Thermal diffusion in the intergalactic medium of clusters of galaxies

P. Shtykovskiy1,2⋆ and M. Gilfanov1,2★

1Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia
2Max-Planck-Institute für Astrophysik, Karl-Schwarzschild-Str. 1, D-85740 Garching bei München, Germany

ABSTRACT
We revisit the phenomenon of elements diffusion in the intergalactic medium (IGM) in clusters of galaxies. The diffusion is driven by gravity, concentration and temperature gradients. The latter cause thermal diffusion, which has been so far ignored in IGM studies. We consider the full problem based on the Burgers’ equations and demonstrate that the temperature gradients present in clusters of galaxies may successfully compete with gravity, evacuating metals from cooler regions. Under the combined action of gravity and temperature gradients, complicated metallicity profiles with several peaks and depressions may be formed. For a typical cool core cluster, the thermal diffusion may significantly reduce and even reverse the gravitational sedimentation of metals, resulting in the depression in their abundance in the core. This may have implications for diagnostics of the low-temperature plasma in the centres of clusters of galaxies.

Key words: X-rays: galaxies: clusters.

1 INTRODUCTION
Clusters of galaxies are the largest gravitationally bound objects in the Universe with thousands of galaxies residing in a dark matter (DM) dominated potential. Hot intergalactic medium (IGM), constituting the majority of the baryonic matter in galaxy clusters, is a natural laboratory for plasma physics displaying a wide range of phenomena. Despite seemingly simple nature of galaxy clusters, understanding of physical processes in hot plasma of IGM is far from being complete.

Of particular importance is the heavy elements distribution. Indeed, on the one hand it affects significantly the outcome of cosmological measurements via the mean molecular weight and thus the derived mass of the clusters (e.g. Qin & Wu 2000; Chuzhoy & Nusser 2003) and the baryonic density (e.g. Ettori & Fabian 2006). On the other hand, the X-ray spectrum of gas at low temperatures, \(T \lesssim 3 \times 10^7 \) K, is dominated by the emission lines, most important of which are associated with iron. The diagnostics of low-temperature plasma in clusters of galaxies is based primarily on line emission from heavy elements and the distribution of the latter may have direct implications for various phenomena, including the cooling flow problem (Fabian 1994).

Despite the importance of the heavy element distribution, flat metallicity profiles are often assumed. This assumption may turn out to be too crude in some cases. Indeed, the starting point for the metallicity profile is the primordial abundance. It is, however, quickly modified by a number of competing processes such as metals injection by supernovae (SNe), mixing and diffusion.

Although the effects of the latter process are rather controversial and its relevance to IGM in clusters of galaxies is still under debate, the scenario where the diffusion plays a significant role in forming the metallicity profile does not seem to be entirely unrealistic.

The diffusion of heavy elements in the intracluster medium has been considered by, for example, Fabian & Pringle (1977), Gilfanov & Syunyaev (1984) and Chuzhoy & Nusser (2003). Most studies focused on the gravitational separation (gravitational sedimentation) and found that it may result in significant changes of the gas composition throughout the cluster. Given the presence of temperature gradients in IGM, an additional type of diffusion may play a role, namely thermal diffusion. Although the importance of the latter in physics in general and in stellar physics in particular has been appreciated long ago (e.g. Thoul, Bahcall & Loeb 1994), it was largely ignored in the case of interstellar medium in galaxies and IGM in cluster of galaxies. The exceptions are studies by Chuzhoy & Loeb (2004) who solved the full problem, however considered the case of isothermal cluster, and Peng & Nagai (2009) who mentioned the potential relevance of the thermal diffusion effects in galaxy clusters. At first glance, simplified approach ignoring thermal diffusion may seem to be reasonable since the temperature variations in galaxy clusters are rather small. It turns out, however, that even moderate temperature gradient may be sufficient to compete the gravitational force. The consideration of the full problem including the effects of thermal diffusion is the subject of this paper.

This paper is structured as follows. In Section 2, we discuss the nature of the metallicity profiles in galaxy clusters. In Section 3, we describe the basic equations, numerical scheme and simulate the diffusion-driven evolution of a model galaxy cluster. Finally, in Section 5 we discuss the obtained results.

⋆E-mail: pavel@iki.rssi.ru (PS); gilfanov@mpa-garching.mpg.de (MG)
2 METALLICITY PROFILES IN GALAXY CLUSTERS

Although the observed metallicity profiles are known to vary from cluster to cluster, they do exhibit some similarities in their behaviour (e.g. Vikhlinin et al. 2005; Sanderson, O’Sullivan & Ponman 2009). Typically, in cool core (CC) clusters the heavy-element abundance rises from the cluster outskirts to the core. At the same time in the central parts, \(r \lesssim 10–20 \) kpc, a fraction of CC clusters show a depression in metallicity, whose nature and even reality are still under debate (e.g. Werner et al. 2009).

The metallicity profiles in galaxy clusters form as a result of an interplay between different processes such as injection of metals from the SNe-driven galactic winds, turbulent mixing and diffusion. The importance of the latter in plasma with turbulent magnetic field has been debated for a long time (e.g. Bakunin 2005; Lazarian 2007).

As it is well known, a magnetic field hinders the diffusion across the field lines. However, given the chaotic character of the field in a turbulent medium, the efficiency of transport processes may be high enough to make the diffusion and thermal conduction important (Narayan & Medvedev 2001). In the following, we assume that this is indeed the case.

The diffusion is driven by the gravity, temperature and concentration gradients. Below, we consider each in details.

(i) Gravitational sedimentation. The equilibrium distribution of heavy elements, \(n_s(r) \propto e^{-m_s k_B T} \), is more concentrated towards the cluster’s centre than that of the hydrogen. Thus, due to the gravitational force, heavy elements tend to sink towards the cluster centre, while light elements rise.

(ii) Thermal diffusion. Thermal diffusion was discovered theoretically by Enskog and Chapman in the 1911–1917 (e.g. Chapman & Cowling 1952). A clear physical explanation of the effect has been given significantly later by Monchick & Mason (1967), who demonstrated that thermal diffusion results from the dependence of collisional frequency on the velocity of particles. In the gas composed of two elements, the effect of thermal diffusion is to evacuate the more massive and more highly charged species from the colder region of the gas. In the case of a gas with three species – the abundant light ions, electrons and a small admixture of heavy ions with charge \(Z_s \) and atomic masses \(A_s \), the equilibrium distribution of the heavy element may be obtained analytically (Burgers 1969):

\[
n_s(r) \propto T^{a/2} \exp \left[-\frac{(A_s - 0.5 Z_s) m_e}{k_B} \int \frac{g(r)}{T(r)} dr \right],
\]

where \(a \) is constant of the order of 3. This formula demonstrates the importance of thermal diffusion for heavy elements. Indeed, substituting \(Z_s = 26 \) for the iron, we obtain \(\gtrsim 2000 \) for the power of \(T \) in the first multiplier. In practice, however, the time required to reach the equilibrium distribution may easily exceed the Hubble time and such a steep abundance profile is not formed.

(iii) Concentration gradients. The diffusion driven by concentration gradients works to restore the uniform abundance profile.

Another process affecting the heavy elements distribution is turbulent mixing which tends to wash out the metallicity gradients. The effects of mixing depend on the spatial scales over which the turbulence is operating and on the chaotic velocities spectrum. Mixing may also be driven by dynamical effects such as ‘sloshing’ (Ascasibar & Markovichevitch 2006).

In the next section, we construct a model cluster of galaxies and calculate the evolution of its metallicity profile due to diffusion of elements. Our goal is to consider the full problem of diffusion for an idealized cluster in order to demonstrate the effects of heavy elements transport in galaxy clusters, with particular emphasis on the modifications brought about by the thermal diffusion. Construction of a fully self-consistent model is beyond the scope of this paper, therefore we make several simplifying assumptions, namely the following.

(i) We consider the idealized case of a static cluster assuming that its mass remains constant throughout the duration of simulations. In real case, the cluster mass continuously grows via mergers and accretion of DM haloes (e.g. Cohn & White 2005). Since we are mostly interested in CC clusters which are (most likely) not affected significantly by mergers in the past few Gyrs (e.g. Santos et al. 2008; Poole et al. 2008), this should not compromise our results significantly.

(ii) We assume that there is an exact balance between heating and cooling of IGM which maintains the temperature profile constant throughout the simulations. This implies that the IGM heating via the thermal conduction (which accompanies diffusion as these are the two sides of one phenomenon) and due to action of the central AGN equal the radiative cooling. As shown by Guo, Oh & Ruszkowski (2008), a stable configuration of this kind may indeed exist.

(iii) The IGM enrichment due to the continuous injection of metals from galaxies is ignored.

(iv) The effect of mixing on the metallicity profile of the cluster is ignored.

The possible effect of the latter two processes is discussed in the Section 4.5.

3 NUMERICAL EXPERIMENT

We consider a spherically symmetric cluster of galaxies with multicomponent plasma residing in a DM-dominated gravitational potential. The latter is assumed to follow the NFW profile (Navarro, Frenk & White 1997). The cluster is assumed to be initially in the hydrostatic equilibrium.

3.1 Basic equations

We consider \(M \) species (\(M - 1 \) ions plus electrons) with concentrations \(n_s \), mean velocities \(u_s \), atomic masses \(A_s \) and charges \(Z_s \). All species have the same temperature \(T_s \equiv T \). The diffusion velocities \(w_s \) are defined as

\[
w_s \equiv u_s - u,
\]

where \(u \) is the mean fluid velocity:

\[
u = \frac{\sum s n_s m_s u_s}{\sum s n_s m_s}.
\]

The hydrodynamics of multicomponent gases is governed by Burgers’ equations (Burgers 1969). The Burgers’ equations for the gas in the hydrostatic equilibrium (the mass, momentum and energy conservation equations) are (Burgers 1969; Thoul et al. 1994)

\[
\frac{\partial n_s}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^n_s (u_s + u) \right] = 0,
\]

\[
\frac{d(n_s k_B T)}{dr} + n_s m_s g - n_s Z_s e E = \sum s \frac{E_s}{\zeta_s} K_{al} (w_s - w_s) + 0.6 (x_{ai} r_s - y_{ai} r_i)
\]
and

\[
\frac{5}{2} n_s k_B \frac{dT}{dr} = \sum_{i,p} K_{ap} \left\{ \frac{3}{2} \kappa_a (u_s - u_t) - y_a [1.6 x_a (r_s + r_i) + Y_a r_s - 4.3 x_a r_i] \right\} - 0.8 K_{as} r_s.
\]

(6)

Here, \(g = [GM(r)/r^2] \) is the gravitational acceleration modulus, \(E \) is the radial electric field, \(x_a = \mu_{sa}/m_s, y_a = \mu_{ta}/m_t \) with \(\mu_{st} = m_m/(m_s + m_t) \) and \(Y_a = 3 y_a + 1.3 x_a m_t/m_s \). Coefficients in equations correspond to pure Coulomb potential with a long-range cut-off at the Debye length (Thoul et al. 1994). The quantities \(r_i \) are the so-called residual heat flow vectors introduced by Burgers (1969), playing the role of additional independent variables. The thermal diffusion arises due to the interference of equation (5) and the energy equation (6) via the \(r_i \).

The friction coefficient between species ‘s’ and ‘t’ is

\[
K_{st} = \left(2/3\right) \mu_{st} \kappa_a (k_B T/m_a)^{1/2} n_s n_t \sigma_{st},
\]

(7)

where the cross-section between particles ‘s’ and ‘t’ is

\[
\sigma_{st} = 2 \sqrt{\pi e} Z_s Z_t (k_B T)^{3/2} \ln \Lambda_a.
\]

(8)

We assume the Coulomb logarithm to be ln \(\Lambda_a = 40 \) everywhere.

In addition, charge neutrality and the absence of currents should be satisfied throughout the plasma. The former is not imposed explicitly in our code and is used to control the solution, while the latter is used to close the system of Burgers’ equations (see below).

3.2 Simulations

The galaxy cluster is assumed to be initially in the hydrostatic equilibrium, i.e. there is no net mass flow, \(u = 0 \). However, once diffusion starts to operate, the total pressure changes and the gas is pushed out of the equilibrium, \(\nabla p + \rho g \neq 0 \). Indeed, while heavy elements flow to the centre of the cluster, hydrogen flows outwards and there is a net outflow of particles. The gas adjusts itself to the new equilibrium configuration via the contraction on the hydrodynamical time-scale. Given the much smaller time-scale of the latter as compared to the diffusion time-scale, the departure from equilibrium will be small enough for the hydrostatic equilibrium form of Burgers’ equations to be valid throughout the lifetime of a cluster (see also Section 3.2.3).

In order to solve the problem, we use the following numerical scheme.

(i) Based on the concentrations of elements \(n_s^{k-1} \) on \((k - 1) \)th time-step, solve Burgers’ equations (5) and (6) for the diffusion velocities \(u_s^{k-1} \).

(ii) Given the diffusion velocities \(u_s^{k-1} \), the total mass flow velocity \(u^{k-1} \) and \(n_s^{k-1} \), solve the continuity equation for the concentrations on the next time slice \(n_s^k \).

(iii) Solve the Euler equation

\[
\frac{dr}{dr} = - \frac{\nabla p}{\rho} - g
\]

(9)

for the velocity \(u^k \), restoring the hydrodynamic equilibrium in a cluster, using \(u^{k-1} \) and \(n_s^{k-1} \).

Below, we discuss each step in detail.

3.2.1 Diffusion velocity calculation

Burgers’ equations (equations 5 and 6) present a linear inverse problem of the form \(A x = b \) on the diffusion velocities \(u_s \), heat vectors of species \(r_s \) and electric field \(E \). The diffusion is driven by the gradients \(\nabla T, \nabla n_s, \nabla p [g(r)] \), with all these quantities residing on the right-hand side. Given the \(M \) species we have \(2M + 1 \) unknowns and thus need \(2M + 1 \) independent equations. Burgers’ equations give us only \(2M - 1 \) independent equations, because diffusion velocities appear in equations (5) and (6) only in the form \((u_s - u_t) \). The two additional conditions needed to close the system of Burgers’ equations are defined as follows:

\[
\sum \rho_i u_i = 0,
\]

(10)

which follows from the definition of the diffusion velocity (equations 2 and 3). Finally, the absence of electric currents gives

\[
\sum Z_i n_i u_i = 0
\]

(11)

The resulting system of equations is solved for the \(u_i \) and \(r_i \) using the singular value decomposition method (Press et al. 1992).

3.2.2 Continuity and Euler equations

The problem we are solving is a mixed advection-diffusion problem. We have found that it can be solved with sufficient accuracy using the combination of forward-time centred space (FTCS) and Lax methods (Toro 1999), with the former applied to the continuity equation and the latter to Euler equation. The Lax method is known to introduce numerical diffusion; however, we performed a number of tests and found that it is not crucial for our case (see Section 3.2.3).

We use a homogenous grid spanning from 0 to 2 Mpc with step \(d \) \(r = 0.25 \) kpc. The time-step is chosen to be small enough to ensure the stability of the scheme, \(dr = 2 - 5 \times 10^{-5} \) Gyr.

Since we are mainly interested in the diffusion in the central region of the cluster, we are relatively free in the choice of the outer boundary condition. We assume that the galaxy cluster is immersed in the medium with constant density, i.e. there is an infinite reservoir of gas which maintains the gas density together with the element mass fractions at the outer boundary constant. In calculating velocities at the outer boundary, we use one-sided derivatives.

At the inner boundary \(r = 0 \), the continuity equation has a singular point. Therefore, we expand equation (4) in the vicinity of zero and obtain the following expression for the concentration at the \(k \)th time-step:

\[
n_{1,s}^k = n_{1,s}^{k-1} - 3 \times (dr/dr) n_{1,s}^{k-1} \left(u_2^{k-1} + w_{2,s}^{k-1} \right).
\]

(12)

We also required that the density gradient should be equal to zero at \(r = 0 \) and used a one-sided derivative for the velocity gradient \(\nabla u \). In addition, all velocities should be zero at the inner point: \(u_s = 0 \) and \(u_t = 0 \).

3.2.3 Code validation

We further performed a number of tests to check the validity of our code.

(i) Numerical diffusion. We obtained the solution replacing the Lax method with the FTCS. The resulting code is free from numerical diffusion; however, the FTCS-based scheme is less suited for our purpose due to a well-known instability of FTCS for hydrodynamical problems. On the other hand, since the hydrodynamical terms in our equations appear only as a result of a slow diffusion process, we were able to obtain a stable solution for the 7 Gyr simulation. The solutions obtained using the combination of Lax+FTCS and
FTCS+FTCS schemes are consistent with each other within a few per cent.

(ii) Boundary conditions. We check that the solution is insensitive to the boundary conditions. For this purpose, we run our code for 7 Gyr with different outer radii and found no significant difference. We also considered the opaque outer boundary, setting to zero all the velocities at the outer radius. The solution at \(t = 7 \) Gyr in this case is also consistent with the one for the default boundary conditions almost everywhere, within a fraction of a per cent. Solutions obtained with different boundary conditions differ from each other only within \(\sim 100 \) kpc from the outer boundary. This dependence is unimportant and can be neglected.

(iii) Hydrostatic equilibrium. We also checked that the departures from the hydrostatic equilibrium are not too large, for the Burgers’ equations to be valid, namely that \(|\nabla p/\rho + g| \ll |\nabla p_i/\rho_i + g| \) throughout the duration of simulations. This condition is satisfied with an accuracy better than a fraction of a per cent.

(iv) Electroneutrality. Since we do not use the electroneutrality condition explicitly in our code, we check that the final solution satisfies it. We obtain that \(\sum Z_i n_i/n_e - 1 \ll 10^{-5} \).

(v) Comparison with an analytical solution. In order to check the implementation of the Burgers’ equations in the code, we consider a plasma composed of protons, electrons and a small admixture of iron in the hydrostatical equilibrium. Solving the Burgers’ equations analytically, we obtain the coefficient \(\alpha \) in the power of temperature in equation (1), \(\alpha \approx 3.1 \), and compute the equilibrium distribution of iron. For this distribution, we calculate the diffusion velocities using our code and verify that they equal zero as expected for an equilibrium distribution. We obtain that \(\omega_{\text{Fe}} \ll 10^{-2} \) km s\(^{-1}\).

4 RESULTS AND DISCUSSION

4.1 Model cluster

For the temperature profile of the cluster, \(T(r) \), we use the analytical best-fitting model for A262 from Vikhlinin et al. (2006). Outside the range of its applicability, the profile was extended as illustrated in the Fig. 1. The total mass density of the cluster is assumed to follow the NFW profile (Navarro et al. 1997):

\[
\rho_{\text{NFW}} = \frac{\rho_s}{(r/r_s)(1 + r/r_s)^2}.
\]

We take \(r_s = 184 \) kpc, the observed value for the A262 cluster (Vikhlinin et al. 2006).

Given the \(T(r) \) and \(r_s \) and assuming hydrostatic equilibrium, we determine the value of \(\rho_s \) resulting in gas density \(\rho_s(r) \) which follows as close as possible the analytical best-fitting model for gas density from Vikhlinin et al. (2006). With the obtained value of normalization, \(\rho_s = 1.03 \times 10^{-25} \) g cm\(^{-3}\), the total mass inside the radius \(r_s = 70 \) kpc obtained integrating the \(\rho_{\text{NFW}}(r) \) equals the total mass calculated using the temperature and gas density profiles (and their extrapolations) from Vikhlinin et al. (2006), assuming the hydrostatic equilibrium. The overall agreement between these two masses is better than \(\approx 20–30 \) per cent in the range of 20–450 kpc with the limits reflecting the bounds of the region with a sufficient quality of data (Vikhlinin et al. 2006). The final gas density profile is calculated using the adjusted NFW profile \(\rho_{\text{NFW}}(r) \), temperature profile \(T(r) \) and assuming the hydrostatic equilibrium. The normalization of the gas density profile corresponds to a gas mass fraction within \(r_{500} \) (the radius where the overdensity is equal to 500) of \(f_{\text{so}} = 0.14 \). The resulting total mass, gas density and temperature profiles are shown in Fig. 1.

To illustrate the role of the thermal diffusion, we also consider an isothermal cluster with temperature \(kT = 2 \) keV and the same total mass density profile. The initial gas density profile is calculated similarly as above, assuming the hydrostatic equilibrium (Fig. 2).

We consider a four-component plasma consisting of \(H^+ \), \(\text{He}^{+2} \), \(\text{Fe}^{+26} \) and electrons. The initial metallicity profiles are assumed to be flat with the mass fractions of hydrogen and iron being 0.75 and \(1.8 \times 10^{-3} \), respectively. To demonstrate the effects of diffusion for different species, we also perform calculations replacing the \(\text{Fe}^{+26} \) by \(\text{O}^{+8} \).

Figure 1. Left-hand panel: DM and gas density profiles and temperature profile of the model galaxy cluster. Right-hand panel: corresponding initial diffusion velocity profiles for H (red), He (green), Fe (blue) and O (magenta, dashed line). Positive velocities correspond to outflow of particles, and negative to inflow. A positive peak at small radii and a negative one at the cluster outskirts are caused by the thermal diffusion and correspond to strong temperature gradients in the IGM (see the left-hand panel).
4.2 Diffusion in clusters of galaxies: temperature versus gravity

We plot in Figs 1 and 2 the diffusion velocity profiles at the initial moment of time for a CC and isothermal models, respectively. Positive values correspond to outflow of particles, negative to inflow. As is clear from the plots, the presence of temperature gradients drastically changes the character of diffusion. While in an isothermal cluster the effect of diffusion is restricted to sedimentation of He and heavy nuclei, in the non-isothermal case the picture is more complicated. The combined effect of gravity and temperature gradients leads to formation of a complex diffusion velocity profile with prominent features at the positions of strong temperature gradients (∼20 kpc and ∼400 kpc in Fig. 1). At small radii, the sharp decrease of temperature counteracts gravity and reverses the diffusion flow, evacuating heavy elements from the CC of the cluster. On the other hand, the negative temperature gradient in the outer part of the cluster works in the same direction as the force of gravity, increasing the velocity of gravitational sedimentation. Note that due to the lower temperatures and higher gas density the diffusion velocities in the centres of CC clusters are smaller than in higher temperature IGM usually considered in the context of the gravitational sedimentation of elements in clusters of galaxies (e.g. Chuzhoy & Nusser 2003). The goal of the present analysis is to study the possible role of thermal diffusion in the IGM. We therefore focused on the CC clusters having strong temperature gradients, rather than on the high-temperature clusters characterized by higher diffusion velocities. Because of the relatively small diffusion velocity, ions can drift only through a small fraction of the cluster, ≲20 kpc, during its lifetime.

The overall effect of diffusion is further illustrated by the metallicity profiles after 3 and 7 Gyr shown in Figs 3 and 4. At large radii, the heavy elements flow inwards due to combined effect of thermal diffusion and gravity. The temperature peak at ∼300 kpc...
leads to the enhancement of heavy elements abundance at this radius. At intermediate radii, the temperature gradient is relatively weak and thus metals flow under the action of gravity to the centre. Due to the strong temperature gradient at \(r \sim 20 \text{ kpc} \), the inward diffusion of heavy elements stops and the second peak is formed in heavy elements distribution. At the same time, metals from the core of the cluster flow up the temperature gradient, making the peak more prominent and creating a depression in the metallicity at smaller radii. Because of the nearly flat temperature distribution in the inner \(\sim 10 \text{ kpc} \), assumed here, the abundance at the centre of the cluster is also somewhat enhanced by the gravitational sedimentation, with the effect being stronger for helium than for iron. In contrast to this, the picture is much simpler in the isothermal cluster model shown in Fig. 2. In this case, the density profile evolution is driven by the gravitational sedimentation of heavy elements leading to a monotonic increase of their abundance towards the cluster centre.

In Fig. 5, we compare the diffusion velocity profiles after 7 Gyr with the initial distributions. Clearly, the outflow of Fe at small radii is only slightly reduced, while for He it almost disappears. The diffusion velocities outside the inner parts of the cluster remain almost unchanged.

4.3 Dependence on the atomic mass and charge

Both gravitational sedimentation and thermal diffusion velocities depend on the ion species. As is clear from Fig. 2, the gravitational sedimentation in an isothermal cluster is the most effective for the helium ions, with the higher \(Z \) ions such as Fe and O diffusing somewhat slower. At the same time, the diffusion velocities are almost equal for the latter two, \(w_{\text{Fe}} \approx w_{\text{O}} \) (Chuzhoy & Nusser 2003). For a non-isothermal temperature profile, the equilibrium distribution of the heavy element depends on the element’s charge with more highly charged species being more concentrated towards peaks in temperature profile of the cluster (e.g. equation 1). As a result, the abundance profile of He appears to be smoother than that of Fe (Fig. 3). On the other hand, on the time-scales of interest, the effect of diffusion for elements heavier than He is identical from the observational point of view. The strong charge dependence of thermal diffusion (equation 1) becomes relevant only on significantly longer time-scales, due to the small \(\nabla T \) in the 30–200 kpc interval.

4.4 Dependence on the cluster parameters

The overall pattern of diffusion depends critically on the cluster parameters, due to the strong temperature, density and gravity dependence of diffusion velocities. Since the typical temperatures in clusters of galaxies vary from less than a 1 up to \(\sim 10 \text{ keV} \) and the diffusion velocity scales with temperature as \(w \propto T^{3/2} \) (e.g. Thoul et al. 1994), the variations in the diffusion velocity may exceed an order of magnitude. On the other hand, the temperature, gas density and gravity in clusters of galaxies are by no means independent (e.g. Vikhlinin et al. 2006). Thus, the character of the diffusion is a result of the complex interplay between the cluster parameters.

The reversal of the diffusion flow for He and metals at small radii (Fig. 1) is a consequence of a large gradient in the temperature profile, which counteracts the force of gravity. The balance between these two forces is sensitive to the details of the temperature distribution. Rather small and otherwise almost insignificant modifications...
Figure 6. Left-hand panel: DM, gas density and temperature profiles in the model galaxy clusters with an (ad hoc) temperature distribution with a moderate gradient in the core. The total mass distribution is the same as in our default model shown in Fig. 1. Right-hand panel: diffusion velocity profiles for He (red) and Fe (blue) at the initial moment of time. For comparison, the dashed lines in both the panels show profiles for the case of a large temperature gradient from Fig. 1. Unlike the latter case, He flows inwards over all radii.

Further decrease of the temperature gradient in the cluster core can make gravity the dominant factor. Based on the solution of Burgers’ equations, we estimate that for the gravitational potential considered here, the thermal diffusion equals to the force of gravity for the temperature gradient of $\Delta T \sim 0.1 \text{ keV per 20 kpc}$. Note that this is approximately two times smaller than the temperature gradient in the profile shown in the Fig. 6, $\Delta T \sim 0.2 \text{ keV per 20 kpc}$ at $r = 20 \text{ kpc}$.

4.5 Turbulent mixing and metals injection from cD galaxy

An idealized model constructed in this paper ignores turbulent mixing and metal enrichment of the IGM by the central cD galaxy – the two important factors which potentially may have a significant impact on the metallicity profiles. The turbulent mixing tends

Figure 7. Left-hand panel: abundance profiles for Fe (blue solid line) and He (green line) in the model galaxy cluster from Fig. 6 after 3 Gyr. Right-hand panel: the same, but after 7 Gyr.
Figure 8. Abundance profile for Fe in the model galaxy cluster with injection of metals by cD galaxy after 7 Gyr (see Section 4.5 for details).

To smoothen the abundance distributions, while the cD galaxy increases the heavy element abundances in the inner parts of the cluster due to metals produced by (mostly) Type Ia SN (SNIa) explosions. These two factors are discussed below.

In order to estimate role of the cD galaxy, we measure the K-band luminosity of A262 using the image from Two-Micron All-Sky Survey (2MASS) Extended Source Image Server (http://irsa.ipac.caltech.edu/applications/2MASS/PubGalPS/) and based on the calibration of Mannucci et al. (2005) for E/S0 galaxies convert it to the SNIa rate. Combining the latter with the iron yield of $\eta \approx 0.7 M_\odot$ (Iwamoto et al. 1999) and assuming perfect mixing of the SNIa ejecta with IGM, we obtain the iron injection rate of $8.0 \times 10^{-3} M_\odot$ yr$^{-1}$ within the inner ≈ 19 kpc of the cluster. On the other hand, given the diffusion velocity, $w_{\text{diff}} \approx 10^6$ cm s$^{-1}$, and concentration of iron at this radius (see Fig. 1), we obtain the diffusion-driven iron outflow from the same region of $\approx 2.3 \times 10^{-3} M_\odot$ yr$^{-1}$, which is several times smaller than the iron injection rate. The relation between the outflow and injection rates is opposite for α-elements. Indeed, assuming the oxygen yield of $\approx 0.1 M_\odot$ and solar metallicity, the oxygen injection rate is $\approx 1.1 \times 10^{-3} M_\odot$ yr$^{-1}$, which is several times smaller than the outflow rate, $\approx 4.9 \times 10^{-3} M_\odot$ yr$^{-1}$. Taking these numbers at the face value, we may conclude that the impact of the cD galaxy on metallicity profiles varies from significant for iron peak elements to negligible for α-elements.

We assumed above that complete mixing of the SN ejecta with IGM takes place. However, the details of the SN ejecta interaction with the ICM are poorly understood. Indeed, the assumption of the total mixing leads to unreasonably high iron abundance in the cluster core, as illustrated by the following calculation. Assuming that the iron injection rate in A262 follows the stellar mass profile but different temperature distributions: isothermal, and with large and moderate temperature gradient (Figs 1, 2 and 6). The temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

We performed numerical simulations of the diffusion in the IGM on the metallicity profiles in clusters of galaxies. The diffusion processes in the IGM are driven by the gravity, concentration and temperature gradients. Gravity forces metals to sink towards the centre, concentration gradients act to restore the uniform distribution, and the temperature gradients tend to evacuate high-metallicity gas from the high-temperature regions in the IGM. Indeed, the relation between the injection and outflow rates is opposite for α-elements. Assuming the oxygen yield of $\approx 0.1 M_\odot$ and solar metallicity, the oxygen injection rate is $\approx 1.1 \times 10^{-3} M_\odot$ yr$^{-1}$, and concentration of iron at this radius (see Fig. 1), we obtain the diffusion-driven iron outflow from the same region of $\approx 2.3 \times 10^{-3} M_\odot$ yr$^{-1}$, which is several times smaller than the iron injection rate. The diffusion between the outflow and injection rates is opposite for α-elements.

Indeed, assuming the oxygen yield of $\approx 0.1 M_\odot$ and solar metallicity, the oxygen injection rate is $\approx 1.1 \times 10^{-3} M_\odot$ yr$^{-1}$, which is several times smaller than the outflow rate, $\approx 4.9 \times 10^{-3} M_\odot$ yr$^{-1}$. Taking these numbers at the face value, we may conclude that the impact of the cD galaxy on metallicity profiles varies from significant for iron peak elements to negligible for α-elements.

We assumed above that complete mixing of the SN ejecta with IGM takes place. However, the details of the SN ejecta interaction with the ICM are poorly understood. Indeed, the assumption of the total mixing leads to unreasonably high iron abundance in the cluster core, as illustrated by the following calculation. Assuming that the iron injection rate in A262 follows the stellar mass profile but different temperature distributions: isothermal, and with large and moderate temperature gradient (Figs 1, 2 and 6). The temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

We performed numerical simulations of the diffusion in the IGM on the metallicity profiles in clusters of galaxies. The diffusion processes in the IGM are driven by the gravity, concentration and temperature gradients. Gravity forces metals to sink towards the centre, concentration gradients act to restore the uniform distribution, and the temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

5 CONCLUSIONS

We considered the effects of element diffusion in the IGM on the metallicity profiles in clusters of galaxies. The diffusion processes in the IGM are driven by the gravity, concentration and temperature gradients. Gravity forces metals to sink towards the centre, concentration gradients act to restore the uniform distribution, and the temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

We performed numerical simulations of the diffusion in the IGM on the metallicity profiles in clusters of galaxies. The diffusion processes in the IGM are driven by the gravity, concentration and temperature gradients. Gravity forces metals to sink towards the centre, concentration gradients act to restore the uniform distribution, and the temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

We performed numerical simulations of the diffusion in the IGM on the metallicity profiles in clusters of galaxies. The diffusion processes in the IGM are driven by the gravity, concentration and temperature gradients. Gravity forces metals to sink towards the centre, concentration gradients act to restore the uniform distribution, and the temperature gradients tend to evacuate heavy elements from the low-temperature regions in the IGM. So far, attention has been paid to gravitational sedimentation, while thermal diffusion has been largely excluded from consideration. We demonstrate that the latter may drastically change the pattern of the diffusion and thus may play a significant role in the formation of the metallicity distribution in IGM.

The efficiency of transport processes in IGM is still under debate. However, if element diffusion does operate in clusters of galaxies, its overall effect on metallicity distributions may be opposite to what was previously thought, based on simplified considerations of isothermal IGM. Our results show that even moderate-temperature gradients $\lesssim 0.5$ keV per 100 kpc may be sufficient to counteract the force of gravity and to stop and even to reverse the diffusion flow of metals, thus preventing enhancement of heavy-element abundances in the centre due to gravitational sedimentation. It is especially relevant to the CC clusters, where the thermal diffusion may lead to the depletion of metals in the cluster core. The implications of this process for the diagnostics of the low-temperature plasma in the inner 10 kpc. Such a high iron abundance in the cluster core contradicts to observations of clusters of galaxies, in particular to the iron distribution in A262 measured by Vikhlinin et al. (2005), pointing at the need of a more sophisticated model. Similar results were obtained by Rebusco et al. (2006), who found the observed metallicity profiles in galaxy clusters to be broader than predicted under the assumption that the rate of metals injection follows stellar light distribution. A possible explanation of such a discrepancy is offered by the turbulent mixing driven by the central active galactic nuclei (AGN) activity. This requires turbulent diffusion coefficients of $6 \times 10^{27} - 5 \times 10^{28}$ cm2 s$^{-1}$, corresponding to mixing length-scales of 1–35 kpc and gas velocities $\approx 200–400$ km s$^{-1}$ (Rebusco et al. 2006). However, the role of this process in the particular case of A262 and other CC clusters is unclear. Indeed, the presence of steep temperature and abundance gradients (Vikhlinin et al. 2005, 2006) rules out any significant mixing operating on spatial scales exceeding ~ 10 kpc, thus excluding a large part of the parameters space required for the turbulent mixing interpretation.

To conclude, the role of mixing and metal enrichments remains to be controversial. An attempt to include them in the model in a straightforward manner leads to an apparent conflict with observations. This suggests that the role of these processes may be overestimated. Secondly, this points at the need of more sophisticated models. Consideration of such models will be a subject of a forthcoming paper.

Note that due to the limited coverage of A262 by 2MASS the metal injection rate at $r \gtrsim 19$ kpc is somewhat underestimated. This, however, does not change our conclusions.
centres of clusters of galaxies will be considered in the forthcoming paper (Shtykovskiy & Gilfanov, in preparation).

ACKNOWLEDGMENTS

PS acknowledges support from the President of the Russian Federation grant NSh-5579.2008.2, the programme of the Presidium of Russian Academy of Sciences (RAS) ‘The origin, structure and evolution of objects in the Universe’ (P-07) and the programme of RAS OFN-17. PS would like to thank Max Planck Institute for Astrophysics, where part of this work was done for their hospitality. We also would like to thank the anonymous referee for useful comments on the manuscript.

REFERENCES

Fabian A. C., 1994, ARA&A, 32, 277

This paper has been typeset from a TeX/TiKZ file prepared by the author.