Probabilistic distributions of M/L values for ultrafaint dwarf spheroidal galaxies: stochastic samplings of the initial mass function

X. Hernandez

Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70–264, C. P. 04510 México D. F., México

Accepted 2011 October 28. Received 2011 October 18; in original form 2011 September 19

ABSTRACT

We explore the ranges and distributions which will result for the intrinsic stellar mass-to-light ratio (M/L) values of single stellar populations, at fixed initial mass function (IMF), age and metallicity, from the discrete stochastic sampling of a probabilistic IMF. As the total mass of a certain stellar population tends to infinity, the corresponding M/L values quickly converge to fixed numbers associated with the particulars of the IMF, age, metallicity and star formation histories in question. When going to small stellar populations, however, a natural inherent spread will appear for the M/L values, which will become probabilistic quantities. For the recently discovered ultrafaint local dwarf spheroidal galaxies, with total luminosities dropping below $10^3 L_V/L_\odot$, it is important to assess the amplitude of the probabilistic spread in inherent M/L values mentioned above. The total baryonic masses of these systems are usually estimated from their observed luminosities, and the assumption of a fixed, deterministic M/L value, suitable for the infinite population limit of the assumed ages and metallicities of the stellar populations in question. This total baryonic masses are crucial for testing and calibrating of structure formation scenarios, as the local ultrafaint dwarf spheroidals represent the most extreme galactic scales known. Also, subject to reliable M/L values is the use of these systems as possible discriminants between dark matter and modified gravity theories. By simulating large collections of stellar populations, each consisting of a particular collection of individual stars, we compute statistical distributions for the resulting M/L values. We find that for total numbers of stars in the range of what is observed for the local ultrafaint dwarf spheroidals, the inherent M/L values of stellar populations can be expected to vary by factors of upwards of 3, interestingly, systematically skewed towards higher values than what is obtained for the corresponding infinite stellar population limit M/L. This can serve to explain part of the spread in reported baryonic masses for these systems, which also appear as shifted systematically towards high dark-to-baryonic mass ratios at fixed stellar velocity dispersions, when going to the ultrafaint limit.

Key words: stars: luminosity function, mass function – stars: statistics – galaxies: stellar content.

1 INTRODUCTION

In determining the inherent mass-to-light ratio (M/L) values of stellar populations, it is customary to treat the distribution of stellar masses through a probability function, the initial mass function (IMF). When dealing with a large galaxy, or a large stellar population in general, it is justified to think of the IMF as a densely sampled probability function. In practice, this translates into models where the IMF appears as a series of weighting factors to be applied to the heavily mass-dependent stellar luminosities, when calculating the overall M/L values for stellar populations.

In going to small star formation events, individual star-forming regions, fractions of small galaxies or the stellar populations of the local ultrafaint dwarf spheroidals (dSphs) recently available to detailed observation, however, the standard assumption of stellar populations, that the IMF is a densely sampled probabilistic distribution function, breaks down. If we are dealing with a small star formation event, calculating the resulting stellar M/L will require the explicit inclusion of the probabilistic nature of the IMF, in a regime where this function is being only poorly and discretely sampled.

The consequences of this change in regime are amplified by the strong power-law character of the IMF, further compounded by
the heavily mass-weighted dependence of stellar luminosities. In a sample of large stellar populations of fixed total mass, the actual number of giant stars for any one will vary by only a fraction of a per cent, due to the intrinsic variance associated with the probabilistic sampling of the IMF. The resulting variance in the intrinsic M/L values will be correspondingly small and is hence customarily ignored. If the total mass of stars is of up to a few thousand M_\odot, however, the intrinsic probabilistic variance of a standard IMF will lead one to expect only a few giant stars. It is clear that the resulting intrinsic variance to be expected in the final M/L values resulting from such a population will be of a large factor, with distributions highly dependent on both the total mass and age (see e.g. Cerviño & Luridiana 2006; Carigi & Hernandez 2008). Both the stochastic effects of IMF sampling for very low total mass populations and correlations between intrinsic IMF and total star formation masses have been shown to be important by Weidner & Kroupa (2004, 2006) and Koeppen et al. (2007) for star formation episodes resulting in a few thousand stars, with a total gas mass of the order of $10^4 M_\odot$ involved, considering typical efficiency factors of a few per cent.

The statistical variance in the light output of a stellar population has been studied previously (e.g. Torny & Schneider 1988; Cerviño & Valls-Gabaud 2003). The most important practical application of which has been the development of the surface density fluctuation method of distance determination in galaxies (Torny & Schneider 1988). Similarly, such studies lead to the realization that the intrinsic variances in populations of even thousands of stars, in certain observed bands or emission lines, can lead to relevant effects. The chemical consequences of a stochastic star formation event have recently been studied by Koeppen et al. (2007). Also, Carigi & Hernandez (2008) showed that the intrinsic variance present in populations of even more than a few thousand stars can be significant towards explaining part of the scatter in abundance ratios observed within the classical local dSphs. Similarly, Cescutti (2008) applied precisely such ideas to explain the spread in neutron capture elements for low-metallicity stars in the solar neighbourhood. Using results of population synthesis codes which assume the IMF has been densely sampled, and which yield a unique answer for certain observed properties of a stellar population of fixed mass and metallicity, can lead to the overinterpretation of observations if one is not careful (e.g. Cerviño & Valls-Gabaud 2003).

The recently discovered and studied ultrafaint local dSph galaxies (e.g. Belokurov et al. 2006; Simon & Geha 2007; Geha et al. 2009; Martin et al. 2009), with total luminosities of the order of 10^3 in solar units and below, and total dynamical M/L values $>10^3$, represent a population of objects where the intrinsic variance in the stellar M/L values, at fixed age and metallicity, might become important. To date, the inferences of total baryonic masses for these objects have been performed in the standard way, through the use of M/L values thought of as deterministic parameters, as appropriate for infinite stellar populations (e.g. Angus 2008; McGaugh & Wolf 2010). These total baryonic masses become important in determining the baryonic-to-dark matter ratios of the systems in question (e.g. Sanchez-Salcedo et al. 2006; Walker et al. 2009), the calibrating and testing of structure formation models at the smallest galactic scales (e.g. Strigari et al. 2010) or the testing of modified gravity theories, where gravity is assumed to couple exclusively to the observable baryonic mass (e.g. Hernandez et al. 2010; Iorio 2010). Given, however, the negligible dynamical relevance of the stellar components (under standard gravity), the dark matter-to-total mass ratios would remain unchanged at values very close to 1.

In this paper, we calculate the range in stellar M/L values for small stellar populations of fixed input parameters, which result from the intrinsic statistical variations of a discretely and poorly sampled standard IMF. Throughout this paper, we shall use M/L to denote total intrinsic stellar M/L values, and not in connection with dynamical M/L, which of course are completely robust to the considerations explored here. As we shall see, the low-mass-weighted character of the IMF will result in a slow drift in the mean M/L values of stellar populations, as the total stellar mass goes down. More important will be the appearance of a large spread in the resulting M/L values, which will shift qualitatively from being the deterministic proportionality factors which they are for large stellar populations, to becoming probabilistic entities with broad distributions skewed towards high values. As the total mass diminishes, the stochastic effects on the M/L values appropriate for star formation events will increase. Therefore, it is the regime of the ultrafaint dSphs, very small systems with old ages, where the effects being explored will be largest.

We simulate stellar populations having various total masses by sampling directly an assumed IMF; this produces a discrete collection of stars, which is then used together with a detailed isochrone library to produce distributions of M/L values for collections of stellar populations having various fixed total masses. We explore the resulting distributions for M/L values as functions of the metallicity, stellar age and the total mass, by directly keeping track of each individual star formed. Repeating the process a large number of times yields a distribution of M/L values resulting from the same input parameters.

The paper is organized as follows. The construction of discrete IMF realizations and their use in constructing stochastic distributions of M/L values for simple stellar populations of fixed input parameters is described in Section 2; Section 3 gives our results for total stellar masses in the ranges of the observed ultrafaint dSphs, and Section 4 presents our conclusions.

2 Constructing Statistical M/L Values

In order to explore the range of intrinsic M/L values which small stellar populations will present, we begin by setting up a discrete IMF. We assume a fixed underlying probabilistic IMF, from which stochastic samplings will be constructed, discrete collections of individual stars. We take the IMF of Larson (1998):

$$dN/d \log m \propto (1 + m/m_\ast)^{-1.35},$$

(1)

where a choice of $m_\ast = 0.4 M_\odot$ adequately serves to reproduce a present-day solar neighbourhood IMF, with a mean mass close to $1 M_\odot$ (e.g. Hernandez & Ferrara 2001). We have taken lower and upper mass bounds of 0.09 and 20 M_\odot for the above IMF, fixed throughout this study. Although the details of our study will be slightly sensitive to the choice of this function, the trends we describe and our conclusions are generic to any IMF found in the literature, where the probability of picking a certain mass strongly decreases with stellar mass. These discrete IMFs will only tend to the infinite mass limit for very large total stellar masses. Even for total stellar masses of a few thousand M_\odot, which one could naively assume to constitute ‘statistical samples’, the distribution of stars above $1 M_\odot$ will be dominated by shot noise effects (see e.g. Carigi & Hernandez 2008). This leads to an effective upper stellar mass which decreases as the total mass of a stellar population goes down (e.g. Massey 1998; Weidner & Kroupa 2004). This in turn leads to substantial scope for variations in the resulting intrinsic M/L values,
as the light output of a stellar population is heavily dominated by the giants, while the total mass is a much more robust quantity, anchored on the integral of the main sequence. We start by picking a value for the total stellar mass of a single stellar population and then proceed to randomly pick stars out of the fixed underlying probabilistic IMF until the chosen total stellar mass has been reached. This produces a collection of individual stars, a particular discrete IMF.

Next, we use an extensive isochrone library which carefully interpolates directly on the output of stellar evolutionary codes at fixed stellar phase, having close to 250 stars between a lower mass bound of 0.15 M_\odot and the tip of the RGB. This was prepared using the stellar evolutionary codes of the Padova group (Girardi et al. 2002) for use in the probabilistic parameter inference study for globular clusters of Hernandez & Valls-Gabaud (2008). With this at hand, we then assign to each of the individual stars selected its corresponding M_V value. By then adding the corresponding luminosities, we calculate the total V-band luminosity of a particular realization of the fixed underlying IMF, at a given age and metallicity.

We have set to zero the luminosity of all stars outside of the mass range of the isochrones. This introduces a slight error, but one which will not affect our results significantly, as the integrated luminosity of stars between our lower IMF limit of 0.09 M_\odot and our lower isochrone mass limit of 0.15 M_\odot is only a very minor contribution to the total light output of a stellar population. Beyond our upper isochrone limit at the tip of the RGB, the number of bright sources is small, and its exclusion does not significantly alter the total light budget. A further small error is introduced by having also ignored stellar mass-loss throughout, i.e. the initial mass of the total stellar population is divided by the total V-band luminosity within the isochrone range, to obtain the final M/L value of a particular IMF realization, at a given total mass, age and metallicity.

Depending on the chosen value for the total stellar mass, and on the assigned age of the stellar population, the number of stars selected varies from a few hundred to upwards of 70,000, for the range of models presented here, for each individual discrete IMF realization. Each of these stars is then assigned a V-band luminosity, as described above. The whole process is then repeated 2000 times, changing the random seed of the simulation, to construct a distribution of 2000 M/L values, for each fixed age, metallicity and total stellar mass value presented here.

3 RESULTING DISTRIBUTIONS OF M/L VALUES

Here we present results for the experiment described in the previous section. We begin by taking a fixed age of 10.5 Gyr and a fixed metallicity of $[Z] = -3$, in solar units, parameters as appropriate for the old local dSphs (e.g. Hernandez et al. 2000; Kirby et al. 2008; Geha et al. 2009; Sand et al. 2009, 2010). We then simulate 2000 single stellar populations having always a fixed total mass of 5×10^2 M_\odot. Each results in a discrete collection of between 650 and 850 stars, all of which are individually assigned a luminosity from the appropriate isochrone.

A binned distribution for the resulting M/L values for this case is given by the thick solid curve in Fig. 1. A very broad distribution presenting evident fluctuations is apparent, extending to values of $M/L = 11$. This is natural if one considers that the small samples of only several hundred stars from which these M/L values have been calculated reproduce the underlying probabilistic IMF only for low-mass stars; shot noise dominates the distribution already for masses above 1 M_\odot. These low-mass stars in turn typically have very low luminosities, hence resulting preferentially in M/L values higher than the infinite population limit for the parameters used, of slightly below 3.5. Occasionally, an IMF realization with over average numbers of comparatively massive stars appears, resulting in the extension seen towards lower than average M/L values.

As we increase the total mass of this stellar population to 1×10^3 M_\odot, we obtain the thin solid curve for the corresponding distribution of intrinsic M/L values, still at the same fixed age, metallicity and IMF. In this case, we see that the fluctuations start to disappear, as a smoother distribution results. Still, the thin solid curve of this case shows a wide range of intrinsic M/L values for the stellar populations, at the fixed parameters being modelled. The distribution remains skewed towards higher than average values for the same reasons as mentioned above. We can see that at these numbers of stars, we can still expect to find M/L values ranging from 2 to 7, even though 1×10^3 might ordinarily be considered a ‘statistical number’ of stars. As it also happens when considering the intrinsic spread in the chemical enrichment properties of a stellar population (Carigi & Hernandez 2008), the heavily low-mass-weighted nature of the IMF, plus the strongly top-heavy nature of the light output or enrichment properties of stars, allows for wide distributions in the intrinsic properties of stellar populations, at fixed input parameters.

In going to total stellar masses of $3 \times 10^3, 1 \times 10^4$ and 4×10^4 M_\odot, we obtain the corresponding distributions of intrinsic M/L values, given by the long dashed, short dashed and dotted curves in Fig. 1. We see that these distributions tend towards the infinite population limit, (M/L)$_\infty$, with mean values which clearly converge quite rapidly. The inherent spread of the distributions, however, takes longer to tend to zero, and even for quite large numbers of stars of upwards of 60,000 contained in each of the 2000 simulations with results given by the dotted curve, a noticeable width to the distribution is still evident.

To better appreciate the manner in which the resulting distributions tend to the infinite population limit, we present Fig. 2, where the average M/L values, (M/L), for stochastic realizations of the IMF are given, as a function of the total stellar mass, for three
Figure 2. Average values of the M/L values for statistical realizations of single stellar populations, as a function of total stellar mass in solar units, all at a fixed metallicity of $[Z] = -3.0$, for three different stellar ages of 10.5, 5 and 2 Gyr, from top to bottom, respectively.

different stellar ages. The curves correspond to stellar ages of 10.5, 5 and 2 Gyr, from top to bottom, respectively. As seen from Fig. 1, the mean values for the distributions of M/L values quickly tend to the infinite population limit, $(M/L)_\infty$; also as expected, this occurs at smaller total stellar masses for the younger populations. The drift towards larger M/L values as the total stellar mass goes down for the mean of the distributions is also evident. This effect is fairly important in the case of the oldest populations, and probably accounts for at least part of the trends seen for the dark-to-baryonic matter ratios to increase in the ultrafaint dSphs. Corresponding plots at different metallicities are practically indistinguishable until one reaches metallicities of upwards of $[Z] = -1$, values no longer relevant for the local dSph galaxies.

The corresponding plot for the standard deviations, σ, of the distributions of M/L values is given in Fig. 3. The three curves correspond to the same three cases of Fig. 2, again, ages of 10.5, 5 and 2 Gyr, from top to bottom, respectively. This time we see that although the dispersion in the distribution of M/L values goes down as the total mass of the stellar populations increases, this happens at a much slower rate than what characterizes the trend for $\langle M/L \rangle$ with total stellar masses. We see that for the oldest age, even for stellar populations well into the thousands of M_\odot, dispersions of more than 1 are to be expected. Since the corresponding $\langle M/L \rangle$ values are of around 4, variations in M/L by factors of 2 and above will be frequent. Also, note that since the distributions are heavily skewed, the mean and the dispersion offer only crude approximate descriptions, with higher than average values being the norm.

The resulting $\langle M/L \rangle - (M/L)_\infty$ and σ values can be very accurately described by the following fitting functions:

$$\langle M/L \rangle - (M/L)_\infty = AM_{\text{tot}}^{-1}, \quad \sigma = BM_{\text{tot}}^{-1/2},$$

with the constants (A, B) in equation (2) having values of $(524.72, 48.53), (180.56, 22.16)$ and $(74.84, 10.02)$ for stellar ages of 10.5, 5 and 2 Gyr, respectively, for metallicities below $[Z] = -1$ in solar units. In the above equations, M_{tot} is the fixed total stellar mass of a set of IMF realizations.

Finally, we present in Fig. 4 an estimate of the factor by which one can expect the intrinsic M/L values of small stellar populations to vary, at fixed age and metallicity, as a function of total stellar mass in solar units, for three different ages of 10.5, 5 and 2 Gyr.

Figure 3. Standard deviation for the distributions of M/L values for statistical realizations of single stellar populations, as a function of total stellar mass in solar units, all at a fixed metallicity of $[Z] = -3.0$, for three different stellar ages of 10.5, 5 and 2 Gyr, from top to bottom, respectively.

Figure 4. Expected factors over which the intrinsic M/L values of single stellar populations are expected to vary, at fixed age and metallicity, as a function of total stellar mass in solar units, for three different ages of 10.5, 5 and 2 Gyr.
Segue I coming in at a mere 600 M⊙ in stars, as reported in the compilation of Misgeld & Hilker (2011).

As can be seen from Fig. 4, the differences between the results for ages of 10.5 and 5 Gyr are much smaller than between the results for 5 and 2 Gyr. In fact, the inherent convergence of the isochrones at large ages implies that results for any stellar ages beyond 10.5 Gyr will be scarcely distinguishable from the curves shown for 10.5 Gyr. Thus, the results given for 10.5 Gyr ages are suitable for the directly inferred ages of some of these systems, e.g. the values of between 12 and 13 Gyr obtained by Sand et al. (2009) for the Hercules system, or by Sand et al. (2010) for Leo IV. Also, although the trends presented will be qualitatively the same for M/L values in other bands, the amplitude of the effect presented will grow towards bluer bands, and decrease towards redder ones, as the relative contribution of the different evolutionary phases changes to include a smaller or larger fraction of the stars.

4 CONCLUSIONS

After calculating directly statistical distributions for the inherent M/L values of small stellar populations, we find that in the low-mass range of the local ultrafaint dSphs, assigning a M/L ratio to a stellar population changes from the deterministic problem of finding the value which corresponds to an infinite population having a required metallicity, age and star formation history, to an entirely probabilistic situation. Indeed, below total stellar masses of 3 × 10^3 M⊙, the M/L distributions become so broad that the probabilistic nature of the problem becomes the dominant ingredient, relegating age and metallicity to a secondary role in establishing the intrinsic M/L of a stellar population. This is particularly relevant to the study of the local ultrafaint dSphs, as determining their baryonic masses through assigning fixed, standard M/L values can easily lead to significant error. This is particularly delicate as the M/L distributions which result are far from symmetric about (M/L)∞, being heavily and systematically skewed towards higher values.

ACKNOWLEDGEMENTS

XH acknowledges the input of an anonymous referee as helpful in reaching a clearer final version and financial support from UNAM-DGAPA grant IN103011-3.

REFERENCES

This paper has been typeset from a TeX/LaTeX file prepared by the author.