Similarly
\[T = t + y, \quad T' = t + y', \]
and
\[T' - T = \epsilon, \]
where, as before, \(T' \) and \(T \) refer to true and observed quantities respectively. It will be noticed that the errors in \(m \) and \(t \) have been neglected. We then obtain the equations
\[T' = t - m + M', \]
\[T = t - m + M, \]
and if we assume that
\[T' = a'M', \quad T = aM, \]
we find that
\[\frac{r_{T'M'}\sigma_{T'}\sigma_{M'} - r_{TM}\sigma_T\sigma_M}{\sigma_{M'}} = \frac{r_{T'M'}\sigma_{T'}\sigma_{M'}}{\sigma_{M'}} - 1 = \frac{a'^2}{\sigma_{M'}^2}, \]
that is,
\[\frac{r_{T'M'}\sigma_{T'}\sigma_{M'} - r_{TM}\sigma_T\sigma_M}{\sigma_{M'}} = \frac{r_{T'M'}\sigma_{T'}\sigma_{M'}}{\sigma_{M'}} + 1 - \frac{a'^2}{\sigma_{M'}^2}, \]
or
\[a' = \frac{\sigma_{M'}^2}{\sigma_{M'}^2} a + \frac{\sigma_{M'}^2}{\sigma_{M'}^2}, \]
This formula corresponds to that given by Seares.* The method may easily be extended to other variables provided that linear regression can be assumed.

NOTE ON MR. R. A. McINTOSH’S PAPER:
“THE VELOCITIES OF METEOR STREAMS.”

In M.N., 96, 704, 1936, Mr. R. A. McIntosh suggests a method for determining the velocities of meteors by measuring the displacement of the radiant in northern and southern latitudes. There is a fundamental error in the method which renders it useless, and this arises from the manner in which Table I is compiled.

Using Mr. McIntosh’s symbols and noticing that \(\tan \frac{1}{2} \Delta Z = \frac{1}{2} \Delta Z \) for all practical purposes, since \(\frac{1}{2} \Delta Z \) is less than \(10^\circ \),
\[\frac{1}{2} \Delta Z_N = \tan \frac{1}{2} Z_N \tan \frac{1}{2} \pi, \]
\[\frac{1}{2} \Delta Z_S = \tan \frac{1}{2} Z_S \tan \frac{1}{2} \pi, \]
from which
\[\frac{1}{2} \Delta Z = \tan \frac{1}{2} \pi (\tan \frac{1}{2} Z_N + \tan \frac{1}{2} Z_S), \]
where \(\Delta Z \) is the total zenithal displacement—that is, the sum of the combined displacements. As it is the same shower, \(\pi \) is the same for both positions.

* M.N., 84, 15, 1923.