RR Pictoris: an old nova showing superhumps and QPOs

L. Schmidtobreick,1,⋆ C. Papadaki,1,2,⋆ C. Tappert3 and A. Ederoclite1,⋆
1European Southern Observatory, Casilla 19001, Santiago 19, Chile
2Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
3Departamento de Astronomía y Astrofísica, Pontificia Universidad Católica, Casilla 306, Santiago 22, Chile

Accepted 2008 June 23. Received 2008 June 20; in original form 2008 April 2

ABSTRACT
We present time-resolved V photometry of the old nova RR Pictoris (RR Pic). Apart from the hump-like variability, the light curves show the strong flickering and random variation typical for RR Pic. We do not find any convincing evidence for the previously reported eclipse. The extrapolated eclipse phase coincides with a broad minimum, but comparing the overall shape of the light curve suggests that the eclipse should actually be located around phase 0.2. The orbital period which we derive from these data agrees well with the old one, any uncertainty is too small to account for the possible phase shift. Apart from the 3.48 h period, which is usually interpreted as the orbital one, we find an additional period at $P = 3.78$ h, which we interpret as the superhump period of the system; the corresponding precession period at $1.79 \, \text{d}$ is also present in the data. We also find indications for the presence of a 13 min quasi-periodic oscillation.

Key words: accretion, accretion discs – stars: individual: RR Pic – novae, cataclysmic variables.

1 INTRODUCTION
Classical novae are a subclass of cataclysmic variables (CVs), close interacting binary stars with a white dwarf primary receiving matter from a Roche lobe filling late-type star. They are distinguished by the observation of a thermonuclear runaway outburst, the nova explosion. As such, RR Pictoris (RR Pic) was discovered by Spencer Jones (1931) at maximum light in 1925 and, although it was a slow nova, it is supposed to be in its quiescence state by now. The orbital period of 0.145025 d (Vogt 1975) places it just above the period gap of a 512 CCD mounted on the 1.0-m SMARTS (Small and

© 2008 The Authors. Journal compilation © 2008 RAS
Moderate Aperture Research Telescope System) telescope at CTIO (Cerro Tololo Inter-American Observatory), Chile. The data were taken in 2005 between February 7 and April 10 and cover about 18 orbital cycles with a time resolution of 40 s. The details of the observations are given in Table 1. The reduction was done with IRAF and included the usual steps of bias subtraction and division by skylights.

Aperture photometry for all stars on the CCD field was computed using the stand-alone version of DAOPHOT and DAOMASTER (Stetson 1992). Differential light curves were established with respect to an average light curve of those comparison stars, which were present on all frames and checked to be non-variable. While the original idea was to use the same comparison stars for all epochs, we had to settle for two sets of comparison stars, as some of the later data were taken with a different acquisition. The first set included five, the second set six comparison stars; the two sets are distinguished by the acquisition IDs 1 and 2 in Table 1, corresponding finding charts are given in the online Supporting Information. The difference in the target’s magnitudes between the two sets was established from three common stars as 0.31. The magnitudes of the second set were shifted accordingly.

Table 1

Summary of the observational details: date and UT at the start of the first exposure, the number of exposures, the individual exposure time, the covered orbital cycles and the acquisition ID are given.

<table>
<thead>
<tr>
<th>Date</th>
<th>UT (2005 February 11)</th>
<th># exp</th>
<th>t<sub>exp</sub> (s)</th>
<th>Cycles</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 February 8</td>
<td>00:45:44</td>
<td>483</td>
<td>20</td>
<td>2.03</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 9</td>
<td>01:17:57</td>
<td>533</td>
<td>20</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 10</td>
<td>01:17:23</td>
<td>495</td>
<td>20</td>
<td>1.63</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 11</td>
<td>01:13:37</td>
<td>530</td>
<td>20</td>
<td>1.74</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 12</td>
<td>01:09:17</td>
<td>540</td>
<td>20</td>
<td>1.77</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 13</td>
<td>01:07:03</td>
<td>499</td>
<td>20</td>
<td>1.79</td>
<td>1</td>
</tr>
<tr>
<td>2005 February 14</td>
<td>01:06:42</td>
<td>534</td>
<td>20</td>
<td>1.76</td>
<td>1</td>
</tr>
<tr>
<td>2005 March 18</td>
<td>01:36:23</td>
<td>240</td>
<td>20</td>
<td>0.80</td>
<td>1</td>
</tr>
<tr>
<td>2005 March 20</td>
<td>01:03:17</td>
<td>320</td>
<td>20</td>
<td>1.08</td>
<td>1</td>
</tr>
<tr>
<td>2005 March 25</td>
<td>02:31:58</td>
<td>80</td>
<td>20</td>
<td>0.26</td>
<td>2</td>
</tr>
<tr>
<td>2005 March 26</td>
<td>00:24:42</td>
<td>320</td>
<td>20</td>
<td>1.06</td>
<td>2</td>
</tr>
<tr>
<td>2005 March 26</td>
<td>23:58:29</td>
<td>329</td>
<td>20</td>
<td>1.15</td>
<td>2</td>
</tr>
<tr>
<td>2005 March 31</td>
<td>00:38:39</td>
<td>241</td>
<td>20</td>
<td>0.92</td>
<td>2</td>
</tr>
<tr>
<td>2005 March 31</td>
<td>03:52:05</td>
<td>56</td>
<td>20</td>
<td>0.18</td>
<td>1</td>
</tr>
<tr>
<td>2005 April 9</td>
<td>23:29:27</td>
<td>318</td>
<td>20</td>
<td>1.06</td>
<td>2</td>
</tr>
</tbody>
</table>

3 RESULTS

3.1 The orbital period

The obtained light curves are plotted in Fig. 1. They show a clear variation. The data were analysed with the Scargle and analysis-of-variance (AOV) algorithms implemented in MIDAS (Scharel 1982; Schwarzenberg-Czerny 1989) as well as with PERIOD 04 (Lenz & Breger 2005). All three methods agree on the same period $P_{ph} = 0.14503(7)$ which corresponds to a period of the orbital disc and derived 0.1450255(1) d.

We averaged our data with respect to the orbital period $P = 0.14502545$ d. The orbital phase was computed for each data point using the ephemeris for the eclipse of Schmidtobreick et al. (2005). The data points have been averaged into bins of 0.01 phases. On average, 55 individual data points went into each point of the average light curve. The result is plotted in Fig. 3. For clarity, two orbital cycles are plotted (phase 0–2). For the first cycle, the sigma of each average point is indicated with an error bar. Apart from the broad hump, the light curve shows two clear features, a narrow peak on top of the hump at a phase of 0.42 and a sharp minimum at a phase of 0.18. As expected for an average light curve, the flickering, which is present in the individual light curves, is completely gone.

With PERIOD 04, we checked for the harmonics of the orbital period and found peaks close to the theoretical values and down to the sixth harmonic at 0.0207 d which has a power around 2 and is thus at the edge of detection. We used the theoretical harmonics to fit the shape of the light curve. We then built an average fit in the same way as the average light curve. The result is overplotted in Fig. 3, the residuals with the average light curve plotted below. Note that this best harmonic fit also contains the above-mentioned features: the narrow peak and the sharp minimum. The residuals of fit and average light curve show high-frequency periodic variations with an amplitude around 0.01 mag and harmonic to the orbital one (as they would otherwise not appear in a phase diagram). This indicates that harmonics of an order higher than six are present in the data even though they do not appear in the power spectrum.

We point out that neither the individual light curves of RR Pic nor the average one show the eclipse that has been observed before. At phase 0, which is the phase of the eclipse by Warner (1986), we find a broad minimum.

3.2 The search for superhumps

For the further analysis, we subtracted from each data point the corresponding value of the average light curve. The resulting residual light curves are plotted in Fig. 4. As expected they are dominated by the strong flickering. However, there seems to be an additional brightness variation present on longer time-scales. We checked the periodograms for any periodic signal and indeed found a peak at $f_{sh} = 0.34$ cycle d$^{-1}$, which corresponds to a period of $P_{sh} = 3.78$ h (see Fig. 5). The interpretation of this period as the superhump period is supported by the presence of various typical frequencies in the numerology of superhumps as described e.g. by Patterson et al. (2005). We find peaks at 0.56, 13.21 and 20.14 cycle d$^{-1}$, which correspond to $\Omega = 1/P_{sh}$ and $\Omega_0 - \Omega$ and $3f_{sh} - \Omega$. The beat period $1/\Omega = 1.79$ d is thus interpreted as the probable precession period of the accretion disc.

A detailed investigation on the robustness of this peak is not as successful as for the orbital period. While the peak is present in all combinations of data taken in February, it does not appear in the data taken in March or April. This might in part be explained by the way the observations were performed. The February observing run was dedicated to RR Pic, which was thus observed for at least two orbits every night. In March and April, the observations were done in service mode, and in general, only slightly more than one orbit was observed per night.

We averaged the residual light curve for the different data sets using the period of the superhump. In Fig. 6, these average residual light curves are plotted. They clearly show that the superhump is present during all our observing runs. The absence of a clear corresponding peak in the Scargle diagram is thus only due to the observing strategy and does not indicate the absence of the superhump in the latter data.
Fig. 6 also gives the impression that the superhump is highly structured. Short-periodic variations are present especially during the early phases (0–0.7), while the later part of the light curve looks rather stable. The amplitude of the high-frequency variations is around 0.01 mag, thus it is similar in frequency and amplitude to the variations seen in the residuals of Fig. 3.

3.3 Quasi-periodic oscillations (QPOs) and flickering

High-frequency variations present in Figs 1 and 4 suggest the possible presence of QPOs. The time-scale of these variations is in the order of 15 min, and they seem to repeat themselves albeit with inconsistency in amplitude and frequency. We therefore searched...
The power-law index γ, given by the slope of the linear decrease in the log–log scale, has a value of 2 in the classical ‘shot noise’, where the shots have an infinite rise time and then decay. If, however, as expected from mechanisms generating the flickering, the shots’ durations are different and follow some kind of distribution, then γ gets smaller (Bruch 1992). In this way, γ can be used for the characterization of flickering activity but so far has been unsuccessful to advance on understanding the physical origin of flickering activity. For more detailed information on the mechanisms and the resulting power law, see Papadaki et al. (2006) and references therein.

Clearly, Fig. 7 shows that RR Pic is also characterized by ‘red noise’. We fitted the linear part for frequencies above 100 d$^{-1}$ by a least-square linear fit and determined $\gamma = 1.40(2)$ for the average log–log power spectrum. Given the noisiness of the power spectrum, the precise choice of the fitting interval becomes more difficult. Applying small changes of this interval causes changes in the value of γ up to 0.13 and therefore 0.1 should be considered as the real uncertainty of γ. Within this error, the flickering pattern remains stable within the span of our observations.

We checked the photometric data taken in 2004 (Schmidtobreick et al. 2005) for the presence of the QPOs and the flickering pattern. Only two orbits go into this analysis and the average power spectrum is rather noisy. We find no indication for the presence of a QPO. The slope of the linear decrease in the log–log power spectrum has been determined as $\gamma = 1.6$.

4 DISCUSSION

4.1 The orbital period and the radial velocity phase shift

With the data spanning 2 yr, we derive an orbital period of $P = 0.1450255(1)$ d which agrees well with the formerly reported ones within our uncertainty. We can thus only give an upper limit to any possible change of the orbital period as 10^{-7} d or about 0.1 s.

The formerly reported phase shift of 0.1 phases that was observed in the radial velocities of data taken 2 yr apart (Schmidtobreick et al. 2005) can thus not be explained by a change of the orbital period. To obtain a shift of 0.1 phases after such about 5000 cycles, the period must have changed by at least 0.1 \times 0.14502545 d/5000 = 3×10^{-8} d, which is in contradiction to the new measurements. This shift is thus best explained by a varying emission structure in the accretion disc of RR Pic which can influence the shape and phasing of the radial velocity curve. Such variations have been observed by Schmidtobreick et al. (2006) using Doppler tomography techniques on several emission lines in the spectra of RR Pic. Furthermore, the structural change suggested by Warner (1986) supports the idea that the accretion disc of RR Pic is not stable but undergoes changes of various extents.

4.2 Superhumps and QPOs

The interpretation of the newly found variation with a period of $P_{sh} = 3.78$ h as a superhump seems obvious due to the presence of the typical frequencies as described in Section 3.2. However, it has to be noted that the resulting value for $P_{sh} - P_{orb} = 18$ min is rather large for a nova-like star and implies a rather large mass ratio. Still, such large mass ratios are not unlikely for high-mass transfer CVs. Patterson (2001) relates the mass ratio q to the orbital and superhump period via an empirical formula $\epsilon = 0.216 q$ with $\epsilon = (P_{sh} - P_{orb})/P_{orb}$. In the case of RR Pic, we find $\epsilon = 0.0860$ and thus derive a mass ratio of $q = 0.39$. This value would actually be above the critical mass ratio for which superhumps

![Figure 2](https://example.com/figure2.png) The Scargle diagram for the data. The period of 3.48 h is clearly indicated by the maximum peak.

![Figure 3](https://example.com/figure3.png) The average differential V magnitude of RR Pic is plotted against the phase using the period $P = 0.1450$ d. Two cycles are plotted for clarity. The zero-phase was chosen to correspond to the eclipse ephemeris as defined by Schmidtobreick et al. (2005). For the first cycle, error bars representing the sigma of each point are overplotted, and the fit using the orbital period and its harmonics (see text for details) is given as a line. Below, the residuals of fit and average light curve are plotted.
are observed and is unlikely to be correct. In fact, Patterson et al. (2005) revised the formula especially for large mass ratios where the original one would predict too large values of q. Using this new formula $\epsilon = 0.18q + 0.29q^2$, we derive a mass ratio $q = 0.31$ for RR Pic, which is more reasonable. This value is slightly higher than the value found by Ribeiro & Diaz (2006) who used a mass diagram calculated from their radial velocity measurements to derive $0.1 < q < 0.2$. However, they do acknowledge the fact that the radial velocities might be strongly influenced by emission sources in the accretion disc. Since we know that these are not stable, the radial velocity curve might not actually trace the velocity of the white dwarf. Increasing the velocity of the white dwarf would yield a higher mass ratio q. On the other hand, the formula used above describes an empirical average and does not necessarily give the mass ratio for individual systems, so caution is advised also with this method. To unambiguously determine the masses involved in

Figure 4. The residual light curves of RR Pic, with the average light curve subtracted.
the RR Pic system, observations of the secondary star and its radial velocities are needed.

Looking at Fig. 6, there seems to be some short-term variation pattern stable with the superhump period. Thus the question arises whether the QPOs are connected to the superhump phenomenon. However, zooming into the light curve folded on the orbital period one notices a similar short-term variation (not shown). So both, the orbital variation as well as the superhump has substructures. Note that the frequency of the found QPOs is not a harmonic of the superhump’s main frequency, it rather lies right in between the 17th and 18th harmonic.

Kubiak (1984) had found some similar oscillations, which however were not confirmed afterwards. He reported a most likely period of 15 min, although 13 or 17 min was also possible with his data. Comparing this information with Fig. 7, we see a small peak at 15 min, nothing at 17 min and the maximum is clearly at 13 min. From this, we conclude that we actually confirm Kubiak’s findings although we would place the most likely period at 13 min rather than at 15 min. The fact that these QPOs were not present in our data from 2004 is consistent with the fact that Kubiak’s variations were not confirmed in later observations. RR Pic seems indeed to change its behaviour every now and then and not all observational phenomena are present at all times.

4.3 Is RR Pic eclipsing?

RR Pic has been reported by various authors to show eclipse-like features (Warner 1986; Haefner & Betzenbichler 1991), while others have not noted this (Vogt 1975; Kubiak 1984). Vogt confirmed that he never saw any evidence for the presence of an eclipse in his data (private communication). In fact, Warner (1986) compared the light curves taken during the 1960s and beginning of the 1970s with those taken later in the 1970s and 1980s and suggested a change in the structure of the accretion disc to explain the different appearance of the light curves. While the early light curves were dominated by two humps of about 0.3 mag brightness and several small minima, the later light curves were rather flat (no variation larger than 0.1 mag) and showed the already mentioned eclipse-like feature.

If we put our observations in this context, it seems as if RR Pic is back to or at least closer to its state in the early 1970s. We observe a hump-like feature of about 0.3 mag brightness, we see the two minima reported by Vogt, a broad one followed by a smaller one, but we find no evidence for an eclipse.

Comparing the overall shape of the average light curve with previous observations (found e.g. at ‘The Centre for Backyard Astrophysics’) suggests that if the eclipse was present, it should actually correspond to the small minimum that we observe at phase 0.2 and not to phase 0 which would be the original eclipse phase reported by Warner.

Another interesting point is the fact that the minimum of the superhump falls on the phase of the eclipse. Since no ephemeris were known for the superhump, we arbitrarily set the 0 phase of the superhump light curve to Warner’s eclipse phase. This means that at least on this eclipse observed by Warner, the superhump feature was also in minimum. Maybe, the eclipse feature is in fact a
Average power spectra in logarithmic scale of RR Pic’s light curve. Top: all data; middle: data until February 14; lower: data from March to April. Indicated are the positions for the harmonics of the orbital period up to 11th order and the additional bump at 2.04 which we attribute to a QPO feature. The fits to the linear parts are overplotted, the corresponding equation given at the lower left-hand part of each plot.

Figure 7. Average power spectra in logarithmic scale of RR Pic’s light curve. Top: all data; middle: data until February 14; lower: data from March to April. Indicated are the positions for the harmonics of the orbital period up to 11th order and the additional bump at 2.04 which we attribute to a QPO feature. The fits to the linear parts are overplotted, the corresponding equation given at the lower left-hand part of each plot.

resonance phenomenon of the minima of the orbital light curve and the superhump light curve. Such resonance phenomena have been observed before. E.g. in the dwarf nova OU Vir, a clearly eclipsing system, shows superhumps during outburst, in which case the deepness of the eclipse varies between 0.4 and 1 mag and is modulated with the precession cycle, i.e. the beat of orbital and superhump period. Assuming that RR Pic has a lower inclination and in general more shallow eclipse, its detection or non-detection could well be modulated with the 1.79 d precession period (Patterson et al. 2005). Warner stated that the eclipse was shallow and not present in all cycles, so this might support the idea of a resonance amplification. If the superhump minimum coincides with the second minimum in the light curve, it might enhance this one to be taken for an eclipse as in the ‘The Centre for Backyard Astrophysics’ data.

On the other hand, we know from Doppler tomography (Schmidtobreick et al. 2003, 2005; Ribeiro & Diaz 2006) that structural changes do take place in the accretion disc of RR Pic. As such, also the visibility of an eclipse might be influenced by these changes. It would be interesting to combine photometric variability observations with Doppler tomography of the same night to actually compare the appearance of the accretion disc in the Doppler map with the shape of the light curve, and i.e. the presence of an eclipse.

5 CONCLUSIONS

We have presented optical light curves of RR Pic and shown that they are dominated by a strong orbital variation. The orbital period derived from this data is consistent with the previous reported ones. I.e. a change of this period cannot be responsible for the previously observed shift in the phases of radial velocity curves. Instead, this shift is rather due to structural changes that are known to occur in the accretion disc of RR Pic.

In addition to the orbital variation, a superhump is found that was used to derive the mass ratio $q = 0.31$. This value does not agree with a previously reported lower one, further observations are needed for clarification.

QPOs of 13 min are present in all our data taken between 2005 February and April. Older data from 2004 do not show this oscillation. While our analysis thus confirms the variations reported earlier, it also shows that these QPOs are a transient phenomenon. Their presence might be connected with the accretion disc’s structure if they occur due to an illumination of blobs in the inner accretion disc from a spinning white dwarf.

From our data we cannot confirm the presence of an eclipse. Instead, we note that at least in one historical case the eclipse occurs when the minima of orbital light curve and superhump light curve fall together. This might indicate that the observed eclipse is a resonance phenomenon between the two light curves and its existence or non-existence is modulated with the precession period. We would like to clarify that we do not rule out the presence of a shallow eclipse but insist that either its visibility is enhanced by the resonance or a favourable structure of the accretion disc is needed for an eclipse to be observed.

In general, we conclude that RR Pic is a highly variable system. The previously reported changes that happen in the accretion disc are probably responsible for the various features in the light curve that are not present at all times. To really understand what is going on in this system, parallel time-resolved spectroscopy and photometry would be needed over several cycles.

ACKNOWLEDGMENT

We thank Rebecca Winnick for doing a wonderful job in organizing the service observations.

REFERENCES

Kubiak M., 1984, Acta Astron., 34, 331
Lenz P., Breger M., 2005, Commun. Asteroseismol., 146, 53
Patterson J. et al., 2005, PASP, 117, 1204
Spencer Jones H., 1931, Cape Obs. Ann., 10, part 9

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article.

Figure A1. The finding chart of RR Pic (indicated by the square in both images) with the two selected sets of comparison stars.
(indicated by circles). The left-hand image corresponds to ID 1, the right-hand one to ID 2 (see Table 1 and text).

Please note: Blackwell Publishing is not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a \TeX/\LaTeX\ file prepared by the author.