2XMMi J225036.9+573154 – a new eclipsing AM Her binary discovered using XMM–Newton

Gavin Ramsay,1* Simon Rosen,2 Pasi Hakala3 and Thomas Barclay1,4

1Armagh Observatory, College Hill, Armagh BT61 9DG
2Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH
3Tuorla Observatory, University of Turku, Väisälätie 20, FIN-21500 Piikkiö, Finland
4Mullard Isaac Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, Surrey RH5 6NT

Accepted 2009 January 19. Received 2009 January 16; in original form 2008 December 12

ABSTRACT
We report the discovery of an eclipsing polar, 2XMMi J225036.9+573154, using XMM–Newton. It was discovered by searching the light curves in the 2XMMi catalogue for objects showing X-ray variability. Its X-ray light curve shows a total eclipse of the white dwarf by the secondary star every 174 min. An extended pre-eclipse absorption dip is observed in soft X-rays at φ = 0.8–0.9, with evidence for a further dip in the soft X-ray light curve at φ ~ 0.4. Further, X-rays are seen from all orbital phases (apart from the eclipse) which make it unusual amongst eclipsing polars. We have identified the optical counterpart, which is faint (r = 21), and shows a deep eclipse (>3.5 mag in white light). Its X-ray spectrum does not show a distinct soft X-ray component which is seen in many, but not all, polars. Its optical spectrum shows Hα in emission for a fraction of the orbital period.

Key words: binaries: close – stars: individual: 2XMMi J225036.9+573154 – novae, cataclysmic variables – X-rays: binaries.

1 INTRODUCTION
Cataclysmic variables (CVs) are accreting binary systems in which a white dwarf accretes material from a late-type main-sequence star through Roche lobe overflow. If the white dwarf has a significant magnetic field then the formation of an accretion disc can be disrupted or prevented. For white dwarfs with field strengths greater than ~10 MG, the accretion stream gets channelled on to the magnetic poles where X-rays are emitted from the post-shock region. The magnetic field also forces the spin period of the white dwarf to synchronise with the binary orbital period. These accreting binaries are called AM Her binaries or polars, since their optical emission is strongly polarized.

The study of polars was transformed with the launch of the X-ray satellite ROSAT in 1990. Prior to this, around 17 systems were known. ROSAT led directly to the discovery of around 30 new systems (e.g. Beuermann & Burwitz 1995). It was expected that XMM–Newton, launched in 1999, would lead to the discovery of many more such systems. Surprisingly, comparatively few have so far been discovered.

The 2XMM catalogue (Watson et al. 2009) gave a description of serendipitous X-ray sources discovered using the European Photon Imaging Camera (EPIC) wide-field instruments onboard XMM–Newton. This was followed by the release of the 2XMMi incremental catalogue which has 17 per cent more discrete sources than the 2XMM catalogue. Moreover, each source is accompanied by source specific light curve and spectral products. In this paper we report the discovery of an eclipsing polar, 2XMMi J225036.9+573154, which was found as a result of searching the 2XMMi catalogue for sources which showed variability in their X-ray light curve.

2 XMM–NEWTON OBSERVATIONS

2.1 The 2XMMi catalogue

The 2XMMi catalogue has associated spectra and light curves that are automatically extracted by the XMM–Newton Survey Science Centre pipeline processing software (Watson et al. 2001) for sources with more than 500 counts in the EPIC detectors. An assessment of variability in the individual light curves is made by determining χ^2_ν of the data about the mean, and then computing the consequent probability of the constant (null) hypothesis. Those light curves for which this probability is <10^{-5} are deemed variable. Sources which were possibly compromised by further data quality issues were removed. An initial search of the catalogue found around 400 sources which passed these criteria. The light curves of these sources were visually inspected for periodic behaviour. One source, 2XMMi J225036.9+573154 (hereafter XMMJ2250+5731), was found which showed a characteristic repeating shape on a period of ~174 min (Fig. 1).

*E-mail: gar@arm.ac.uk
2 XMMiJ225036.9+573154 – a new AM Her binary

2.1 Observed profiles

XMMiJ2250+5731 was observed with XMM–Newton on 2007 January 23. The EPIC detectors were each configured in full window mode and used the medium filter. The field was observed for a total of 32.9 ks in the EPIC pn detector and 34.5 ks in both EPIC Multi-Object Spectrometer (MOS) detectors. The source was just outside the field of view of the optical monitor. Since the source was towards the edge of the EPIC detectors, and there was a nearby (28 arcsec) X-ray source, XMMJ225037.9+573127, which appears to be an active late-type star, we extracted the data from the XMM–Newton archive and re-extracted the X-ray light curves and spectra of XMMJ2250+5731.

The data were processed using XMM–Newton SAS v8.0.1 (released 2008 October). Only X-ray events which were graded as PATTERN = 0-4 and FLAG = 0 were used. Events were extracted from a circular aperture with 10-arcsec radius centred on the source, with background events being extracted from source free areas on the same chip as the source. The background data were scaled to give the same area as the source extraction area and subtracted from the source area. (We estimate that the nearby source XMMJ225037.9+573127 contributes around 1.5% per cent of the flux below 2 keV, and a negligible amount at energies above 4 keV). To ensure that the spectra were correctly flux calibrated we produced detector spectral response files and ancillary files using the SAS tasks RMFGEN and ARFGEN, respectively.

3 THE X-RAY LIGHT CURVES

We extracted light curves of XMMJ2250+5731 in the 0.2–10, 0.2–1, 2–10 and 4–10 keV energy bands from the EPIC pn, EPIC MOS1 and EPIC MOS2 detectors using the method described above. We then obtained a combined light curve for each energy band by adding the separate light curves. Each light curve shows a distinctive sharp drop in intensity every 174 min. This is due to the secondary star eclipsing the accretion region(s) on the white dwarf and represents the binary orbital period. The observation covers three eclipses.

We used the standard Lomb–Scargle power spectrum analysis to search for periods in the data (Fig. 2). The error on the period was then determined using a bootstrap approach incorporating the generation of synthetic light curves. We find that the period is 0.1210 ± 0.0018 d (=174.2 ± 2.6 min). We folded the light curve in each of the four energy bands on this period and show these light curves in Fig. 1.

We have phased the data so that the eclipse, which is total in each energy band, defines ϕ = 0.0. XMMJ2250+5731 is relatively faint in X-rays, reaching a peak of ~0.08 count s⁻¹ in the combined EPIC 0.2–10 keV light curve, although this count rate has not been corrected for the source being far off-axis.

Prior to the eclipse, there is a marked decrease in soft X-ray photons over the phase range ϕ ~ 0.7–1.0, compared to those at higher energies. This phenomenon has been seen in other polars (e.g. Watson et al. 1989) and occurs when the accretion stream obscures our view of the hot accretion region located in the upper hemisphere on the white dwarf. Compared to V2301 Oph (for instance, Ramsay & Cropper 2007), the ‘pre-eclipse’ dip seen in XMMJ2250+5731 is more extended suggesting that material gets lifted out of the orbital plane over a wider range in azimuth.

At softer energies (<1 keV) there is also a dip in the light curve centred at ϕ ~ 0.4 and with a duration of ~0.1–0.2 cycles. At higher energies, there is no obvious broad dip at these orbital phases although there are a couple of bins between ϕ = 0.4 and 0.5 which are consistent with zero counts. However, since other bins with

![Figure 1. The light curves of XMM J2250+5731 folded on a period of 174.2 min and T0 = 245 414, 888 (TT). From the top we show the combined EPIC pn plus EPIC MOS light curve in the 0.2–10 keV energy band; the 0.2–1.0 keV energy band; the 2–10 keV energy band; the 4–10 keV energy band (binned into 100 bins) and in the lower panel the white light data obtained using the NOT (the data have been folded but not binned).](https://academic.oup.com/mnras/article-abstract/395/1/416/1746937)

![Figure 2. The power spectrum of the combined EPIC (pn plus MOS) 0.2–10 keV light curve.](https://academic.oup.com/mnras/article-abstract/395/1/416/1746937)
negligible flux are also seen at different phases this may just be due to low counting statistics. This dip could either be due to a second dip caused by an accretion stream or it could be due to the rotation of the accretion regions rotating into and out of view as the white dwarf rotates. We will discuss this further in Section 7.

4 X-RAY SPECTRAL FITS

We extracted spectra from each EPIC detector in the manner described in Section 2. Initially we extracted spectra using all the available data. However, since the light curves (cf. Fig. 1) imply the presence of a pre-eclipse dip, we then extracted spectra from the phase interval which was not strongly affected by absorption, i.e. φ ≈ 0.05–0.7. We also exclude the phase interval φ = 0.38–0.5 which could also be affected by absorption (Section 3).

In polars, X-rays are generated in a post-shock region at some height above the photosphere of the white dwarf. Since the X-ray spectrum of XMM J2250+5731 has a relatively low signal-to-noise ratio compared to many polars previously studied using XMM–Newton (e.g. Ramsay & Cropper 2004), we used a simple single temperature thermal bremsstrahlung emission model rather than a more complex (and more physical) stratified cooling flow model (e.g. Cropper, Ramsay & Wu 1998; Cropper et al. 1999).

We used the XSPEC package (Arnaud 1996) to fit the X-ray spectra. We fitted all three EPIC spectra simultaneously and tied the spectral parameters apart from the normalization parameters. We used the TBABS absorption model [the Tübingen–Boulder absorption interstellar medium (ISM) model; Wilms, Allen & McCray 2000], a single temperature thermal bremsstrahlung component with temperature fixed at kT = 20 keV. We added a Gaussian component to account for any emission between 6.4 and 6.8 keV. The spectra along with the best fit (χ² = 1.12) are shown in Fig. 3. We show the spectral parameters, the observed and unabsorbed bolometric fluxes in Table 1. Because of the low signal-to-noise ratio of the spectra, we fixed the spectral parameters apart from the normalization parameters. We used the equivalent width of the Fe Kα line in Table 1. Because of the low signal-to-noise ratio of the spectra, the observed and unabsorbed bolometric fluxes are in good agreement with the standard model.

To see if such a soft X-ray component could be ‘hidden’ by the moderate level of absorption (cf. Table 1) we added a blackbody with a range of different temperatures. We fixed its normalization so that the implied ratio, Lsoft/Lhard ≈ 0.5. Since the soft X-rays are optically thick, and hence the intrinsic soft X-ray luminosity is viewing angle dependant, we assumed a viewing angle of 45° for argument. If we just consider the X-ray data, we find a blackbody with temperature less than kT ≲ 20 eV can easily be hidden.

We were fortunate in being able to obtain a short observation of the field of XMM J2250+5731 using Swift on 2008 December 3 and 4. Observations using the Ultraviolet/Optical Telescope (UVOT; Roming et al. 2005) were made using the UVW2 filter (peak effective wavelength 2120 Å). XMM J2250+5731 was not detected, and we estimated a 3σ upper limit of ∼2.4 × 10⁻¹⁷ erg s⁻¹ cm⁻² Å⁻¹. If we assume a blackbody of different temperatures and with a normalization such that Lsoft/Lhard ≈ 0.5, we find that a blackbody of kT ∼ 5–20 eV can be present and not detected in the near-UV or soft X-ray energy ranges. (Although a handful of X-ray events were detected near the source position of XMM J2250+5731, they were too low to derive any meaningful information.)

The unabsorbed bolometric flux implies an X-ray luminosity of ∼8 × 10³⁸ d²[100] erg s⁻¹, where d[100] is the distance in units of 100 pc. Ramsay & Cropper (2004) found that the mean bolometric luminosity in their sample of polars observed in a high state using XMM–Newton was ∼2 × 10³³ erg s⁻¹. In the next section we find that XMM J2250+5731 shows a range in optical brightness over the longer term and therefore a range of accretion states (a general characteristic of polars). Assuming that XMM J2250+5731 was observed in a high accretion state at the epoch of the XMM–Newton observations we find that in order that XMM J2250+5731 has an X-ray luminosity consistent with other polars in a high state it must lie at a distance of ∼1.5–2.0 kpc. With Galactic coordinates of l = 107°/2 and b = −1°/6, this places XMM J2250+5731 close to the Perseus spiral arm (Xu et al. 2006).

5 OPTICAL PHOTOMETRY

To locate the optical counterpart of XMM J2250+5731 we obtained optical photometry using the Andalucia Faint Object Spectrograph

Table 1. The spectral fit to the EPIC pn, MOS1 and MOS2 spectra extracted from φ = 0.05–0.7. Fluxo refers to the observed flux measured over the 0.2–10 keV energy band and fluxo refers to the unabsorbed bolometric flux.

<table>
<thead>
<tr>
<th>Spectrograph</th>
<th>Epoc</th>
<th>Fluxo</th>
<th>Fluxo</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC pn</td>
<td>3.4±0.1×10¹⁸ cm⁻²</td>
<td>3.5±0.3×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
</tr>
<tr>
<td>EPIC MOS1</td>
<td>2.8±0.4×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPIC MOS2</td>
<td>2.1±0.4×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPIC pn</td>
<td>8.1±0.9×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPIC MOS1</td>
<td>6.4±0.9×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPIC MOS2</td>
<td>4.8±0.9×10⁻¹³ erg s⁻¹ cm⁻²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

χ² = 1.12 (34 dof)
and Camera (ALFOSC) on the Nordic Optical Telescope (NOT) located on La Palma on 2008 September 28. Each exposure was in ‘white light’ and 15 s in length, with another 5 s of readout time, resulting in 2.9 h of data in total. Each source in the field (Fig. 4) was searched for variability. One source showed a clear eclipse lasting for ~12 min and a depth of >3.5 mag (Fig. 1). This is the optical counterpart to XMM J2250+5731 and its coordinates are α2000 = 22°50′36″97, δ2000 = +57°31′54″2 (which is within 0.8 arcsec of the X-ray position).

We searched the IPHAS catalogue (Drew et al. 2005) which surveyed the northern galactic plane in r, i, Hα filters to determine if the optical counterpart of XMM J2250+5731 was detected in this survey. We find that IPHAS gives r = 20.32 ± 0.05, i = 20.1 ± 0.2, Hα = 19.69 ± 0.09 for XMM J2250+5731. All sources within a 30-arcsec radius of the X-ray position were extracted. XMM J2250+5731 is at the extreme blue end in the (r−i) distribution and consistent with the location of the CVs found in IPHAS data in the (r−i), (r−Hα) colour–colour plane (cf. fig. 1 of Corradi et al. 2008).

We also obtained U, g, R images of XMM J2250+5731 using the Wide-Field Camera (WFC) on the Isaac Newton Telescope (INT) on 2008 November 6: Fig. 4 shows the g-band image of the immediate field. Using standard star observations taken immediately before these observations we find that U = 21.75 ± 0.11, g = 21.16 ± 0.05 and r = 21.53 ± 0.05. Compared to other stars in the field, it is clearly blue and appears to be more than 1 mag fainter than found at the epoch of the IPHAS pointings. This is not unexpected since polars are known to show different accretion states.

6 OPTICAL SPECTROSCOPY

We obtained spectra of XMM J2250+5731 using the 4.2-m William Herschel Telescope (WHT) and the Intermediate dispersion Spectrograph and Imaging System (ISIS) on La Palma on 2008 October 6. We used the R300B and R158R gratings giving a spectral resolution of ~2.5 and ~5 Å, respectively. The seeing was ~0.8 arcsec and the slit was set to match the seeing. We took 16 spectra in both the red and blue arms.

With an out of eclipse brightness of r ~ 21, each individual spectrum was of low signal-to-noise ratio. Moreover, in the blue arm, there was electronic noise in the images, the pattern of which varied from image to image. This coupled with the low signal-to-noise ratio of the spectra prevented us from extracting any useful information from the blue arm. In the red arm, we were able to extract a spectrum from each image. For nine sequential spectra we were able to detect Hα in emission. We show the mean of these spectra in Fig. 5. For the remaining seven spectra for which we did not detect Hα in emission we attribute this to the fact that the observations occurred during the phase interval of the pre-eclipse absorption dip or that the accretion stream was presenting a small surface area at those phase intervals. (Given the error on the orbital period, Section 3, the phasing of the WHT spectra using the NOT photometric observations as a marker of the phasing is uncertain by approximately one orbital cycle.)

7 DISCUSSION

7.1 The X-ray light curve

In polars, it is thought that the magnetic axis of the white dwarf is tilted towards the secondary star, but shifted a few 10s of degrees ahead in azimuth (as the binary rotates) of the line of centre joining the two stars (e.g. Cropper 1988). It is therefore the accretion region in the upper hemisphere which is obscured by the accretion flow during the pre-eclipse absorption dip.

Eclipsing polars have long been the target of dedicated X-ray observations. Many of these polars show a distinct bright and faint phase as the accretion region rotates into view and out of view and many show a characteristic pre-eclipse absorption dip. In these systems there is no evidence for a second accretion pole. One of the few eclipsing polars to show emission throughout the binary phase is V2301 Oph (Ramsay & Cropper 2007). We find that in the case of XMM J2250+5731, X-ray emission is also seen throughout the orbital phase. We attempted to invert the X-ray light curves and map the X-ray regions on the white dwarf using an approach similar to that of Cropper & Horne (1994). However, because of the
relatively low signal-to-noise ratio of the data we could not identify a unique solution.

In Section 3 we noted the presence of a broad dip in soft X-rays at \(\phi \sim 0.4 \) which could be attributed to either an accretion stream (since there is no similar feature at higher energies) or the rotation of the accretion region(s) as they come into and out of view. In the former case, the dip could be due to a second accretion stream obscuring our line of sight to the accretion region located in the lower hemisphere of the white dwarf. To our knowledge this would make XMM J2250+5731 unique amongst polars in showing two absorption dips. In the latter case, the change in the soft X-ray light curve could be due to either the rotation of two accretion regions, located in opposite hemispheres, or the rotation of one relatively large polar region. (Our inversion maps showed that both scenarios could re-produce the soft X-ray light curves.) The fact that soft X-rays emitted at the base of the accretion region are optically thick and hence viewing angle dependent could account for the change in the soft X-ray flux. In contrast, the harder X-rays are optically thin and therefore not viewing angle dependant.

Optical polarimetry data would be able to confirm the presence of two accretion poles. However, since XMM J2250+5731 is rather faint, this may prove challenging.

7.2 The energy balance

Ramsay & Cropper (2004) presented the results of a snapshot survey of polars observed in a high accretion state using XMM–Newton. They found that seven out of 21 systems did not show a distinct soft X-ray component. Vogel et al. (2008) also report that 2XMMp J131223.4+173659, which was discovered serendipitously using XMM–Newton, does not show a soft X-ray component. We have searched the literature for further observations of polars observed using XMM–Newton in a high state: we find an additional six polars. (We are aware of a number of observations of polars in the high state which have been carried out but have not as of yet been published.) V1309 Ori (Schwarz et al. 2005), V1432 Aql (Rana et al. 2005) and SDSS J075240.45+362823.2 (Homer et al. 2005) all show distinct soft X-ray components while SDSS J072910.68+365838.3 and SDSS J170053.30+403537.6 (Homer et al. 2005) do not. In the case of SDSS J015543.4+002807.2 (Schmidt et al. 2005) the existence of a soft component is not required at a high significance and hence we define it as not having a soft X-ray component. We therefore find that 10 out of 27 systems observed in a high state do not show a distinct soft X-ray component.

Ramsay & Cropper (2007) suggested that if the temperature of the reprocessed X-rays was low enough, it would not be observable using the XMM–Newton X-ray detectors. This view is also supported by the analysis carried out by Vogel et al. (2008) on observations of 2XMMp J131223.4+173659. The reason for this could be that the accretion flow covers a larger fraction of the photosphere of the white dwarf or that the mass accretion rate is lower than in systems which showed a soft component (since \(M_{\text{acc}} \propto \left(M / f^{1/3} \right) \), where \(M \) is the mass accretion rate and \(f \) is the fractional area over which accretion is occurring).

There is no obvious reason as to why some polars would have accretion occurring over a larger area than others: they share no common characteristics such as magnetic field strength or orbital period. Indeed, as noted by Ramsay & Cropper (2004) two systems (BY Cam and RX J2115—58) have one pole which shows a soft component and one pole which does not. Further, three systems which have at least one pole which does not show a soft component are asynchronous systems. However, V1432 Aql which does show a soft component is also an asynchronous polar.

8 CONCLUSIONS

We have serendipitously discovered a faint polar, XMM J2250+5731, with an orbital period of 2.9 h, in the 2XMMi catalogue. We have identified the optical counterpart as a \(r \sim 21 \) object and it shows a deep eclipse in the optical and X-ray bands lasting \(\sim 12 \) min. At soft X-ray energies there is a distinctive drop in counts starting \(\sim 0.3 \) cycles before the eclipse. This is due to the accretion stream obscuring the accretion region in the upper hemisphere of the white dwarf. A second dip is seen in soft X-rays at \(\phi \sim 0.4 \) which could either be due to obscuration of the accretion region by a second stream or due to the rotation of the accretion region(s) rotating into and out of view. Amongst eclipsing polars, XMM J2250+5731 is unusual in that X-ray emission is visible over the whole of the binary orbital phase, apart from the eclipse.

We have analysed the X-ray spectrum of XMM J2250+5731 and find no evidence for a distinct soft X-ray component. Of the 27 polars which have been observed using XMM–Newton and found to be in a high accretion state, 10 show no distinct soft X-ray component. This is a surprisingly high fraction. This together with the result that only a small fraction of polars shows a soft X-ray excess (Ramsay & Cropper 2004), changes our whole perception of polars being strong soft X-ray sources. Further, it suggests that polars with strong soft X-ray components were preferentially discovered using EXOSAT.

ACKNOWLEDGMENTS

Based on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. We thank Gillian James for providing an initial reduction of the XMM–Newton and data and Diana Hannikainen and Hanna Tokola for assisting with the NOT observations. Observations were made using the WHT, the INT and the NOT on La Palma. We gratefully acknowledge the support of each of the observatories staff. We also thank Andrew Beardmore and other members of the Swift team for scheduling observations of our target. Some of the data presented here have been taken using ALFOSC, which is owned by the Instituto de Astrofísica de Andalucía (IAA) and operated at the NOT under agreement between IAA and the NBIAFG of the Astronomical Observatory of Copenhagen.

REFERENCES

Roming P. W. A. et al., 2005, Space Sci. Rev., 120, 95

Xu Y., Reid M. J., Zheng X. W., Menten K. M., 2006, 311, 54

This paper has been typeset from a TeX/LaTeX file prepared by the author.