann equation. We also show how this model can exhibit acceleration expansion of our Universe. Most limitations regarding this interaction in our model are introduced. We investigate the geometrical effects of underlying braneworld cosmology in Section 3. In Section 4, we test the viability of our model by putting some constraints on the parameters of the model. For this aim, we use the new Gold sample and Legacy Survey of SNIa data (Riess et al. 2004; Astier et al. 2006), its combination with the position of the observed acoustic angular scale on CMB and the baryonic oscillation length scale. In Section 5, we compare the age of the Universe in this model with the age of old cosmological objects. The last section is devoted to conclusions and discussions.

2 BRANEWORLD WITH BRANE–BULK ENERGY EXCHANGE

We start from the following action:

\[S = \frac{1}{2k^2} \int d^4x \sqrt{-g} \left[(R - 2\Lambda) + \int d^4x \sqrt{-g} L_{\text{bulk}}^m + \right. \\
\left. \int d^4x \sqrt{-\tilde{g}} \left(L_{\text{brane}}^m - \sigma \right). \right] \]

(1)

where \(R \) is the five-dimensional scalar curvature and \(\Lambda < 0 \) is the bulk cosmological constant. \(g \) and \(\tilde{g} \) are the bulk and the brane metrics, respectively. Throughout this paper, we choose the unit \(k^2 = 1 \) as the gravitational constant in five dimension. We have also included arbitrary matter content both in the bulk and on the brane through \(L_{\text{bulk}}^m \) and \(L_{\text{brane}}^m \), respectively. \(\sigma \) is the positive brane tension. The field equations can be obtained by varying the action, equation (1), with respect to the bulk metric \(g_{AB} \). The result is

\[G_{AB} + \Lambda g_{AB} = T_{AB}. \]

(2)

For convenience, we choose the extra-dimensional coordinate \(y \) such that the brane is located at \(y = 0 \) and bulk has \(Z_2 \) symmetry. We are interested in the cosmological solution with a metric

\[ds^2 = -n^2(t, y)dt^2 + a^2(t, y)\gamma_{ij}dx^i dx^j + b^2(t, y)dy^2, \]

(3)

where \(\gamma_{ij} \) is a maximally symmetric three-dimensional metric for the surface (\(t = \text{const.} \) and \(y = \text{const.} \)), whose spatial curvature is parametrized by \(K = -1, 0, 1 \). The metric coefficients \(n \) and \(b \) are chosen as \(n(t, 0) = 1 \) and \(b(t, 0) = 1 \), where \(t \) is cosmic time on the brane. The total energy-momentum tensor has bulk and brane components and can be written as

\[T_{AB} = T_{AB} |_{\text{brane}} + T_{AB} |_{\text{bulk}}. \]

(4)

The first and the second terms are the contribution from the energy-momentum tensor of the matter field confined to the brane and the brane tension

\[T_{\delta}^A |_{\text{brane}} = \text{diag}(-\rho, p, p, p), \]

(5)

\[T_{\delta}^A |_{\sigma} = \text{diag}(-\sigma, -\sigma, -\sigma, -\sigma). \]

(6)
where ρ and p are the energy density and pressure on the brane, respectively. In addition, we assume an energy-momentum tensor for the bulk content with the following form:

$$T^\mu_\nu|_{\text{bulk}} = \begin{pmatrix} T^0_0 & 0 & T^0_3 \\ 0 & T^j_\beta & 0 \\ -\frac{\sigma}{2} T^3_3 & 0 & T^3_3 \end{pmatrix}. \quad (7)$$

The quantities which are of interest here are T^0_0 and T^0_3, as these two enter the cosmological equations of motion. In fact, T^0_0 is the term responsible for energy exchange between the brane and the bulk. Integrating the (00) and the (ij) components of the field equations (2) across the brane and imposing Z_2 symmetry, we have the jump across the brane

$$\alpha_i' = -\frac{1}{6}(\rho + \sigma), \quad (8)$$

$$\frac{n_i'}{n_0} = \frac{1}{6}(2p + 3\rho - \sigma), \quad (9)$$

where $2\alpha_i'$ and $2n_i'$ are the discontinuities of the first derivative and primes denote derivatives with respect to y. In addition, as usual, the subscript '0' denotes that quantities are evaluated at $y = 0$.

Substituting the junction conditions, i.e. equations (8) and (9) into the (55) and (05) components of the field equation (2), we obtain the modified Friedmann equation and the semi-conservation law on the brane

$$2\dot{H} + \dot{H} + \frac{K}{a_0^2} = -\frac{1}{36} \left[\sigma (3p - \rho) + (\rho + 3p) \right]$$

$$+ \frac{1}{3} \left[\Lambda + \frac{\sigma^2}{2} - \frac{T^3_3}{2} \right], \quad (10)$$

$$\dot{\rho} + 3H(\rho + p) = -2T^0_3, \quad (11)$$

where $H = \dot{a}_0/a_0$ is the Hubble parameter on the brane and dots denote time derivative. We will assume an equation of state $p = w\rho$ which represents a relation between the energy density and pressure of the matter on the brane. The bulk matter contributes to the energy content of the brane through the bulk pressure terms T^0_0 and T^3_3. In order to derive a solution that is largely independent of the bulk dynamics, we should neglect T^3_3 term by assuming that the bulk matter relative to the bulk vacuum energy is much less than the ratio of the brane matter to the brane vacuum energy (Kiritsis et al. 2003). Considering this, we get

$$2\dot{H} + \dot{H} + \frac{K}{a_0^2} = \gamma \rho (1 - 3w) - \beta \rho^2 (1 + 3w) + \frac{\lambda}{3}, \quad (12)$$

$$\dot{\rho} + 3H(\rho + w) = -2T^0_3, \quad (13)$$

where we have used the usual definition $\beta \equiv 1/3w, \gamma \equiv \beta \sigma$ and $\lambda \equiv (\Lambda + \sigma^2/6)$. Assuming the Randall–Sundrum fine-tuning $\lambda = \Lambda + \sigma^2/6 = 0$ holds on the brane, one can easily check that the Friedmann equation (12) is equivalent to the following equations:

$$H^2 + \frac{K}{a_0^2} = \beta \rho^2 + 2\gamma \rho + \chi, \quad (14)$$

$$\dot{\chi} + 4H\chi = 4T^3_3(\beta \rho + \gamma). \quad (15)$$

Equation (14) is the modified Friedmann equation describing cosmological evolution on the brane. The auxiliary field χ incorporates non-trivial contributions of dark energy which differ from the standard matter fields confined to the brane. It is worth noting that the flow of the mass-energy from the bulk on to the brane may resemble as the dark energy. Indeed, it can influence the background evolution of the Universe and lead to acceleration (see e.g. Kiritsis et al. 2003). One may argue that whether the energy exchange between the brane and bulk becomes dark matter or not? To answer this question, one should consider an interaction between dark matter and dark energy on the brane which is not yet clear. Besides, in order to have the equation of state in the bulk, a particular model of the bulk matter is required which is not clear yet, because we do not exactly know the bulk geometry (Bogdanos & Tamvakis 2007). So now in our coarse-grained model we ignored this effect.

We are also interested in the scenarios where the energy density of the brane is much lower than the brane tension, namely $\rho \ll \sigma$. Therefore equations (14) and (15) can be simplified in the following form:

$$H^2 + \frac{K}{a_0^2} = 2\gamma \rho + \chi, \quad (16)$$

$$\dot{\chi} + 4H\chi = 4T^3_3, \quad (17)$$

Then, we take ansatz $T^0_3 = AHa^\mu$ for the brane–bulk energy exchange (Cai et al. 2006), where A and μ are arbitrary constants and thereafter we have omitted the ‘0’ subscript from the scalefactor on the brane for simplicity. For this ansatz, one can easily check that equation (17) has the following solution:

$$\chi = \frac{C}{a^2} + \frac{4\gamma A}{\mu + 4} a^\mu, \quad (18)$$

where C is an integration constant usually referred to the dark radiation term. In a similar way, inserting T^3_3 into equation (13), we get

$$\rho = \frac{\rho_0}{a^2} - \frac{2A}{\mu + 4} a^\mu, \quad (19)$$

where ρ_0 is the present matter density of the Universe with equation of state $w = 0$. Finally, inserting ρ and χ into equation (16), we obtain the modified Friedmann equation on the brane

$$H^2 = \frac{8\pi G_N}{3} \left[\Omega_{m0} - \frac{2A}{(\mu + 3)(\mu + 4)} a^\mu - \frac{K}{a^2} \right], \quad (20)$$

where $G_N = 3\gamma/4\pi$ is the four-dimensional Newtonian constant, $\rho_{m0} = \rho_0 a^{-3}$ is matter energy density and we have neglected the dark radiation term $\sim a^{-4}$, namely $\Omega = 0$, because we are more interested in the probe of late-time era. Using the value of present critical density,

$$\rho_c = \frac{3H_0^2}{8\pi G_N}, \quad (21)$$

the effective Friedmann equation in terms of dimensionless quantities and redshift parameter $1 + z = a^{-1}$ can be written as

$$H^2 = H_0^2 \left[\Omega_{m0}(1 + z)^3 - \Omega_{k0}(1 + z)^2 - (\Omega_{m0} - 1)(1 + z)^2 \right], \quad (22)$$

where

$$\Omega_{m0} = \frac{\rho_{m0}}{\rho_c} \quad \Omega_{k0} = \frac{K}{8\pi G_N \rho_c}, \quad (23)$$

$$\Omega_{m0} = \frac{2A}{8\pi G_N \rho_c} \quad \text{and} \quad \Omega_{k0} = \Omega_{m0} - \Omega_{k0} = 1 + \Omega_{k0}. \quad (24)$$

As one can see from equation (22), the free parameters of this model are very similar to those of ΛCDM models, but this is quite accidental and is due to our specific ansatz for the energy exchange term.
M. S. Movahed and A. Sheykhi

The cosmological observations are mainly affected by the background dynamics of the Universe. So, before starting some main observational tests to explore braneworld cosmology we investigate how the free parameters of this model alter the background dynamics by using the measurable quantities introduced in this section. We believe they give deep insight throughout this model. For this purpose, we study the effect of the braneworld model on the geometrical parameters of the Universe all together.

3 GEOMETRICAL EFFECTS OF BRANEWORLD MODEL

The cosmological observations are mainly affected by the background dynamics of the Universe. So, before starting some main observational tests to explore braneworld cosmology we investigate how the free parameters of this model alter the background dynamics by using the measurable quantities introduced in this section. We

\[q(z; \Omega_m, \Omega_\Lambda, \mu) = \frac{1}{H_0 \sqrt{\Omega_K}} F \left(\sqrt{\Omega_K} \int_0^z \frac{dz'}{H(z')/H_0} \right). \] (27)
\[d = d_A \theta, \]
where \(d_A = r(z; \Omega_m, \Omega_\Lambda, \mu)/(1 + z) \) is the angular diameter distance. The main applications of equation (29) are on the measurement of the apparent angular size of acoustic peak on CMB and baryonic acoustic peak at the high and low redshifts, respectively. By measuring the angular size of an object in different redshifts (the so-called Alcock–Paczynski test), it is possible to probe the validity of braneworld model (Alcock & Paczynski 1979). The variation of apparent angular size \(\Delta \theta \) in terms of \(\Delta z \) is given by

\[\frac{\Delta z}{\Delta \theta} = H(z; \Omega_m, \Omega_\Lambda, \mu)r(z; \Omega_m, \Omega_\Lambda, \mu). \]

Figure 4 shows \(\Delta z/\Delta \theta \) in terms of redshift, normalized to the case with \(\Omega_m = 0.30, \Omega_\Lambda = -0.70 \) and \(\mu = 0.0 \) (flat Universe, \(\Omega_k = 0.0 \)). The advantage of Alcock–Paczynski test is that it is independent of standard candles and a standard ruler such as the size of baryonic acoustic peak can be used to constrain the braneworld model.

3.3 Comoving volume element

The comoving volume element is another geometrical parameter which is used in number-count tests such as lensed quasars, Galaxies or clusters of Galaxies. The comoving volume element in terms of comoving distance and Hubble parameter is given by

\[f(z; \Omega_m, \Omega_\Lambda, \mu) = \frac{dV}{dz d\Omega} = r^2(z; \Omega_m, \Omega_\Lambda, \mu)/H(z; \Omega_m, \Omega_\Lambda, \mu). \]

According to Fig. 5, the comoving volume element becomes large for larger value of \(\mu \) in the flat Universe.

4 OBSERVATIONAL CONSTRAINTS ON THE MODEL USING BACKGROUND EVOLUTION OF THE UNIVERSE

In this section, at the beginning, we examine braneworld model by SNIa Gold sample and Supernova Legacy Survey (SNLS) data. Then, to make the model parameter intervals more confined, we will combine observational results of SNIa distance modules with power spectrum of cosmic microwave background (CMB) radiation and baryon acoustic oscillation measured by Sloan Digital Sky survey (SDSS). Table 1 shows different priors of the model parameters used in the likelihood analysis.

4.1 Supernova Type Ia: Gold and SNLS samples

The SNIa experiments provided the main evidence of the existence of dark energy. Since 1995, two teams of the High-Z Supernova Search and the Supernova Cosmology Project have discovered several SNIa at high redshifts (Schmidt et al. 1998; Perlmutter et al. 1999a). Recently, Riess et al. (2004) have announced the discovery...
of 16 SNIa with the Hubble Space Telescope. They determined the luminosity distance of these supernovae and, with the previously reported algorithms, obtained a uniform 157 Gold sample of SNIa (Tonry et al. 2003; Barris et al. 2004; Riess et al. 2004). Recently, a new data set of Gold sample with smaller systematic error containing 156 supernova Ia has been released (The Gold Dataset 2006). In this work, we use this data set as new Gold sample SNIa.

More recently, the SNLS collaboration released the first year data of its planned 5-year SNLS (Astier et al. 2006). An important aspect to be emphasized on the SNLS data is that they seem to be in better agreement with WMAP results than the Gold sample (Jassal, Bagla & Padmanabhan 2006). We compare the predictions of the braneworld model for apparent magnitude with new SNIa Gold sample and SNLS data set. The observations of supernova measure essentially the apparent magnitude \(m \) including reddening, K-correction, etc., which are related to the (dimensionless) luminosity distance, \(D_L \), of an object at redshift \(z \) through

\[
m = M + 5 \log D_L(z; \Omega_m, \Omega_\Lambda, \mu),
\]

where

\[
D_L(z; \Omega_m, \Omega_\Lambda, \mu) = \frac{(1 + z)}{\sqrt{H_0}} \int_0^z \frac{dz'}{H(z')} \frac{c^2}{H_0^2},
\]

(32)

Also,

\[M = M + 5 \log \left(\frac{c/H_0}{1 \text{ Mpc}} \right) + 25, \]

(33)

where \(M \) is the absolute magnitude. The distance modulus, \(\mathcal{M} \), is defined as

\[\mathcal{M} = m - M = 5 \log D_L(z; \Omega_m, \Omega_\Lambda, \mu) + 5 \log \left(\frac{c/H_0}{1 \text{ Mpc}} \right) + 25 \]

(34)

or

\[\mathcal{M} = 5 \log D_L(z; \Omega_m, \Omega_\Lambda, \mu) + \bar{M}. \]

(35)

In order to compare the theoretical results with the observational data, we must compute the distance modulus, as given by equation (35). For this purpose, the first step is to compute the quality of the fitting through the least-squared fitting quantity \(\chi^2 \) defined by

\[
\chi^2(\bar{M}, \Omega_m, \Omega_\Lambda, \mu) = \sum_i \frac{|\delta_{\Omega_m}(z_i) - \delta_{\Omega_m}(z_i; \Omega_m, \Omega_\Lambda, \mu)|^2}{\sigma_i^2},
\]

(36)

where \(\sigma_i \) is the observational uncertainty in the distance modulus. To constrain the parameters of model, we use the likelihood statistical analysis:

\[
\mathcal{L}(\bar{M}, \Omega_m, \Omega_\Lambda, \mu) = \mathcal{N} e^{-\chi^2(\bar{M}, \Omega_m, \Omega_\Lambda, \mu)/2},
\]

(37)

where \(\mathcal{N} \) is a normalization factor. The parameter \(\bar{M} \) is a nuisance parameter and should be marginalized (integrated out) leading to a new \(\tilde{\chi}^2 \) defined as

\[
\tilde{\chi}^2 = -2 \ln \int_{-\infty}^{\infty} \mathcal{L}(\bar{M}, \Omega_m, \Omega_\Lambda, \mu) \, d\bar{M}.
\]

(38)

Using equations (37) and (39), we find

\[
\tilde{\chi}^2(\Omega_m, \Omega_\Lambda, \mu) = \chi^2(\bar{M} = 0, \Omega_m, \Omega_\Lambda, \mu)
\]

\[
- \frac{B(\Omega_m, \Omega_\Lambda, \mu)}{C} + \ln(C/2\pi),
\]

(39)

where

\[
B(\Omega_m, \Omega_\Lambda, \mu) = \sum_i \frac{|\delta_{\Omega_m}(z_i) - \delta_{\Omega_m}(z_i; \Omega_m, \Omega_\Lambda, \mu, \bar{M} = 0)|^2}{\sigma_i^2},
\]

(40)

and

\[
C = \sum_i \frac{1}{\sigma_i^2}.
\]

(41)

Equivalently to marginalization is the minimization with respect to \(\bar{M} \). One can show that \(\chi^2 \) can be expanded in \(\bar{M} \) as (Nesseris & Perivolaropoulos 2004)

\[
\chi^2_{\text{SNL}}(\Omega_m, \Omega_\Lambda, \mu) = \chi^2(\bar{M} = 0, \Omega_m, \Omega_\Lambda, \mu)
\]

\[
- 2\bar{M} \frac{B}{C} + \frac{B^2}{C},
\]

which has a minimum for \(\bar{M} = B/C \):

\[
\chi^2_{\text{SNL}}(\Omega_m, \Omega_\Lambda, \mu) = \chi^2(\bar{M} = 0, \Omega_m, \Omega_\Lambda, \mu)
\]

\[
- 2\bar{M} \frac{B}{C} + \frac{B^2}{C},
\]

(42)

Using equation (44), we can find the best-fitting values of model parameters as the values that minimize \(\chi^2_{\text{SNL}}(\Omega_m, \Omega_\Lambda, \mu) \). The best-fitting values for the parameters of model by using supernova data are \(\Omega_m = 0.51^{+0.10}_{-0.07} \), \(\Omega_\Lambda = -0.75^{+0.32}_{-0.41} \) and \(\mu = 0.76^{+0.24}_{-0.15} \) with \(\chi^2_{\text{min}}/\text{N. d.o.f.} = 0.92 \) at 1\(\sigma \) level of confidence. These values imply that \(\Omega_K = -0.26^{+0.44}_{-0.40} \). The best-fitting values for the parameters of model by using SNLS supernova data are \(\Omega_m = 0.06^{+0.05}_{-0.06} \), \(\Omega_\Lambda = -1.84^{+0.58}_{-0.59} \) and \(\mu = -1.34^{+0.36}_{-0.10} \) with \(\chi^2_{\text{min}}/\text{N. d.o.f.} = 0.87 \) at 1\(\sigma \) level of confidence. The corresponding value of \(\Omega_K \) at 1\(\sigma \) confidence level is \(\Omega_K = -0.90^{+0.57}_{-0.59} \). Figs 6 and 7 show the comparison of the theoretical prediction of distance modulus by using the best-fitting values of model parameters and observational values from new Gold sample and SNLS supernova, respectively. Figs 8 and 9 show relative likelihood for free parameters of braneworld model.

4.2 Combined analysis: SNIa+CMB+SDSS

To obtain more confined acceptable intervals of model free parameters, now we combine SNIa data (from SNIa new Gold sample and SNLS) with CMB data from the WMAP and recently observed baryonic peak from the SDSS. We also examine the peak positions of power spectrum in addition to the common shift parameter.

![Figure 6](https://academic.oup.com/mnras/article-abstract/388/1/197/1011007/fig6)
Before last scattering, the photons and baryons are tightly coupled by Compton scattering and behave as a fluid. The oscillations of this fluid, occurring as a result of the balance between the gravitational interactions and the photon pressure, lead to the familiar spectrum of peaks and troughs in the averaged temperature anisotropy spectrum which we measure today. The odd and even peaks correspond to maximum compression of the fluid and to rarefaction, respectively (Hu, Sugiyama & Silk 1997). In an idealized model of the fluid, there is an analytic relation for the location of the nth peak: $l_m \approx m \lambda_A$ (Hu & Sugiyama 1995; Hu et al. 2001) where λ_A is the acoustic scale which may be calculated analytically and depends on both pre- and post-recombination physics as well as the geometry of the Universe. The acoustic scale corresponds to the Jeans length of photon–baryon structures at the last scattering surface some ≈ 379 kyr after the big bang (Spergel et al. 2003). The apparent angular size of acoustic peak can be obtained by dividing the comoving size of sound horizon at the decoupling epoch $r_s(z_{dec})$ by the comoving distance of observer to the last scattering surface $r(z_{dec})$

$$\theta_A = \frac{\pi}{\lambda_A} = \frac{r_s(z_{dec})}{r(z_{dec})}, \quad (45)$$

The size of sound horizon at the numerator of equation (45) corresponds to the distance that a perturbation of pressure can travel from the beginning of the Universe up to the last scattering surface and is given by

$$r_s(z_{dec}; \Omega_m, \Omega_b, \mu) = \frac{1}{H_0 \sqrt{2 \pi k}} \times \mathcal{F} \left(\sqrt{\Omega_k} \int_{z_{dec}}^{\infty} \frac{v_s(z')dz'}{H(z')/H_0} \right), \quad (46)$$

where $v_s(z) = 1 + 9/4 \times \rho_b(z)/\rho_{rad}(z)$ is the sound velocity in the unit of speed of light from the big bang up to the last scattering surface (Hu & Sugiyama 1995; Doran et al. 2001) and the redshift of the last scattering surface, z_{dec}, is given by (Hu & Sugiyama 1995)

$$z_{dec} = 1048 \left[1 + 0.00124(\omega_b)^{-0.738} \right] \left[1 + g_1(\omega_m)^{0.2} \right],$$

$$g_1 = 0.0783(\omega_b)^{0.238} \left[1 + 39.5(\omega_b)^{0.763} \right]^{-1},$$

$$g_2 = 0.560 \left[1 + 21.1(\omega_b)^{0.81} \right]^{-1}, \quad (47)$$

where $\omega_b = \Omega_b h^2$, $\omega_m = \Omega_m h^2$ and ρ_{rad} is the radiation density, Ω_b is relative baryonic density to the critical density at the present time. Changing the parameters of the model can change the size of apparent acoustic peak and subsequently the position of λ_A in the power spectrum of temperature fluctuations at the last scattering surface. The simple relation $l_m \approx m \lambda_A$, however, does not hold very well for the peaks although it is better for higher peaks (Hu et al. 2001; Doran & Lilley 2002). Driving effects from the decay of the gravitational potential as well as contributions from the Doppler shift of the oscillating fluid introduce a shift in the spectrum. A good parametrization for the location of the peaks and troughs is given by (Hu et al. 2001; Doran & Lilley 2002)

$$l_m = l_A(m - \phi_m), \quad (48)$$

where ϕ_m is phase shift determined predominantly by pre-recombination physics, and are independent of the geometry of the Universe. The location of acoustic peaks can be determined in model by equation (48) with $\phi_m(\omega_m, \omega_b)$. Doran & Lilley (2002) have recently shown that the first and third phase shifts are approximately model independent. The values of these shift parameters have been reported as: $\phi_1(\omega_m, \omega_b) \approx 0.27$ and $\phi_3(\omega_m, \omega_b) \approx 0.341$ (Hu et al. 2008).
Because of weak dependency of phase shift to the cosmological model usually another model independent parameter which is so-called shift parameter R from CMB observation as
\[R \propto \frac{l_{\text{flat}}}{l_1} \tag{53} \]

are used as another observational test, where l_{flat} corresponds to the flat pure-CDM model with $\Omega_m = 1.0$ and the same ω_b and ω_c as the original model. It is easily shown that shift parameter is as follows (Bond, Efstathiou & Tegmark 1997):
\[R = \sqrt{\Omega_m D_L(z_{\text{dec}}, \Omega_m, \Omega_{\Lambda}, \mu)} \tag{54} \]

The observational results of CMB experiments correspond to a shift parameter of $R = 1.716 \pm 0.062$ (given by WMAP, Cosmic Background Imager (CBI) and Arcminute Cosmology Bolometer Array Receiver (ACBAR)) (Pearson et al. 2003; Spergel et al. 2003; Kuo et al. 2004). One of the advantages of using the parameter R is its independency of Hubble constant. In order to put constraint on the model from CMB, we compare the observed shift parameter with that of model using likelihood statistic as (Bond et al. 1997; Melchiorri et al. 2003; Odman et al. 2003)
\[\mathcal{L} \sim e^{-\chi^2_{\text{CMB}}/2}, \tag{55} \]

where
\[\chi^2_{\text{CMB}} = \left(\frac{R_{\text{obs}} - R_{\text{th}}}{\sigma_{\text{CMB}}} \right)^2 \tag{56} \]

where R_{obs} and R_{th} are determined using equation (54) and given by observation, respectively. Fig. 10 shows constant value of l_λ in the joint space parameters (Ω_m, Ω_{Λ}) and (Ω_m, Ω_{λ}) for the braneworld.
and the ΛCDM model, respectively. Increasing (decreasing) Ωκ (Ω*) leads to an increase in the value of present matter density to make constant value for l9. What we found in agreement with Fig. 2.

Another robust observational approach to investigate cosmological models is inferring the behaviour of the matter power spectrum and time evolution of gravitational clustering in both linear and nonlinear regimes. The simplest things to do are solving the relevant Boltzmann and Einsteinian equations for various matter contents in the Universe (Dodelson 2003). Matter power spectrum and other nonlinear effects can be a special tool to discriminate various models as well as to make more confined acceptable range for their free parameters (see Seljak & Zaldarriaga 1999; Ma et al. 1999; Amendola 2000, 2001, 2002, 2003; Eke, Navarro & Steinmetz 2001; Peebles & Ratra 2003; Loeb & Zaldarriaga 2005; Reis, Makler & Waga 2005; Olivares, Atrio-Barandela & Pavon 2005, 2006; Koivisto 2006; Lee, Liu & Ng 2006; Jeong & Komatsu 2006; Chimento & Pavon 2006; Ma 2007; Rudd, Zentner & Kravtsov 2007 for recent reviews). The conventional form of matter power spectrum at the late time is (Dodelson 2003)

\[P(k, a) = 2\pi^2\tilde{H}^2 T(k)^2 \left(\frac{k^3}{H_0^2\Omega_m^3} \right) \left(\frac{D(a)}{D(a = 1)} \right)^2 , \]

where \(n \) is the spectral index of the primordial adiabatic density perturbations and \(T(k) \) is the transfer function that determines the evolution of potential in the radiation-matter equality epoch and in the late-time matter density fluctuations governed by so-called growth function, \(D(a) \). \(\delta_0 \) is also given by initial condition in the context of inflation. \(k \) is the wavenumber of fluctuations in the Fourier space. Generally, it is well known that if any interaction between matter and dark energy in addition to the new kind of matter which are responsible for the background dynamics of the Universe existed, they alter the matter power spectrum through the following three effects: the first one is that the Hubble parameter in different models causes various dynamics for the background evolution (e.g. in our model it is given by equation 22) as well as power spectrum. The second effect is due to the inverse proportional of power spectrum to the matter density for a fixed potential, so any variation in the present value of matter density causes the smaller or larger amplitude for power spectrum. Third effect is related to the fact that in different cosmological models, the matter-radiation equality epoch, \(a_{eq} \), and subsequently the value of \(\delta_0 \) change, so the turning over point in the power spectrum would be reformed.

Here, instead of observational constraint using matter power spectrum we used the weakly model-independent constraint by Baryon acoustic oscillation and ignore any non-linear effects (Linder 2005, 2003). Recently, using the observations of large-scale structures from the SDSS (Tegmark et al. 2004a,b) and Two-Degree Field Galaxy Redshift Survey (2dFGRS; Tegmark, Hamilton & Xu 2002), one can explore the validity of cosmological models.

The large-scale correlation function measured from 46 748 Luminous Red Galaxies (LRG) spectroscopic sample of the SDSS includes a clear peak at about 100 Mpc h⁻¹ (Eisenstein et al. 2005). This peak was identified with the expanding spherical wave of baryonic perturbations originating from acoustic oscillations at recombination. The comoving scale of this shell at recombination is about 150 Mpc in radius. In other words, this peak has an excellent match to the predicted shape and the location of the imprint of the recombination-epoch oscillation on the low-redshift clustering matter (Eisenstein et al. 2005). Recently, E. V. Linder has shown in detail some systematic uncertainties for baryon acoustic oscillation (Linder 2003, 2005). Non-linear mode coupling related to the fact that even though baryon acoustic oscillation is mostly contributed by linear scale, the influence of non-linear collapsing has quite broad kernel. In other words, one might say that baryon acoustic oscillation are 90–99 per cent linear in comparison to the CMB which is 99.99 per cent linear, so this difference may affect various models in different ways. Careful works to constrain the free parameters of the underlying model need to be carried out to determine the effect of non-linear coupling resulting from constraint by SDSS observation. Nevertheless, roughly speaking, the acceptance intervals for free parameter cover the real intervals determined by assuming non-linearity mode for SDSS observation (Hu & Sugiyama 1996; Eisenstein & Hu 1998; Eisenstein & White 2004; Amarzguioui et al. 2006).

A dimensionless and independent of \(H_0 \) version of SDSS observational parameter is

\[A = \frac{D_{\psi}(z_{SDSS})}{\Omega_m H_0 z_{SDSS}} \]

\[= \sqrt{\Omega_m} \left[\frac{H_0 D_{\psi}(z_{SDSS}; \Omega_m, \Omega_\Lambda, \mu)}{H(z_{SDSS}; \Omega_m, \Omega_\Lambda, \mu) z_{SDSS} (1 + \frac{1}{1 + \mu})} \right]^{1/3} , \]

where \(D_{\psi}(z_{SDSS}) \) is characteristic distance scale of the survey with the mean of redshift \(z_{SDSS} \) (Blake & Glazebrook 2003; Eisenstein et al. 2005; Nesseris & Perivolaropoulos 2007). We use the robust constraint on the braneworld model using the value of \(A = 0.469 \pm 0.017 \) from the LRG observation at \(z_{SDSS} = 0.35 \) (Eisenstein & White 2004; Eisenstein et al. 2005). This observation permits the addition of one more term in the \(\chi^2 \) of equations (44) and (56) to be minimized with respect to \(H(z) \) model parameters.

This is the third observational constraint for our analysis.

In the rest of this section, we perform a combined analysis of SNIa, CMB and SDSS to constrain the parameters of the braneworld model by minimizing the combined \(\chi^2 = \chi^2_{SNIa} + \chi^2_{CMB} + \chi^2_{SDSS} \). The best values of the model parameters from the fitting with the corresponding error bars from the likelihood function marginalizing over the Hubble parameter in the multidimensional parameter space are: \(\Omega_m = 0.29^{+0.03}_{-0.02} \), \(\Omega_\Lambda = -0.71^{+0.01}_{-0.03} \) and \(\mu = -0.40^{+0.06}_{-0.28} \) at 1σ confidence level with \(\chi^2_{min}/N_{d.o.f} = 0.93 \) demonstrated \(\Omega_m = 0.29^{+0.03}_{-0.02} \), \(\Omega_\Lambda = -0.74^{+0.04}_{-0.02} \) and \(\mu = 0.00^{+0.04}_{-0.32} \) at 1σ confidence level with \(\chi^2_{min}/N_{d.o.f} = 0.86 \). States \(\Omega_m = -0.40^{+0.06}_{-0.28} \) the age of Universe calculated with the best-fitting parameters is 14.05^{+0.45}_{-0.45} Gyr (see the next section).

Tables 2 and 3 give the best-fitting values for the free parameters and age of Universe computing with these values. Joint confidence intervals in free parameter spaces are shown in Figs 11–16.

5 AGE OF UNIVERSE

The age of Universe integrated from the big bang up to now in terms of free parameters of the braneworld model is given by

\[t_0(\Omega_m, \Omega_\Lambda, \mu) = \int_0^{t_0} dt = \frac{1}{H_0 \sqrt{\Omega_k}} F \left[\frac{\sqrt{\Omega_k}}{H_0} \int_0^\infty \frac{dz'}{1 + z'} H(z') \right] . \]
Table 2. The best-fitting values for the parameters of the model using SNIa from new Gold sample and SNLS data, SNIa+CMB and SNIa+CMB+SDSS experiments at 1σ and 2σ confidence level.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Ω_m</th>
<th>Ω_A</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNIa(new Gold)</td>
<td>$0.51^{+0.10}_{-0.30}$</td>
<td>$-0.75^{+0.32}_{-1.41}$</td>
<td>$0.76^{+0.24}_{-1.95}$</td>
</tr>
<tr>
<td>SNIa(new Gold)+CMB</td>
<td>$0.51^{+0.14}_{-0.53}$</td>
<td>$-0.75^{+0.45}_{-1.55}$</td>
<td>$0.76^{+0.27}_{-1.27}$</td>
</tr>
<tr>
<td>SNIa(new Gold)+CMB+SDSS</td>
<td>$0.49^{+0.07}_{-0.08}$</td>
<td>$-0.59^{+0.05}_{-0.06}$</td>
<td>$-1.76^{+0.72}_{-1.31}$</td>
</tr>
<tr>
<td>SNIa(SNLS)</td>
<td>$0.29^{+0.14}_{-0.23}$</td>
<td>$-0.59^{+0.09}_{-0.14}$</td>
<td>$-1.76^{+0.28}_{-2.32}$</td>
</tr>
<tr>
<td>SNIa(SNLS)+CMB</td>
<td>$0.29^{+0.05}_{-0.04}$</td>
<td>$-0.71^{+0.06}_{-0.06}$</td>
<td>$-0.40^{+0.28}_{-0.26}$</td>
</tr>
<tr>
<td>SNIa(SNLS)+CMB+SDSS</td>
<td>$0.06^{+0.44}_{-0.06}$</td>
<td>$-1.84^{+1.58}_{-0.59}$</td>
<td>$-1.34^{+0.34}_{-0.10}$</td>
</tr>
</tbody>
</table>

Table 3. The best values for the curvature of the brane model with the corresponding age for the Universe from fitting with SNIa from new Gold sample and SNLS data, SNIa+CMB and SNIa+CMB+SDSS+SDSS experiments at 1σ and 2σ confidence level.

<table>
<thead>
<tr>
<th>Observation</th>
<th>Ω_K</th>
<th>Age (Gyr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNIa(new Gold)</td>
<td>$-0.26^{+0.33}_{-1.44}$</td>
<td>13.44$^{+0.20}_{-7.13}$</td>
</tr>
<tr>
<td>SNIa(new Gold)+CMB</td>
<td>$+0.01^{+0.09}_{-0.10}$</td>
<td>13.53$^{+0.85}_{-1.18}$</td>
</tr>
<tr>
<td>SNIa(new Gold)+CMB+SDSS</td>
<td>$+0.00^{+0.04}_{-0.04}$</td>
<td>14.82$^{+0.55}_{-0.44}$</td>
</tr>
<tr>
<td>SNIa(SNLS)</td>
<td>$-0.90^{+1.64}_{-0.59}$</td>
<td>14.38$^{+0.00}_{-1.81}$</td>
</tr>
<tr>
<td>SNIa(SNLS)+CMB</td>
<td>$-0.01^{+0.23}_{-0.02}$</td>
<td>14.38$^{+0.03}_{-0.28}$</td>
</tr>
<tr>
<td>SNIa(SNLS)+CMB+SDSS</td>
<td>$-0.01^{+0.04}_{-0.03}$</td>
<td>14.05$^{+0.43}_{-0.45}$</td>
</tr>
</tbody>
</table>

Figure 11. Joint confidence intervals of Ω_m and Ω_A, fitted with SNIa new Gold sample+CMB+SDSS. Solid line, dashed line and long dashed line correspond to 3σ, 2σ and 1σ level of confidence, respectively.

Figure 12. Joint confidence intervals of μ and Ω_A, fitted with SNIa new Gold sample+CMB+SDSS. Solid line, dashed line and long dashed line correspond to 3σ, 2σ and 1σ level of confidence, respectively.

Figure 13. Joint confidence intervals of μ and Ω_m, fitted with SNIa new Gold sample+CMB+SDSS. Solid line, dashed line and long dashed line correspond to 3σ, 2σ and 1σ level of confidence, respectively.

Figure 14. Joint confidence intervals of Ω_m and Ω_A, fitted with SNIa SNLS+CMB+SDSS. Solid line, dashed line and long dashed line correspond to 3σ, 2σ and 1σ level of confidence, respectively.

Fig. 17 shows the dependency of H_0 (Hubble parameter times the age of Universe) on Ω_A and μ for a flat Universe. Obviously increasing Ω_A and μ results in a shorter and longer age for the Universe, respectively. As a matter of fact, according to equation (22), Ω_A has the inverse role of dark energy in the ΛCDM scenario and μ has the inverse role of w in the ΛCDM (see Figs 17 and 18).

The ‘age crisis’ is one the main reasons of the acceleration phase of the Universe. The problem is that the universe’s age in the cold dark matter (CDM) Universe is less than the age of old stars in it. Studies on the old stars (Carretta et al. 2000) suggest an age of...
13.1_{−1.5}^{+1.2}\) Gyr for the Universe. Richer et al. (2002) and Hansen et al. (2002) also proposed an age of 12.7 ± 0.7 Gyr, using the white dwarf cooling sequence method. For a full review of the cosmic age see Spergel et al. (2003). Table 3 shows that the age of the Universe from the combined analysis of SNIa+CMB+SDSS is 14.82_{−0.44}^{+0.55} and 14.05_{−0.45}^{+0.44} Gyr for new Gold sample and SNLS data, respectively. While ΛCDM implies 13.7 ± 0.2 Gyr (Spergel et al. 2003). These values are in agreement with the age of old stars (Carretta et al. 2000; Krauss & Chaboyer 2001; Chaboyer & Krauss 2002).

To do another consistency test, we compare the age of Universe derived from this model with the age of old stars and Old High Redshift Galaxies (OHRG) in various redshifts. Here, we consider three OHRG for comparison with the braneworld model, namely the LBDS 53W091, a 3.5-Gyr old radio galaxy at z = 1.55 (Dunlop et al. 1996; Spinrad 1997), the LBDS 53W099, a 4.6-Gyr old radio galaxy at z = 1.43 (Dunlop 1999) and a quasar, APM 08279 + 5255 at z = 3.91 with an age of τ = 2.1_{−0.3}^{+0.5} Gyr (Hasinger, Schartel & Komossa 2002; Komossa & Hasinger 2002). The latter has once again led to the 'age crisis'. An interesting point about this quasar is that it cannot be accommodated in the ΛCDM model (Jain & Dev 2006). The latter has once again led to the ‘age crisis’. An interesting point about this quasar is that it cannot be accommodated in the ΛCDM model (Jain & Dev 2006). The latter has once again led to the ‘age crisis’.

In order to quantify the age-consistency test we introduce the expression τ as

\[
\tau = \frac{t(z; Ω_m, Ω_λ, μ)}{t_{obs}} = \frac{t(z; Ω_m, Ω_λ, μ)H_0}{t_{obs}H_0},
\]

where \(t(z)\) is the age of Universe, obtained from the equation (17) and \(t_{obs}\) is an estimation for the age of old cosmological object. In order to have a compatible age for the Universe we should have

\[τ > 1.\]

Table 4 reports the value of τ for three mentioned OHRG with various observations. We see that the parameters of braneworld model from the combined observations provide a compatible age for the Universe, compared to the age of old objects; also, in addition, SNLS data result in a shorter age for the Universe. Once again for the braneworld model, APM 08279 + 5255 at z = 3.91 has a longer age than the Universe but gives better result than most cosmological models investigated before (Miranda et al. 2001; Jain & Dev 2006; Rahvar & Movahed 2007).

6 CONCLUSIONS AND DISCUSSIONS

The impressive data indicating a spatially flat Universe in accelerated expansion have posed the problem of dark energy and stimulated the search for cosmological models which are able to explain such unexpected behaviour. Many rival theories have been proposed to solve the puzzle of the nature of dark energy ranging from a rolling scalar field to a unified picture where a single exotic fluid accounts for the whole dark sector (dark matter and dark energy). Moreover, modifications of the gravity Lagrangian have also been advocated. Although deeply different in their underlying physics, all these scenarios share the common feature of well reproducing the available astrophysical data. On the other hand, alternative cosmology from the braneworld models provides a possible mechanism for the present acceleration of the Universe congruously suggested by various cosmological observations.
In braneworld scenarios, due to the usual energy conservation law on the brane, we do not have energy flow from the brane on to the bulk or vice versa. There are numerous efforts to constrain the braneworld models, but in all of them, there is no energy exchange between the brane and bulk. Theoretically, there are no fundamental reasons to forbid the energy exchange between the brane and bulk in a brane scenario. One can get this profile by relaxing the conservation law on the brane. This energy exchange can alter the profile of the cosmic expansion and lead to a behaviour that would resemble the dark energy. In this paper, we focused our attention on the RS II braneworld model with energy exchange between the brane and bulk. We got the modified Friedmann equation (22) on the brane which can explain the cosmological behaviour and describe the physical origin for the dark energy which is in good agreement with observations. We explored the consistency of this scenario with the implication of up-to-date luminosity of SNIa observed by two independent groups, new Gold sample and SNLS data set, acoustic peak in the CMB anisotropy power spectrum and baryon acoustic oscillation measured by SDSS. The effect of model free parameters on the matter power spectrum and the exploration of matter and dark energy interaction will be investigated in our forthcoming paper.

The best parameters obtained from the fitting with the new Gold sample data combined with CMB and SDSS observations are:
\[\Omega_m = 0.29^{+0.03}_{-0.02}, \Omega_\Lambda = -0.71^{+0.03}_{-0.03}, \mu = -0.40^{+0.28}_{-0.26} \] at 1σ confidence level with \(\chi^2 = \frac{N_{d.o.f.}}{N_{d.o.f.}} = 0.93 \) expressing spatially flat Universe with \(\Omega_K = +0.00^{+0.04}_{-0.04} \). SNLS SNIa+CMB+SDSS give:
\[\Omega_m = 0.27^{+0.02}_{-0.02}, \Omega_\Lambda = -0.74^{+0.02}_{-0.02}, \mu = 0.00^{+0.30}_{-0.30} \] at 1σ confidence level with \(\chi^2 = \frac{N_{d.o.f.}}{N_{d.o.f.}} = 0.86 \), asserting \(\Omega_\Lambda = -0.01^{+0.04}_{-0.04} \).

The well-known ΛCDM model implying \(-0.06 < \Omega_K < +0.02 \) (Spergel et al. 2003) and some other interesting models such as Dvali–Gabadadze–Porrati (DGP) model indicate \(\Omega_m = 0.01^{+0.09}_{-0.09} \) and \(\Omega_\Lambda = 0.01^{+0.04}_{-0.04} \) using Gold sample and SNLS data, respectively (Guo et al. 2006; Movahed & Gassemi 2007; Movahed, Farhang & Rahvar 2007b).

We also performed the age test, comparing the age of old stars and OHRG with the age derived from this model. From the best-fitting parameters of the model using new Gold sample and SNLS SNIa, we obtained an age of 14.82 ± 0.44 and 14.05 ± 0.43 Gyr for the Universe, respectively. These results are in agreement with the age of the old stars. The age of Universe in this model is larger than that given in the other models (Miranda et al. 2001; Spergel et al. 2003; Movahed et al. 2007b; Rahvar & Movahed 2007).

To check the age crisis in this model, we chose two high-redshift radio galaxies at \(z = 1.55 \) and \(1.43 \) with a quasar at \(z = 3.91 \). Two first objects were consistent with the age of Universe, i.e. they were younger than the Universe while the third one was not, but our model gave the better result than ΛCDM and a class of Quintessence model (Miranda et al. 2001; Rahvar & Movahed 2007).

Finally, we must point out that the energy exchange term \(\Omega_\Lambda \) plays a crucial role in our work. In other words, in the RS II model without energy exchange where we have \(\Omega_\Lambda = 0 \), we cannot get late time acceleration expansion profile for our Universe! So, we conclude that the usual RS II model should be ruled out from present observational data.

ACKNOWLEDGMENTS

We would like to thank the anonymous referee for his/her useful comments. Authors are also grateful to Mr Mohammadi Najafabadi for reading the manuscript and his useful comments. A. Sheykhi thanks Bin Wang for his valuable suggestions and helpful discussions. This work was partially supported by Shahid Bahonar University of Kerman.

REFERENCES

Alcock C., Paczynski B., 1979, Nat, 281, 358
Seljak U. et al., 2005, Phys. Rev. D, 71, 103515
Tegmark M. et al. (the SDSS Collaboration), 2004a, Phys. Rev. D, 69, 103501

This paper has been typeset from a \TeX/LaTeX file prepared by the author.