Locating positions of γ-ray-emitting regions in blazars

H. T. Liu,1,2* J. M. Bai1,2* and J. M. Wang3,4⋆

1National Astronomical Observatories/Yunnan Astronomical Observatory, Chinese Academy of Sciences, Kunming, Yunnan 650011, China
2Key Laboratory for the Structure and Evolution of Celestial Objects, Chinese Academy of Sciences, Kunming, Yunnan 650011, China
3Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China
4Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049, China

Accepted 2011 January 13. Received 2011 January 9; in original form 2010 March 4

ABSTRACT
We propose a new method to locate the γ-ray-emitting positions Rγ from the measured time lags τob of γ-ray emission relative to broad emission lines. The method is also applicable to lower frequencies. Rγ depends on parameters τob, RBLR, vγ and θ, where RBLR is the size of the broad-line region, vγ is the travelling speed of disturbances down the jet and θ is the viewing angle of the jet axis to the line of sight. As τob = 0, τob < 0 or τob > 0, the broad lines zero-lag, lag or lead the γ-rays, respectively. It is applied to 3C 273, in which the lines and the radio emission have enough data, but the γ-rays do not. We find τob < 0 and τob > 0 for the 5, 8, 15, 22 and 37 GHz emission relative to the broad lines Hα, Hβ and Hγ. The lag may be positive or negative; however, current data do not allow discrimination between the two cases. The measured lags are of the order of years. For a given line, τob generally decreases as radio frequency increases. This trend most likely results from the radiative cooling of relativistic electrons. The negative lags have an average of τob = −2.86 yr for the 37 GHz emission, which represents the lines lagging the radio emission. The positive lags have τob = 3.20 yr, which represents the lines leading the radio emission. We obtain the radio-emitting positions Rradio = 0.40–2.62 pc and Rradio = 9.43–62.31 pc for the negative and positive lags, respectively. From the constraint of 0.40–2.62 pc for the negative lags, we have Rγ ≤ 0.40–2.62 pc for the negative lags. For the positive lags, 4.67–30.81 < Rγ < 9.43–62.31 pc. These estimated Rγ are consistent with those of other studies. These agreements confirm the reliability of the method and assumptions. The method may also be applicable to BL Lacertae objects, in which broad lines were detected.

Key words: galaxies: active – galaxies: jets – quasars: emission lines – quasars: individual: 3C 273 – radio continuum: galaxies.

1 INTRODUCTION
The γ-rays of blazars are generally believed to be generated by inverse Compton (IC) emission from a relativistic jet oriented at a small angle to the line of sight (Blandford & Rees 1978). Two of the most accepted scenarios for broad-band emission from radio to γ-rays are the synchrotron self-Compton (SSC) and external Compton (EC) models (see e.g. Ghisellini et al. 1998). The broad-band spectral energy distributions (SEDs) of blazars consist of two broad bumps (see e.g. Fossati et al. 1998; Ghisellini et al. 1998). The first component is from the synchrotron process, and the second one, generally peaking at the γ-ray regime, is generated by the IC emission of the same electron population responsible for the synchrotron emission (see e.g. Ghisellini et al. 1998; Böttcher 1999).

However, the positions of γ-ray-emitting regions are still an open and controversial issue in research on blazars. It was suggested that γ-rays are produced within the broad-line region (BLR) and that the γ-ray-emitting positions Rγ range roughly between 0.03 and 0.3 parsec (pc) (Ghisellini & Madau 1996). Blandford & Levinson (1995) also suggested a sub-pc γ-ray-emitting region. It was argued that the radiative plasma in relativistic jets of powerful blazars is inside the BLR (Georganopoulos, Kirk & Mastichiadis 2001). On the contrary, it was also argued that the γ-ray-emitting regions are outside the BLR (Lindfors, Valtaoja & Täubel 2005; Sokolov & Marscher 2005). Internal absorption for 10 GeV–1 TeV γ-rays was used to constrain Rγ (Liu & Bai 2006; Liu, Bai & Ma 2008; Bai, Liu & Ma 2009). Variability of the high-energy flux indicates that the γ-ray-emitting positions cannot be too distant from the central supermassive black hole (Ghisellini & Madau 1996; Ghisellini & Tavecchio 2009), while the photon–photon absorption implies that the emitting positions cannot be too close to the black hole and its accretion disc (Ghisellini & Madau 1996; Wang 2000; Liu & Bai 2009).
In this γ-ray Fermi space telescope could be located. Thus it is also applicable to infrared, optical and blazars that the jet from the time lags between variations γ-ray blazars that the variation amplitudes are larger for Fermi Gamma-Ray Space Telescope γ-ray Fermi. Kovalev et al. (2009) found for various samples of AGNs (Rawlings & Saunders 1991; Falcke, Serjeant et al. 1998; Cao & Jiang 1999, 2001; Wang & Ho 2003; Chaterjee et al. 2009). The events in the central engine, where the X-rays are produced, will have a direct effect on the events in the radio jets (e.g. Marscher et al. 2002; Chaterjee et al. 2009). Thus it is likely that the γ-ray outbursts are caused by the disturbances from the central engine, but not the local disturbances produced in the jets. Hence, there should be correlations between the γ-ray outbursts and the variations of broad lines. It is possible that there are time lags in the correlations and the time lags are related to the positions of broad lines from the BLR and the γ-rays. The time lags should be related to R_p. In this paper, we attempt to locate R_p from the time lags between variations of the broad lines from the BLR and variations of the γ-rays from the relativistic jet.

2 METHOD

The broad lines from the BLR and the γ-rays from the relativistic jet may be both coupled to the disturbances in the central engine. Thus the disturbances could similarly influence both variations of the broad lines and the γ-rays emitted by the jet aligned with the line of sight. The outbursts seen in light curves are physically linked to the ejections of superluminal radio knots (e.g. Türlinger, Courvoisier 2000). The events in the central engine will have a direct effect on the events in the radio jets (e.g. Marscher et al. 2002; Chaterjee et al. 2009). Thus it is likely that the γ-ray outbursts are caused by the disturbances from the central engine, but not the local disturbances produced in the jets. Hence, there should be correlations between the γ-ray outbursts and the variations of broad lines. It is possible that there are time lags in the correlations and the time lags are related to the positions R_p. Thus R_p could be located by the time lags between the γ-ray outbursts and the variations of broad lines. In the future, quasi-simultaneous observations of γ-rays with Fermi/LAT and broad lines with optical telescopes on the order of years may be employed to test this expectation. The method of locating R_p is also applicable to infrared, optical and radio emission.

First, it is assumed that the disturbances in the central engine are transported outward by some process, and the disturbances could similarly influence both variations of the broad lines from the BLR and the γ-rays from the relativistic jet aligned with the line of sight. Secondly, we assume a simple geometry (see Fig. 1a) that is similar to the schemes in the classical reverberation mapping of the broad lines (see e.g. Kaspi & Netzer 1999; Wandel, Peterson & Malkan 1999; Kaspi et al. 2000, 2005, 2007; Peterson et al. 2000, 2004, 2005; Vestergaard & Peterson 2006). According to the reverberation mapping model (e.g. Blandford & McKee 1982), the variations of broad lines can reflect the disturbances in the central engines of blazars, even though the beamed emission from the relativistic jet strongly affects the real ionizing continuum from the accretion disc so that no appropriate continuum could be used as a reference to estimate the time lags relative to the broad lines. If the broad lines from the BLR and the γ-rays from the relativistic jet are both coupled to the disturbances in the central engine, the disturbances should similarly influence both variations of the γ-rays and the broad lines. Thus there should be correlations and time lags between the broad lines and the γ-rays. The time lags should be related to R_p. In this paper, we attempt to locate R_p from the time lags between variations of the broad lines from the BLR and variations of the γ-rays from the relativistic jet.
Locating positions of γ-ray-emitting regions

where R_{BLR} is the size of the broad-line region, v_d is the travelling speed of disturbances down the jet and c is the speed of light. For Case A, $R_v > R_{BLR}$.

Within segment AG, the lines will lag the γ-rays. As the disturbances reach point F, where the γ-rays are produced, i.e. $R_v = AF$, the ionizing continuum photons reach point E. The light travelling time effects for the ionizing photons from point E to B and the line photons from B to K result in the time lag of the lines relative to the γ-rays (see Fig. 1a). In this case (hereafter Case B), we have $R_v + R_{BLR} - R_v c/v_d = c \tau_{ob}(1 + z)$, and then

$$R_v = \frac{R_{BLR} - c \tau_{ob}}{z - 1},$$

where z is the redshift of the source, $\tau_{ob} > 0$ and τ_{ob} is the observed time lag of the broad lines relative to the γ-rays.

Outside segment AG, the γ-rays will lag the lines. As the disturbances reach point H, where the γ-rays are produced, i.e. $R_v = AH$, the line photons reach point L. The light travelling time effects for the γ-ray photons from point J to L, i.e. from point H to M, result in the time lag of the γ-rays relative to the lines (see Fig. 1a). In this case (hereafter Case C), we have $R_v c/v_d = R_v + R_{BLR} + c \tau_{ob}(1 + z)$, and then

$$R_v = \frac{R_{BLR} + c \tau_{ob}}{z - 1},$$

where $\tau_{ob} > 0$ and τ_{ob} is the observed time lag of the γ-rays relative to the broad lines. Equations (1), (2) and (3) can be unified into

$$R_v = \frac{R_{BLR} + c \tau_{ob}}{z - 1},$$

where τ_{ob} is the observed time lags of the γ-rays relative to the broad lines and is zero, negative or positive. As $\tau_{ob} = 0$ (Case A), equation (4) becomes equation (1). As $\tau_{ob} < 0$ (Case B), equation (4) becomes equation (2). As $\tau_{ob} > 0$ (Case C), equation (4) becomes equation (3). Once τ_{ob}, R_{BLR} and v_d are known, R_v can be obtained from equations (1)–(4).

The calculations above are under the condition of $\theta = 0$, where θ is the angle between the jet axis and the line of sight. In fact, the approaching relativistic jets of blazars are oriented at a small angle to the line of sight (Blandford & Rees 1978). Thus $\theta \neq 0$. Considering the actual inclination of the jet axis with respect to the line of sight (see Fig. 1b), we re-deduce the expression of Case C. As the disturbances reach point H, where the γ-rays are produced, the line photons reach point L. The light travelling time effects for the γ-ray photons from point O to L, i.e. from point H to S, result in the time lag of the γ-rays relative to the lines (see Fig. 1b). In this case, we have $R_v c/v_d = R_{BLR} + R_v \cos \theta + c \tau_{ob}(1 + z)$, and then

$$R_v = \frac{R_{BLR} + c \tau_{ob}}{z - \cos \theta}.$$

It is obvious that equation (5) contains Cases A, B and C. As $\theta = 0$, equation (5) becomes equation (4). The observed line photons are from the BLR of the ring, and then the observed lag is an ensemble average over all points of the ring. For point T, we have $R_v c/v_d = R_{BLR} + TW + R_v \cos \theta + c \tau_{ob}(1 + z)$ and $TW = R_{BLR} \sin \alpha \sin \theta$ (see Fig. 1b), and then

$$R_v = \frac{R_{BLR}(1 + \sin \alpha \sin \theta) + c \tau_{ob}}{z - \cos \theta},$$

where α is the angle between AB and AT and varies from 0 to 2π. For a given source, i.e. given R_v, R_{BLR}, v_d, θ and z, τ_{ob} varies with
\(H. T. Liu, J. M. Bai and J. M. Wang \)

\(\gamma \) is the ensemble average of \(\gamma \) and \(H \) are taken from Kaspi light curves (see Fig. 2). The sharp samplings will affect \(L \) based on equation (7).

where \(\langle \tau_{\text{ob}} \rangle \) is the ensemble average of \(\tau_{\text{ob}}(\alpha) \) and is the measured time lag between the \(\gamma \)-ray and line light curves [and \(\langle 1 + \sin \alpha \sin \theta \rangle = \int_{0}^{\pi} \langle 1 + \sin \alpha \sin \theta \rangle \, \text{d} \alpha / 2 \pi = 1 \). It is obvious that equation (7) contains Cases A, B and C. As \(\theta = 0 \), equation (7) becomes equation (4). In the following sections, we will calculate \(R_{\gamma} \) based on equation (7).

3 APPLICATION TO 3C 273

3C 273 was first identified as a quasar at redshift \(z = 0.158 \) by Schmidt (1963). It is one of the best studied AGNs in all bands (see e.g. Lichti et al. 1995; von Montigny et al. 1997; T{"u}rler et al. 1999; Soldi et al. 2008). The data base site\(^1\) of 3C 273 provides a series of about 70 light curves as well as some spectra. The jet of 3C 273 is one-sided, with no signs of emission from the counterjet side (Unwin et al. 1985). The blue-bump of 3C 273 is thermal continuum emission from the inner accretion disc (Shields 1978). Fe K\(\alpha \) lines observed in 3C 273 were shown to be from an accretion disc around a supermassive black hole (Yaqoob & Serlemitsos 2000; Torres et al. 2003). If the assumptions in the method are correct, it is expected for 3C 273 that there should exist time lags between the broad lines from the BLR and the \(\gamma \)-rays from the relativistic jet.

3.1 Data of 3C 273

This paper makes use of the 3C 273 data base hosted by the INTEGRAL Science Data Centre (ISDC) (T{"u}rler et al. 1999). This data base is one of the most complete multiwavelength data bases currently available for one AGN. For 3C 273, the \(\gamma \)-ray light curves are very sparsely sampled and/or the error bars of \(\gamma \)-ray fluxes are also very large. Of course with Fermi recording data since 2008 June this is no longer the case (see e.g. Abdo et al. 2010b). However, the sampling over the dates of interest, and in general over the time-scales of interest, is still sparse (see the line light curves in the following paragraphs). Thus it should be unreliable to employ the \(\gamma \)-ray light curves to estimate the time lags. Hence for these blazars lacking adequate \(\gamma \)-ray light curves, the synchrotron emission, especially the radio emission, could be used to derive the time lags relative to the broad lines. The synchrotron flares from the relativistic jet dominate energy output from radio to millimetre and extend up to the infrared–optical regimes (Robson et al. 1993; T{"u}rler et al. 2000; Soldi et al. 2008). Radio light curves are better than millimetre ones in the samplings and the features of synchrotron flares. \(\gamma \)-ray detections correspond to rising radio fluxes (e.g. Ulrich, Maraschi & Urry 1997). Thus the radio light curves are considered for analysis. Though the synchrotron flares extend up to the infrared–optical regimes, the flares are sparse (denoted by red in the 3C 273 data base). In the intervals among these flares, the infrared–optical light curves may be contaminated by other emission components. Thus it is expected that there should be no significant features in the cross-correlation functions between the broad lines and the light curves. Considering that the synchrotron emission peaks around the infrared band for 3C 273 (see e.g. Ghisellini et al. 1998), the infrared light curves are also considered for analysis and to test the expectation above. In the light curves considered here, only good data (Flag \(> 0 \)) are used.

Light curves of 5, 8, 15, 22 and 37 GHz are taken from the 3C 273 data base, for these light curves have enough data (T{"u}rler et al. 1999). These radio light curves are presented in Fig. 2. There are four distinct outbursts in each radio light curve after \(\sim 1980 \) (see Fig. 2). The data of 22 and 37 GHz are considered from \(\sim 1980 \), for observations are very sharply sampled before \(\sim 1980 \) (see Fig. 2). From 1973 to 1978, there is a gap of 5 yr without observations of 5 GHz. Considering the four distinct outbursts in each radio light curve, the data from \(\sim 1980 \) are used for the light curve of 5 GHz. Also, the data from \(\sim 1980 \) are used for the light curves of 8 and 15 GHz. The sampling rates of 5, 8, 15, 22 and 37 GHz are 29, 40, 40, 44 and 46 times per year for the data considered, respectively.

Light curves of broad lines H\(\alpha \), H\(\beta \) and H\(\gamma \) are taken from Kaspi et al. (2000), and all the data in the light curves are used to calculate the time lags relative to the radio emission. The sampling rates of the lines are around five times per year. The line light curves are also presented in Fig. 2, wherein all the light curves show the same time interval. It can be seen in Fig. 2 that the line light curves are sharply sampled relative to the radio light curves considered. In particular, there is only one data point in each of the several valley-bottoms in the H\(\alpha \) and H\(\beta \) light curves, and the trend of variations can be changed if the points in these valley-bottoms are excluded from the H\(\alpha \) and H\(\beta \) light curves (see Fig. 2). The sharp samplings will affect the choice of analysis method for the cross-correlation between the broad lines and the radio emission. The infrared light curves of J, H, K and L bands from the 3C 273 data base are also considered. The data before 1998 are used for the J, H and L light curves. The data before 2000 are used for the K light curve.

3.2 Analysis of time lags

Cross-correlation function (CCF) analysis is a standard technique in time-series analysis for finding time lags between light curves at different wavelengths, and the definition of the CCF assumes that the light curves are uniformly sampled. However, in most cases the sampling is not uniform. The interpolated cross-correlation function (ICCF) method of Gaskell & Peterson (1987) uses a linear interpolation scheme to determine the missing data in the light curves. On the other hand, the discrete correlation function (DCF; Edelson & Krolik 1988) can utilize a binning scheme to approximate the missing data. Apart from the ICCF and DCF, there is another method of estimating the CCF in the case of non-uniformly sampled light curves, the \(z \)-transformed discrete correlation function (ZDCF; Alexander 1997). The ZDCF is a binning type of method as in the DCF. It has been shown in practice that ZDCF is more robust than both ICCF and DCF when applied to sparsely and unequally sampled light curves (see e.g. Edelson et al. 1996; Giveon et al. 1999; Roy et al. 2000). Liu et al. (2008) analysed ZDCFs between unequally sampled light curves of AGNs, and they obtained interband time lags. In practice, ZDCF is applicable and reliable to analyse the unequally sampled light curves. Thus ZDCF will be calculated in this paper because of the sharp samplings of the Balmer lines. In general, it seems to be true that the time lag is better characterized by the centroid \(\tau_{\text{cen}} \) of DCF and ICCF than by the peak value \(\tau_{\text{peak}} \), namely, the time lag where the linear correlation coefficient has its maximum value \(r_{\text{max}} \) (see e.g. Peterson et al. 2004, 2005). In

\(\text{http://isdc.unige.ch/3c273/ (T{"u}rler et al. 1999).} \)
both DCF and ICCF, τ_{peak} is much less stable than τ_{cent}, but τ_{peak} is much less stable in DCF than in ICCF (Peterson et al. 2005). Thus we prefer the time lag to be characterized by the centroid τ_{cent} of ZDCF. The centroid time lag τ_{cent} is computed using all the points with correlation coefficients $r \geq 0.8r_{\text{max}}$ in the ZDCF bumps closer to the zero-lag (see Fig. 3). The calculated ZDCFs between the radio and broad-line light curves are presented in Fig. 3. The horizontal and vertical error bars in Fig. 3 represent the 68.3 per cent confidence intervals in the time lags and the relevant correlation coefficients, respectively. ZDCF bumps closer to the zero-lag have a good profile in Fig. 3. The measured time lags are listed in Table 1. The centroid τ_{cent} is calculated by $\tau_{\text{cent}} = \sum \tau(i)r(i)/\sum r(i)$, where $\tau(i)$ and $r(i)$ are the values of the ith data pair with $r \geq 0.8r_{\text{max}}$. The errors of τ_{cent} are calculated by $\Delta \tau_{\text{cent}} = \left[\sum \Delta \tau^2(i)r(i) + \tau(i)\Delta r^2(i) \right]^{1/2}$, where $\Delta \tau^2(i)$ and $\Delta r^2(i)$ are the relevant errors of $\tau(i)$ and $r(i)$, respectively.

Our results show two possibilities that the broad-line variations lag or lead the radio ones (see Fig. 3). The measured time lags are of the order of years (see Table 1). For a given line, the relevant time lags generally decrease as radio frequency increases from 5 to 37 GHz (see Table 1). The calculated ZDCFs between the infrared and Hα light curves are presented in Fig. 4 for illustration. For the ZDCFs in Fig. 4, there are no significant common features closer to the zero-lag. Also, there are no significant common features closer to the zero-lag for the ZDCFs of the Hβ and Hγ lines relative to the infrared emission. On the contrary, the ZDCF in Fig. 3 have significant common features closer to the zero-lag. The absence of significant features tests the expectation in Section 3.1. This test indicates that the infrared synchrotron emission does not dominate the energy output in the intervals between the synchrotron flares in the infrared–optical bands. The lag τ_{ob} is the lag τ_{cent} measured here. Hereafter, τ_{cent} is equivalent to τ_{ob} and $\langle \tau_{\text{ob}} \rangle$.

3.3 Calculations

For 3C 273, Kaspi et al. (2000) determined the Hα, Hβ and Hγ lags τ relative to the optical continuum, and Paltani & Türl (2005) determined their lags relative to the ultraviolet (UV) continuum. The optical continuum is strongly contaminated by non-thermal emission, possibly related to the relativistic jet, and therefore it appears unsuitable for studying the lags between the ionizing continuum and the lines (Paltani, Courvoisier & Walter 1998). The Hα, Hβ and Hγ lags relative to the UV continuum are more reliable than those relative to the optical continuum (Paltani & Türl 2005). Thus we adopt the Hα, Hβ and Hγ lags determined by Paltani & Türl (2005). Here, the average of rest-frame lags of these lines, $\tau = 2.70$ yr, is adopted as a characteristic value of τ. Thus the BLR has a typical size of $R_{\text{BLR}} = 2.70$ light-year.

Simulations show that the relativistic jets can be driven from a region just outside the ergosphere of a Kerr black hole (see e.g. Meier, Koide & Uchida 2001; Koide et al. 2002; Koide 2004; Komissarov 2004; Semenov, Dyadechin & Punsly 2004). In most cases, the bulk velocity of the jet v_j is close to the escape speed (Kudoh, Matsumoto & Shibata 1998). The escape speed is around 0.9c near the ergosphere of the rapidly spinning black hole (Meier et al. 2001). Most supermassive black holes are spinning rapidly (Elvis, Risaliti & Zamorani 2002). Thus $v_j \sim 0.9c$. If the disturbances in the central engine are transported with the jet itself, $v_{\text{jet}} = v_j \sim 0.9c$. Thus we would have $R_j \sim 9R_{\text{BLR}}$ from equation (1).

For 3C 273, the jet has $v_j = 0.95c$ and $\cos \theta = 0.95$ on 100 pc scales (Davis, Unwin, Muxlow 1991). The pc-scale jet was constrained to have $\theta < 15^\circ$ and the bulk Lorentz factor $\Gamma > 10$ (Unwin et al. 1985). The actual value of θ cannot be too small, unlike better aligned blazars, because it has a strong big blue bump (Shields 1978; Courvoisier 1998). Thus it is likely that θ is larger than 10°.

Figure 2. Light curves of the radio emission and the Balmer lines. The y-axis is in units of Jy. For lines, the y-axis is in units of 10^{-14} erg cm$^{-2}$ s$^{-1}$. A, B, C and D denote the four distinct outbursts after \sim1980.

© 2011 The Authors, MNRAS 414, 155–166
The ratio of the jet to counterjet flux is $R = [(1 + v_j \cos \theta_c)/(1 - v_j \cos \theta_c)]^{\alpha+2}$ for discrete moving blobs (Lind & Blandford 1985). $R > 10^3$ was observed for 3C 273 and v_j can be up to 0.995c (see e.g. Georgopanoulous et al. 2006). The observed spectral index $\alpha = 0.8$ (Uwini et al. 1985). It is obvious that $\theta \leq 21^\circ$ and $0.9c \leq v_j \leq 0.995c$ are allowed by $R > 10^3$. The disturbances are transported from the central engine down the jet, and then it is possible that $v_\phi = 0.9 - 0.995c$ and $\theta = 12^\circ - 21^\circ$. For a given line, the relevant time lags generally decrease as radio frequency increases from 5 to 37 GHz (see Table 1). We use the measured time lags of the lines relative to the 37 GHz emission. The negative lags have an average of $\tau_{ob} = -0.22$ yr. The positive lags have an average of $\tau_{ob} = 3.20$ yr. There is no zero-lag. In the following calculations, $v_\phi = 0.9-0.995c$ and $\theta = 12^\circ - 21^\circ$ are used, and these values estimated from τ_{ob} are denoted by R_{radio}.

From $\tau_{ob} = -2.86$ yr, $R_{BLR} = 2.70$ light-year, $v_\phi = 0.9-0.995c$, $\theta = 12^\circ - 21^\circ$ and equation (7), we can obtain the radio-emitting position $R_{radio} = 0.40-2.62$ pc (Case B). The typical size of $R_{BLR} = 2.70$ light-year $= 0.83$ pc is within the range of R_{radio} estimated in Case B. The radio-emitting regions in Case B are at distances of pc-scale from the central engine and are around the BLR, i.e. likely inside the BLR, colocated with the BLR or outside the BLR. From $\tau_{ob} = 3.20$ yr, $R_{BLR} = 2.70$ light-year, $v_\phi = 0.9-0.995c$, $\theta = 12^\circ - 21^\circ$ and equation (7), we can obtain $R_{radio} = 9.43-62.31$ pc (Case C). The estimated sizes are much larger than the typical size of $R_{BLR} = 0.83$ pc. The radio-emitting regions in Case C are at distances of tens of pc from the central black hole and are far away from the BLR.

Kovalev et al. (2009) identified the pc-scale radio core as a likely location for both the γ-ray and radio flares. Jorstad et al. (2001) concluded that both the radio and γ-ray events are originating from the same region of a relativistic jet. In the 1990s, it was commonly thought that the γ-rays are produced in the jet, but closer to the central engine than the radio emission (see e.g. Dermer & Schlickeiser 1994). Thus it is expected that $R_{\gamma} \lesssim R_{radio}$. The constraint of $R_{\gamma} \lesssim R_{radio}$ is allowed by the recent flares of 3C 279 observed by Fermi and in a multilength scale campaign (Abdo et al. 2010d), where radio light curves from 5 to 230 GHz fail to show prominent variations during either the 2008 November or the 2009 February γ-ray flares (or anytime in between). For Case B, $R_{\gamma} \lesssim 0.40-2.62$ pc for $v_\phi = 0.9-0.995c$ and $\theta = 12^\circ - 21^\circ$. For Case A, the zero-lag position $R_{\gamma} = 4.67-30.81$ pc, which is far away from the BLR. For Case C, $R_{\gamma} \lesssim 9.43-62.31$ pc. Also, $R_{\gamma} > 4.67-30.81$ pc for the positive lags in Case C. Thus for Case C we have $4.67-30.81 < R_{\gamma} \lesssim 9.43-62.31$ pc.

Table 1. Time lags between emission lines and radio emission. The sign of the time lag is defined as $\tau_{cont} = \tau_{radio} - \tau_{line}$. Time lags are in units of yr.

<table>
<thead>
<tr>
<th>Lines</th>
<th>5 GHz</th>
<th>8 GHz</th>
<th>15 GHz</th>
<th>22 GHz</th>
<th>37 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hα</td>
<td>$-1.23^{+0.02}_{-0.01}$</td>
<td>$-1.49^{+0.06}_{-0.01}$</td>
<td>$-2.77^{+0.02}_{-0.08}$</td>
<td>$-3.14^{+0.02}_{-0.09}$</td>
<td>$-3.30^{+0.02}_{-0.09}$</td>
</tr>
<tr>
<td>Hβ</td>
<td>$-0.19^{+0.03}_{-0.01}$</td>
<td>$-1.06^{+0.08}_{-0.01}$</td>
<td>$-2.40^{+0.02}_{-0.09}$</td>
<td>$-2.27^{+0.03}_{-0.09}$</td>
<td>$-3.27^{+0.02}_{-0.09}$</td>
</tr>
<tr>
<td>Hγ</td>
<td>$-0.32^{+0.03}_{-0.01}$</td>
<td>$-1.13^{+0.07}_{-0.01}$</td>
<td>$-1.57^{+0.02}_{-0.07}$</td>
<td>$-1.82^{+0.02}_{-0.08}$</td>
<td>$-2.01^{+0.02}_{-0.07}$</td>
</tr>
<tr>
<td>Hδ</td>
<td>$-0.97^{+0.08}_{-0.04}$</td>
<td>$4.20^{+0.02}_{-0.02}$</td>
<td>$3.43^{+0.02}_{-0.02}$</td>
<td>$3.21^{+0.02}_{-0.02}$</td>
<td>$3.06^{+0.02}_{-0.03}$</td>
</tr>
<tr>
<td>Hθ</td>
<td>$4.31^{+0.07}_{-0.02}$</td>
<td>$4.13^{+0.07}_{-0.01}$</td>
<td>$3.72^{+0.02}_{-0.02}$</td>
<td>$3.45^{+0.07}_{-0.02}$</td>
<td>$3.26^{+0.03}_{-0.03}$</td>
</tr>
<tr>
<td>Hψ</td>
<td>$6.19^{+0.10}_{-0.04}$</td>
<td>$4.13^{+0.07}_{-0.01}$</td>
<td>$3.73^{+0.02}_{-0.02}$</td>
<td>$3.78^{+0.02}_{-0.03}$</td>
<td>$3.29^{+0.02}_{-0.03}$</td>
</tr>
</tbody>
</table>
Locating positions of γ-ray-emitting regions

9.43–62.31 pc for $v_d = 0.9–0.995c$ and $\theta = 12^\circ–21^\circ$. The dependence of R_γ and R_{radio} on v_d and θ is presented in Fig. 5 (see three-dimensional plots). R_γ and R_{radio} increase as v_d increases, but decrease as θ increases. The uncertainties of v_d and θ result in the larger intervals of R_γ and R_{radio}. For better representing intervals of R_γ, the sections of the three-dimensional plots at $\cos \theta = 0.95$ are also plotted in Fig. 5 (see the bottom panel). For Case B, $R_\gamma \lesssim R_{\text{radio}} = 0.44–1.28$ pc for $v_d = 0.9–0.995c$ and $\cos \theta = 0.95$. These R_γ marginally satisfy $R_\gamma \lesssim R_{BLR}$. For Case C, we have $5.15–15.08 < R_\gamma \lesssim 10.40–30.45$ pc.

It is possible that there is a special point D within segment AG (see Fig. 1a). As the ionizing photons travel from point A to point B, the disturbances travel from A to D, i.e., $R_\gamma = AD$. Thus we have $R_\gamma/v_d = R_{BLR}/c$, and then

$$R_\gamma = \frac{R_{BLR}}{c} v_d.$$ (8)

In this case, the γ-rays will lead the lines. Combining equations (7) and (8), we have

$$R_\gamma = -\frac{c\langle \tau_{ob} \rangle}{1 + \gamma v_d \cos \theta}.$$ (9)

In this special case (hereafter Case D), $R_\gamma \lesssim R_{BLR}$ is expected from equation (8). From $\tau_{ob} = -2.86$ yr, $x = 12^\circ–21^\circ$ and equation (9), we have $R_\gamma \lesssim R_{\text{radio}} = 0.77–0.81$ pc. These estimated R_γ and R_{BLR} = 0.83 pc satisfy $R_\gamma \lesssim R_{BLR}$. This test confirms the correctness of $R_\gamma \lesssim R_{BLR}$ expected from equation (8). This test confirms the reliability of the time lags estimated by the ZDCF method. Those estimated R_{radio} in Case B contain these R_{radio} estimated in Case D. Thus Case D is a special Case B, and it is possible and reasonable. Combining equations (7) and (8), one can also obtain

$$R_{BLR} = -\frac{c\langle \tau_{ob} \rangle}{1 + \gamma v_d \cos \theta}.$$ (10)

Figure 4. Light curves of infrared emission in (a) K, (b) L, (c) J and (d) H bands. ZDCF between $H\alpha$ and (e) K, (f) L, (g) J and (h) H bands. The x-axis is in units of yr.

From $\tau_{ob} = -2.86$ yr, $v_d = 0.9–0.995c$, $\theta = 12^\circ–21^\circ$, and equation (10), we have $R_{BLR} = 0.77–0.90$ pc. These estimated values contain the typical size of $R_{BLR} = 0.83$ pc. This confirms the reliability of the time lags estimated by the ZDCF method.

4 DISCUSSION AND CONCLUSIONS

The positions of γ-ray-emitting regions are still an open and controversial issue in research on blazars. Based on the method proposed in Section 2, we attempt to locate the emitting positions of γ-rays within the second bumps in the broad-band SEDs of blazars. In our previous works (Liu & Bai 2006; Liu et al. 2008; Bai et al. 2009), the internal absorption for 10 GeV–1 TeV γ-rays was used to constrain R_γ, independent of how the γ-rays are produced. Here, we try to locate R_γ, independent of the energies of γ-rays from the SSC and EC processes. We find two emitting regions, the inner one at sub-pc–pc scales from the central black hole and the outer one around tens of pc scales. The outer one satisfies $R_\gamma \gg R_{BLR}$ (Case C). The inner one in Case D satisfies $R_\gamma \lesssim R_{BLR}$. The inner one in Case B mostly satisfies $R_\gamma \lesssim R_{BLR}$. At the same time, the inner one in Case B partly satisfies $R_\gamma > R_{BLR}$, i.e., $R_{BLR} < R_\gamma < 2.62$ pc.

It was suggested that $R_\gamma \lesssim R_{BLR}$ (Ghisellini & Madau 1996). Georganopoulos et al. (2001) argued that $R_\gamma \lesssim R_{BLR}$ for powerful blazars. Tavecchio & Mazin (2009) assumed that $R_\gamma \lesssim R_{BLR}$ for the VHE γ-rays in 3C 279. Liu et al. (2008) and Bai et al. (2009) suggested that R_γ is within the BLR for 3C 279. Ghisellini et al. (2010) modelled the SEDs of bright Fermi blazars, and found that the position of the jet dissipation region R_{diss} is smaller than R_{BLR} for 53 out of 57 FSRQs. However, $R_{\text{diss}} > R_{BLR}$ for BL Lacs. They used $R_{BLR} = 10^{17} L_{4.45}^{1/2}$ cm to estimate R_{BLR} for BL Lacs and FSRQs, where $L_{4.45}$ is accretion disc luminosity in units of 10^{45} erg s$^{-1}$. It
are likely the major contributor of the γ-rays. It has recently been advanced that the bulk of the γ-rays are produced in regions of the jet at distances of tens of pc from the central black hole (e.g. Sikora, Moderski & Madejski 2008; Marscher et al. 2010). Bai & Lee (2001) predicted the existence of large-scale synchrotron X-ray jets in radio-loud AGNs, in particular, the X-ray jets are bright on 10-kpc scales in most red blazars and red blazar-like radio galaxies. According to their predictions, the large-scale synchrotron X-ray jets can produce VHE γ-rays by the SSC process. Zhang et al. (2009, 2010) predicted the hotspots in lobes and the knots in jets to be possible GeV–TeV emitters. Fermi/LAT may resolve the large-scale γ-ray emitters than the nuclear emitters. These previous findings support \(R_\gamma \gg R_{\mathrm{BLR}} \) as we obtain in Case C. Also, \(R_\gamma \gg R_{\mathrm{BLR}} \) in Case C is not inconsistent with \(R_\gamma > R_{\mathrm{BLR}} \) of Lindfors et al. (2005) and Sokolov & Marscher (2005). These confirm the reliability of our results.

Our previous works are applicable to the γ-rays emitted from regions in powerful blazars where \(R_\gamma \) is not much larger than \(R_{\mathrm{BLR}} \) (Liu & Bai 2006; Liu et al. 2008; Bai et al. 2009). The method proposed here can locate \(R_\gamma \) in the jet. The inner emitting regions where \(R_\gamma < R_{\mathrm{BLR}} \) are likely the major contributor of the γ-rays below 10 GeV, for the γ-rays above 10 GeV are subject to photon–photon absorption due to the dense external soft photons in the inner regions (e.g. Liu & Bai 2006; Liu et al. 2008; Bai et al. 2009). The outer emitting regions with \(R_\gamma \gg R_{\mathrm{BLR}} \) are likely the major contributor of the γ-rays above 10 GeV, for these γ-rays are not subject to photon–photon absorption due to the thin external soft photons in the outer regions. For these possible γ-ray emitters at large scales of kpc–Mpc (Bai & Lee 2001; Zhang et al. 2009, 2010), our works are not applicable.

The most prominent features on VLBI images of jets in radio-loud AGNs are the radio core and bright knots in the jet (Jorstad et al. 2007). Kovalev et al. (2009) investigated the relation between AGN γ-ray emission and pc-scale radio jets. They identified the pc-scale radio core as a likely location for both the γ-ray and radio flares. A few hundred Schwarzschild radii, sub-pc-scale, is the preferred jet position where most of the dissipation occurs (Ghisellini & Tavecchio 2009; Ghisellini et al. 2009, 2010). Sikora et al. (2009) suggested that the blazar emission zone is located at pc-scale distances from the nucleus. Ghisellini & Madau (1996) suggested that \(R_\gamma \) is at sub-pc scales. Blandford & Levinson (1995) also suggested a sub-pc γ-ray-emitting region from the central black hole. These previous findings support \(R_\gamma \) at sub-pc–pc scales. These \(R_\gamma \) of sub-pc–pc scales are consistent with those \(R_\gamma \) obtained in Cases B and D. These sub-pc–pc scale \(R_{\mathrm{rad}} \) obtained in Cases B and D are also consistent with the previous findings of the blazar emission zone and the dissipation zone. These agreements confirm the reliability of our results.

It has recently been suggested that the bulk of the γ-rays are generated in regions of the jet at distances of tens of pc from the central black hole (e.g. Sikora et al. 2008; Marscher et al. 2010). For Case C, we obtain the outer emitting regions of 4.67–30.81 pc for Case C, we obtain the outer emitting regions of 4.67–30.81 pc, 9.43–62.31 pc and \(R_{\mathrm{rad}} = 9.43–62.31 \) pc. These outer emitting regions are comparable to the γ-ray-emitting regions at distances of tens of pc. Tavecchio et al. (2010) found evidence of variability on
time-scales of a few hours from the 1.5-yr Fermi/LAT light curves of FSRQs 3C 454.3 and PKS 1510—089. They concluded that significant variability on such short time-scales disfavours the scenario in which the bulk of the γ-rays are produced at distances of tens of pc (e.g. Sikora et al. 2008; Marscher et al. 2010). The previous research shows that there are two possible γ-ray-emitting regions, one inside or around the BLR and the other outside the BLR. This paper gives the same results. However, the method cannot discriminate between positive lags and negative lags on observational grounds alone (at least not with the current data), and the application discussed in this paper does not distinguish between the two proposed scenarios. We expect this situation to change with future data, perhaps longer line light curves, such as 10–15 yr. The longer line light curves could give stronger constraints on the coupling of the radio light curves with the line ones.

For a given line, the relevant time lags generally decrease as radio frequency increases from 5 to 37 GHz. The trend is likely from the radiative cooling of relativistic electrons. Bai & Lee (2003) deduced the synchrotron time lag formula (see equation 9 therein). This formula can be expressed as in the observer’s frame:

\[
\tau_{\text{ob}}^{\alpha}(\nu) = 1492.6 \frac{\sqrt{1 + z} B^{3/2}}{\sqrt{\delta (1 + D)}} \left(\nu_H^{-1/2} - \nu_L^{-1/2} \right),
\]

where \(D \) is the ‘Compton dominance’ (see e.g. Ghisellini et al. 1998); \(B \) is the magnetic field strength in units of gauss; \(\delta \) is the Doppler factor; and \(\nu_H \) and \(\nu_L \) in units of GHz are high and low frequencies in the observer’s frame, respectively. For 3C 273, Ghisellini et al. (1998) obtained \(B = 8.9 \) G and \(\delta = 6.5 \). Because the radio light curves used to calculate the ZDCFs span more than 20 yr and the line light curves span about \(7.5 \) yr, it is better to derive \(\nu \) by using the ratio of synchrotron to γ-ray average luminosity. \(D \) is of the order of magnitude of 1 (Türler et al. 1999). We can obtain \(\tau_{\text{ob}}^{\alpha}(\nu_H) = 12(\nu_H^{-1/2} - \nu_L^{-1/2})/\nu_H \) if \(D = 1 \) is used. The total cooling of both synchrotron and γ-ray emission can lead to \(\tau_{\text{ob}}^{\alpha}(\nu) = 6(\nu_H^{-1/2} - \nu_L^{-1/2}) \). We calculate the ZDCFs and time lags between the light curves of 5, 8, 15, 22, and 37 GHz. The high-frequency variations lead the low-frequency ones. The measured time lags \(\tau_{\text{ob}}^{\alpha} \) and the relevant frequency differences \(\nu_H^{-1/2} - \nu_L^{-1/2} \) are presented in Fig. 6. The observational data are well consistent with the prediction of \(\tau_{\text{ob}}^{\alpha} = 6(\nu_H^{-1/2} - \nu_L^{-1/2}) \) (see Fig. 6). This agreement confirms the origin of radiative cooling for the time lags between the radio light curves used here. Pyatunina et al. (2006, 2007) also found frequency-dependent time delays for strong outbursts in several other blazars. In Fig. 7, we compare the lags \(\tau_{\text{ob}}^{\alpha} \) with the differences of \(\Delta \tau_{\text{cont}} \) between \(\tau_{\text{cent}} \) listed in Table 1. The line of \(\Delta \tau_{\text{cent}} = \tau_{\text{lag}}^{\alpha} \) is consistent with the measured data points (see Fig. 7). This agreement confirms that the trend, i.e. the lags for a given line generally decrease as radio frequency increases, most likely results from the radiative cooling of relativistic electrons.

In addition, there is another possibility that lower frequencies probe larger radii in the jet, as synchrotron self-absorption is important for increasingly high radius with decreasing radio frequency. The synchrotron self-absorption coefficient \(\alpha_{\text{e}} \) is \(\alpha_{\text{e}} \propto \nu^{-(n+4)/2}N_e \), where \(N_e \) is the electron density and \(n \) is the electron distribution index. For a homogeneous blob with a radius of \(r \), the synchrotron self-absorption optical depth \(\tau_r \) is \(\tau_r = \alpha_{\text{e}} \propto \nu^{-4/2} \), and \(N_e \) is the electron density. Thus the radio frequency \(\nu \) can probe the radius \(r \) that scales as \(r \propto \nu^{-2} \). Hence, lower frequencies probe larger radii in the jet due to the synchrotron self-absorption. The higher frequencies will escape earlier from the blob, and later the lower ones as the blob expands. Thus the lower lags lag the higher ones, and the relevant time lags \(\tau_{\text{lag}} \) are related to frequencies. The difference in lags listed in Table 1 could originate from the synchrotron self-absorption, and it scales with frequencies as \(\tau_{\text{lag}} \propto N_L - N_H \propto (\nu^{-4/2})^{-1} - (\nu^{-4/2})^{-1} \). The dependence of \(\tau_{\text{lag}} \) on frequencies is different from that of equation (11).

It seems possible to infer \(\nu_{\text{radio}} \) based on the time lags of the radio synchrotron emission relative to the UV continuum used by Paltani & Türler (2005). This approach seems more direct than that based on the lags of the broad lines relative to the radio emission. We calculate the ZDCF between the light curves of the UV continuum and the 37 GHz emission. There is only a little bump closer to the zerolag for the ZDCF and the little bump has \(r_{\text{max}} = 0.32 \pm 0.06 \). In the ZDCFs between the Balmer lines and this radio emission, the bumps used to calculate \(\tau_{\text{cont}} \) have \(r_{\text{max}} = 0.6-0.7 \) that are much higher than \(r_{\text{max}} = 0.32 \pm 0.06 \). This indicates that the correlation of the UV continuum with this radio emission is much weaker than the Balmer lines with this radio emission. For 22, 15, 8 and 5 GHz, there are the same cases as for 37 GHz. The UV continuum is regarded as the ionizing continuum that drives the broad lines through the photoionization process. Thus it is expected that the correlation of the UV continuum with the radio synchrotron emission should be more significant than the broad lines with the radio emission. However, this expectation is contrary to the measurements presented in this
This disagreement indicates that the UV continuum is likely not the real ionizing continuum. Paltani & Türrler (2005) argued that the UV continuum is much closer to the ionizing continuum than the optical continuum used by Kaspi et al. (2000). That is, the UV continuum is still not the real ionizing continuum. Thus it is more reliable to derive R_{radio} from the lags of the broad lines relative to the radio emission than from those of the radio emission relative to the UV continuum.

The relativistic shortening of variation time-scales seems to have a significant effect on the estimates of time lags. The correlation between the ejection epochs of jet components (supernummary radio knots) and the dips in the X-ray emission was interpreted as accretion of the X-ray-emitting gas in the inner accretion disc into the central black holes and ejection of a portion of the infalling material into the jet (see e.g. Marscher et al. 2002). An instability in the accretion flow causes a section of the inner disc to break off. Part of this section is drawn into the event horizon of the central black hole but with considerable material and energy ejected down the jet. The loss of this section of the inner disc causes a decrease in the soft X-ray flux, which is observed as a dip. This disturbance from the inner accretion disc to the jet is observed as the ejection of a superrummary radio knot from the radio core of the jet. The dips in the X-ray flux represent the onset of the disturbances in the central engine. The knots represent the synchrotron emission of the transported disturbances at the sites of ejections. Hence, the intervals between the epochs of the dips Δt_{dip} represent those between the disturbances in the central engine. The intervals between the ejection epochs of knots Δt_{knot} result from the disturbances in the central engine. In the radio galaxy 3C 120, it was found that there are 13 ejection epochs of radio knots with the corresponding dips in the X-ray flux (Chaterjee et al. 2009). The ejection epochs t_{knot} and the corresponding epochs of dips t_{dip} have a good correlation with $t_{\text{knot}} = t_{\text{dip}} + 0.19$. For the 13 data pairs of t_{knot} and t_{dip}, Δt_{knot} and Δt_{dip} between data pairs are equal to each other within the uncertainties, i.e. $\Delta t_{\text{knot}} = \Delta t_{\text{dip}}$. The correlation of $t_{\text{knot}} = t_{\text{dip}} + 0.19$ also gives $\Delta t_{\text{knot}} = \Delta t_{\text{dip}}$. For the ejections of knots in 3C 120, there are the relevant local peaks in synchrotron emission flux from the jet (Chaterjee et al. 2009; Tavares et al. 2010). The intervals between the epochs of peaks Δt_{peak} are equal to Δt_{knot} of the relevant ejections within the uncertainties, i.e. $\Delta t_{\text{peak}} = \Delta t_{\text{knot}}$. Combining $\Delta t_{\text{peak}} = \Delta t_{\text{knot}}$ and $\Delta t_{\text{peak}} = \Delta t_{\text{knot}}$, we have $\Delta t_{\text{peak}} = \Delta t_{\text{dip}}$. The intervals Δt_{peak} are measured by the light curves of beamed synchrotron emission from the jet. The intervals Δt_{dip} are measured by the light curves of unbeamed emission from a disc–corona system (Chaterjee et al. 2009).

These intervals Δt_{peak} and Δt_{dip} are generated by the same disturbances from the disc to the jet. Thus it is likely that the relativistic effects on the time lags between them are negligible as both variations of the beamed synchrotron emission from the jet and the unbeamed emission from the disc–corona system are mainly generated by the same disturbances from the disc to the jet. In fact, the DCF method was employed to search the time lag between the X-ray and the 37 GHz variations in 3C 120, and one anticorrelation was found with the X-ray leading the radio variations by 120 ± 30 d (Chaterjee et al. 2009). By the DCF method, Courvoisier et al. (1990) obtained for 3C 273 that the UV light curve leads the radio emission by a few months. Based on this lag, Courvoisier (1998) showed that the radio emission is located some 4 light-years from the central source along the jet. Though the relativistic effects are not considered in these DCFs used to estimate the time lags of the radio emission relative to the unbeamed emission of the UV and the X-rays, results that is possible to obtain are obtained in these works. By analogy, it is likely that the relativistic effects would not have a significant influence on these ZDCFs between the radio emission and the broad-line light curves used in this paper. Hence, the inferred time lags from these ZDCFs should not be affected by the relativistic effects very significantly.

For testing the correctness of the time lags obtained by these ZDCFs, we compare the 37 GHz light curve with the broad-line light curves moved horizontally and vertically (see Fig. 8). For the positive lags considered, the line light curves are moved right by 2.8 yr for Hα, 3.5 yr for Hβ and 4.0 yr for Hγ. For the negative lags considered, the line light curves are moved left by 3.3 yr for Hα, 3.2 yr for Hβ and 2.0 yr for Hγ. These moved line light curves are basically covaried with the radio light curve (see Fig. 8). The relation of $\Delta t_{\text{peak}} = \Delta t_{\text{dip}}$ in 3C 120 also indicates that they should have similar observed time-scales if both variations of the beamed synchrotron emission from the jet and the unbeamed emission from the disc–corona system are mainly generated by the same disturbances from the disc to the jet. These moved times are basically consistent with those time lags listed in Table 1. The averages of these moved times for the positive and negative lags are consistent with $\tau_{\text{ob}} = 3.20$ yr and $|\tau_{\text{ob}}| = 2.86$ yr obtained in these ZDCFs, respectively. The local peaks in the radio light curve basically have the corresponding ones in the moved line light curves. These indicate that the relativistic effects would not have a significant influence on the estimates of time lags. The disturbances in the accretion flow passing through the sites of the central ionizing continuum could be imprinted on the ionizing continuum, the broad emission lines and the disc–jet system. In order to simulate the influence of the disturbances on the synchrotron emission from the jet, the transport process of the disturbances from the disc to the jet should be simulated by general relativistic magnetohydrodynamics (GRMHD, see e.g. Komissarov 2002; McKinney 2006). The light curves of broad emission lines could be simulated by the photonization code CLOUDY (Ferland et al. 1998). The GRMHD simulations might give the site of radio synchrotron emission, and then it will be easy to estimate the time lags of the radio emission relative to the broad lines. Also, time lags can be derived from those ZDCF between the simulated light curves of radio and line emission. Comparing the two kinds of time lags from simulations should determine whether or not the relativistic effects are considered in the ZDCF analysis between one beamed emission and one unbeamed emission due to the same disturbances. These simulations are out of the scope of this paper.

![Figure 8](https://example.com/image-url)
In this paper, we propose a new method to derive the γ-ray-emitting position R_{γ} from the time lags τ_{γ} of the γ-ray emission relative to the broad lines (see Fig. 1). The method is also applicable to lower energy bands, such as radio emission. R_{γ} depends on four parameters R_{BLR}, ν_γ, τ_{γ}, and θ. As $\tau_{\gamma} = 0$, $\tau_{\gamma} < 0$ and $\tau_{\gamma} > 0$ (Cases A, B, and C), the broad lines zero-lag, lag and lead the γ-rays, respectively. All cases are unified into equation (7).

The method is applied to FSRQ 3C 273. Because the γ-ray light curves are very sparsely sampled for 3C 273, it should be unreliable to employ them to estimate the time lags. Fortunately, it was suggested that $R_{\gamma} \lesssim R_{BLR}$ (Dermer & Schlickeiser 1994; Jorstad et al. 2001; Kovalev et al. 2009; Abdo et al. 2010d). Thus, R_{γ} could be constrained by R_{BLR} derived from the γ-rays of the radio emission relative to the broad lines. The ZDCF method is used to analyse the correlations of the radio emission and infrared emission with the broad lines H_α, H_β, and H_γ. The broad lines lag or lead the γ-rays above 10 GeV. The method is also applicable to BL 37 GHz emission relative to the broad lines. The ZDCF method is used to analyse the correlations of the radio emission and infrared emission with the broad lines H_α, H_β, and H_γ. The broad lines lag or lead the γ-rays above 10 GeV.

Acknowledgments

We are grateful to the anonymous referee for constructive comments and suggestions leading to significant improvement of this paper. HTL thanks the West PhD project of the Training Programme for the Talents of West Light Foundation of the CAS, and the National Natural Science Foundation of China (NSFC; Grant 10903025) for financial support. JMB acknowledges the support of the NSFC (Grants 10973034 and 10778702). JMW is supported by the NSFC (Grant 10733010). JMB and JMW acknowledge the support of the 973 Program (Grant 2009CB824800).

References

Abdo A. A. et al., 2010d, Nat, 463, 919

© 2011 The Authors, MNRAS 414, 155–166