Copy Number Alterations among Mammalian Enzymes Cluster in the Metabolic Network

Michaël Bekaert*1 and Gavin C. Conant1,2

1Division of Animal Sciences, University of Missouri, Columbia
2Informatics Institute, University of Missouri, Columbia
*Corresponding author: E-mail: bekaertm@missouri.edu.
Associate editor: James McInerney

Abstract

Using two high-quality human metabolic networks, we employed comparative genomics techniques to infer metabolic network structures for seven other mammals. We then studied copy number alterations (CNAs) in these networks. Using a graph-theoretic approach, we show that the pattern of CNAs is distinctly different from the random distributions expected under genetic drift. Instead, we find that changes in copy number are most common among transporter genes and that the CNAs differ depending on the mammalian lineage in question. Thus, we find an excess of transporter genes in cattle involved in the milk production, secretion, and regulation. These results suggest a potential role for dosage selection in the evolution of mammalian metabolic networks.

Key words: comparative genomic, gene duplication, gene dosage, mammals, metabolic networks and pathways, milk.

Introduction

Metabolism’s prominent role in facilitating most biological processes and in shaping the availability of ecological niches suggests that strong selective forces have fashioned the metabolic wiring (Raymond and Segre 2006). Likewise, metabolism’s central importance to life has made the study of innovation among its systems a topic of particular interest. Morowitz and colleagues (Morowitz et al. 2000; Smith and Morowitz 2004) have argued that life originated through the exploitation of the metabolites of the tricarboxylic acid cycle (although see Bada and Lazcano 2002). Much metabolic innovation appears to have occurred early in evolution: both the general structure and reaction mechanisms of extant enzymes predate the divergence of the major domains of life (Caetano-Anollés et al. 2007). To understand such innovation, other researchers have considered how new catalytic proteins evolve: one model, which is known by several names (the adaptive amplification; adaptive radiation; or innovation, amplification, and divergence model) posits that new enzymes are co-opted from existing enzymes with low levels of the novel activity (Roth and Andersson 2004; Francino 2005; Berghorsson et al. 2007). New enzymes are shaped by the action of natural selection on large duplicated arrays of these weakly functional enzymes, which are subsequently reduced to single copy once a high activity enzyme has evolved.

Gene duplication itself has long been seen as a major route to evolutionary novelty (Ohno 1970): one topic of recent interest is other mechanisms by which gene duplications promote innovation beyond the classic “neo-functionalization” pathway (reviewed in Conant and Wolfe 2008). One such mechanism is dosage selection, where the new trait is not the acquisition of a novel activity but rather an increased capacity for an existing reaction (Papp et al 2004; Kondrashov and Kondrashov 2006). A noteworthy example is in the amylase gene, responsible for starch digestion. In humans, high copy numbers of this gene are associated with populations having high-starch diets (Perry et al. 2007), suggesting a recent increase in the selective benefit of high amylase activity. Such dosage selection is only part of a larger pattern of requirements for dosage balance that also influence patterns of gene duplication (Papp et al 2003; Freeling and Thomas 2006; Birchler and Veitia 2007; Edger and Pires 2009). A familiar example of this phenomenon is the necessity of X-chromosome inactivation to compensate for dosage imbalances between male and female mammals (Payer and Lee 2008). Any fixed difference in copy number (i.e., duplication) between populations began life as a within-population copy number polymorphism. Such copy number variation contributes significantly to differences in transcript abundance among individuals (Stranger et al. 2007). More significantly, some copy number variations have been shown to be driven to high frequency by positive selection for increased expression of the corresponding gene (Gonzalez et al. 2005; Perry et al. 2007; Nair et al. 2008), highlighting how gene dosage modifications can be targeted by selection. However, the evolutionary constraints that act on gene dosage have yet to be fully elucidated. Discovery and functional assessment of gene dosage alterations between species is therefore an important element of understanding genome evolution.

Using the human metabolic network and orthologous genes from seven other mammals, we explored how differences in enzyme gene copy number in mammals are associated with the structure of the metabolic network. Our work is based on recent advances in cataloging and modeling metabolism. Such models can be used in a variety of ways, but one of the more common is to frame them as metabolic networks (Jeong et al. 2000). In this work, we
use inferred genome-scale metabolic networks from humans (Duarte et al. 2007; Ma et al. 2007) to study copy number differences: we note that these networks are only two of several available from a variety of organisms (Duarte et al. 2004; Blank et al. 2005; de Oliveira Dal'Molin et al. 2010).

We asked whether the differences in enzyme copy number are distributed nonrandomly in the mammalian metabolic network. In yeast, it is known that enzymes that carry out high flux and that lie in highly connected parts of the metabolic network are more likely to undergo duplication (Vitkup et al. 2006), and we were curious whether similar forces were at play in multicellular eukaryotes.

Materials and Methods

An overview of our methodology is illustrated in figure 1A.

Data Collection and Preprocessing

Complete genome annotations for eight mammals, *Bos taurus* (cattle), *Canis familiaris* (dog), *Equus caballus* (horse), *Homo sapiens* (human), *Macaca mulatta* (macaque), *Mus musculus* (mouse), *Pan troglodytes* (chimpanzee), and *Rattus norvegicus* (rat) were obtained from Ensembl release 50 (Flicek et al. 2010). For the purposes of homology/orthology assignment, we obtained the longest transcript for each protein-coding gene along with its genomic location.

We downloaded two *H. sapiens* metabolic networks, MODEL6399676120 (Duarte et al. 2007) and MODEL2021747594 (Ma et al. 2007), from the BioModels database (Le Novere et al. 2006). Our goal was to use these *H. sapiens* networks to assign metabolic functions to genes in the other seven genomes. In order to do so, we must account for the fact that the only link between the *H. sapiens* metabolic network and the networks to be inferred in the other mammals is the orthology relationships between the genomes. As a result, we need to introduce a level of abstraction to the metabolic networks that we refer to as an "isoenzyme group." These groups attempt to represent sets of enzyme-coding genes all involved in the same reactions. To create them, we agglomerate reactions from the metabolic network in two steps. We first group enzyme-coding genes involved in identical reactions. We then sequentially merge any groups where the reactions of one group are a subset of reactions of second group. The net effect is to create isoenzyme groups such that each gene participates in a subset (possibly complete) of the reactions associated with that node (fig. 1B).

Orthology Assignment

Our orthology pipeline has been previously described (Conant 2009). An outline is provided here.

Homology Detection

As a first step, homologous genes within and between genomes are identified by running GenomeHistory (Conant and Wagner 2002) on the combination of two genomes, namely the reference *H. sapiens* genome and a second target genome. GenomeHistory identifies pairs of homologous genes using Blast (Altschul et al. 1997) and estimates their nonsynonymous and synonymous divergences (K_s and K_w, respectively) by maximum likelihood. We configured GenomeHistory to accept only gene pairs meeting the following criteria: E-value cutoff of 10^{-9}, protein length \geq75 amino acids, pairwise protein alignment length \geq70 amino acids, and pairwise protein sequence identity \geq45%.

Syntenic Mapping

We identify initial orthologs between the two genomes as one-to-one matches in the GenomeHistory analysis (i.e., the two genes have no paralogs in their own genomes) that have synonymous divergence such that $K_s \leq 0.5$ (*P. troglodytes* and *M. mulatta*) or $K_s \leq 0.75$ (all others). Starting with such initial orthologs, any pair of genes that are immediate neighbors of such a pair and are also homologs are now defined to be orthologs themselves. Using these new orthologous pairs, the process is repeated until no further orthologs are located.
At the completion of this analysis, the genes in each genome can be divided into four classes: orthologs, orphans, ambiguous, and absent. The procedure for identifying orthologs has just been described. Orphans are genes in one genome that have no hits in the other genome once all the orthologs have been assigned. Ambiguous are genes shared between two genomes, but where the synteny and sequence information is insufficient to resolve orthology. Absent genes, as their names imply, have no significant homologs in the other genome.

Verification of Absent Genes
Metabolic genes in *H. sapiens* with no identified homologs in the target species were subjected to a second Blast analysis. We searched for these genes in the target genome with an E-value cutoff of 10^-5. This step allowed us to differentiate weak hits from genes that were truly absent in the target genome.

Metabolic Network Construction
Given the homology data from GenomeHistory, we defined a set of “gene families” that include genes across species. These gene families are defined on the basis of single-linkage clustering using the homology relationships determined by GenomeHistory (fig. 1C). We then defined subfamilies within these families such that all *H. sapiens* members of that subfamily with annotations in the metabolic network belong to the same isoenzyme group (fig. 1D).

Orphan Genes Mapping
We first attempted to assign the orphan genes (in each species) that fall perfectly into a subfamily. In *H. sapiens*, these orphans are already assigned if they are part of the metabolic network. In the other cases in *H. sapiens* and in all cases in the target species, orphans will not have direct network annotations. However, if such an orphan gene is a member of a gene family where that family is a member of exactly one isoenzyme group, we assign that orphan to that isoenzyme group. In cases where the gene family consists of two subfamilies in different isoenzyme groups, we make no assignment of that orphan to an isoenzyme group because its functional annotation is uncertain.

Ambiguous Genes Mapping
An ambiguous gene between the target genome and *H. sapiens* is one for which orthology cannot be established because the gene is a member of a large gene family in both genomes. In our metabolic analysis, lack of resolved orthology is an issue only if the members of that gene family in *H. sapiens* are split between several isoenzyme groups (i.e., several subfamilies). If all annotated orthologs have the same subfamily, we can reasonably assign all ambiguous genes of that same subfamily to the same isoenzyme group. After this reconciliation, we may also be able to assign functions to further remaining orphans in the same way.

Network Construction
At this point, the assignment of genes to subfamilies is complete. We next collected all such gene families that matched to only a single isoenzyme group. If a newly formed gene family belonged to more than one isoenzyme group, we checked whether this difference could be accounted for as one *H. sapiens* isoenzyme group being a subset of the other. The set of isoenzyme groups for a given gene family is then searched to see if one isoenzyme group can be assigned such that any remaining isoenzyme groups for that gene family are subsets.

Finally, each mapped isoenzyme group is defined as a node in our isoenzyme network. Edges between these nodes are defined by shared metabolites between the included reactions of the two isoenzyme groups (as reported in the *H. sapiens* metabolic network). The network is directed: for irreversible reactions if the product of one reaction is a reactant in the second, we define a directed edge. Reversible reactions are treated similarly, except that both directions of the reaction are allowed and handled independently. Thirteen currency metabolites (H^+_, H_2O, etc.)
ATP, ADP, P_i, P_P_i, Na^+, coenzyme A, O_2, NAD^+, NADH, NADP^+, and NADPH) were removed from all analyses in whichever compartments they occurred (Huss and Holme 2007). We then used the _H. sapiens_ reference network of Duarte et al. (2007) to locate each metabolite in a cellular compartment. We then assigned each isoenzyme group to the compartment where the product of that reaction is located. A few reactions, coded by the same set of genes, are located in multiple compartments; hence they were assigned to a virtual compartment termed “Multiple.” Our approach necessarily assigns the transporters to the destination compartment. In the second set of analyses, a specific compartment was created for the transporters (which we defined as reactions having metabolites in two compartments).

Using these fully constructed networks, we analyzed gene copy number alterations (CNAs) between each species and _H. sapiens_ for each isoenzyme group node. For our purposes, we defined a CNA as any node possessing a different number of included genes in the target species as compared with that number in _H. sapiens_. The inferred metabolic networks were deposited at the EBI BioModels database using the references: MODEL1008120000–MODEL1008120006.

Visualization

The networks were visualized with Gephi v0.7 (Bastian et al. 2009) using the Force-based algorithm ForceAtlas. ForceAtlas works similarly to the Fruchterman–Reingold algorithm (Fruchterman and Reingold 1991), with the difference that the repulsion between two nodes is proportional to degree \(n_1 \times \text{degree}(n_2) \). Thus, the former will tend to bring nodes of degree 1 closer to their neighbors than will the latter.

Pathway Enrichment Analysis

Each gene from the reference _H. sapiens_ networks is associated with one or more Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa et al. 2010). We imported the KEGG pathways (209 pathways, 5,281 genes).
We then collected for each pathway the number of isoenzyme groups with CNAs (from the total of 944 isoenzymes, 1,437 genes, and 171 pathways). We plotted the number of isoenzyme groups with CNAs against pathway function. Simultaneously, we inferred the best linear fit of these two variables; doing so allowed us to calculate the normalized residual for each value. Any value with a residual significantly different from the expectation was defined as an outlier, that is, it has fewer or more CNAs than would be expected. These outliers represent a pool of reactions with the potential to be under copy number selection.

Milk Production Particulars

For each isoenzyme group including extracellular transporters and exhibiting CNAs, we collected the associated KEGG pathways (supplementary table S3, Supplementary Material online) in *B. taurus*.

Network Metric Calculations

We used Gephi to calculate network statistics, including in- and out-degrees, betweenness centrality, closeness centrality, network diameter, average clustering coefficient, the average shortest path, eccentricity, and network modularity (Newman 2006; Opsahl et al. 2010). Statistical evaluations were performed with R (http://www.r-project.org/) using nonparametric tests (Kolmogorov–Smirnov test).

Clustering Tests

We were interested in to what extent CNAs tended to cluster in the metabolic network. To assess this, we first removed from the network all nodes without CNAs. We then calculated the number of connected components among the remaining nodes having CNAs (blue regions; fig. 2A). To assess whether these components were bigger than would be expected, we used network randomization. We began by copying the original network and reassigning the duplication status at random. The result was randomized networks with the same number of nodes with CNAs but for which the location of those nodes was random (fig. 2A). We again removed the unaltered nodes and computed connected components for the random networks. We performed 10,000 permutations and used the distribution of component sizes to determine whether the clusters in the real network were larger than expected. The procedure was implemented in C++ using the Boost Libraries (http://www.boost.org/). The code is available upon request.

Results

Reference Networks

The *H. sapiens* metabolic network of Ma et al. (2007) (Bio-model MODEL201747594; 2007) consists of 2,716 metabolites, 2,566 reactions (1,052 with unique Enzyme Commission number), and 2,322 genes. There are 889 reactions associated.
with at least one gene, and 2,339 metabolites are used by these reactions. Using this network, we established 847 isoenzyme groups. The overall network includes 2 isolated nodes not connected to others; these nodes occur because some reactions do not have associated genes and hence cannot be part of isoenzyme groups. The *H. sapiens* isoenzyme network has 189,247 edges and the following network statistics: diameter: 4, average shortest path: 1.81, density: 0.267 (Sabidussi 1966; Coleman and More 1983).

The metabolic network of Duarte et al. (2007) (Biomodel MODEL6399676120; 2007) includes cellular compartments for all metabolites and includes 3,188 metabolites, 3,742 reactions, and 1,496 genes. Of the reactions, 2,307 reactions are associated with at least one gene, and 2,331 metabolites are used by these reactions. We established 944 isoenzyme groups. The overall network included 4 isolated nodes and 81,759 edges. Network statistics: diameter: 6, average shortest path: 2.31, density: 0.092.

Inferred Networks

Our goal was to study differences in enzyme copy number among eight mammalian genomes. We made an initial orthology assignment (see Materials and Methods) that produced a list of assigned orthologs and absent genes, as well as orphan and ambiguous genes. For each of the seven other mammals (fig. 3 and supplementary fig. S1, Supplementary Material online), we then mapped the *H. sapiens* network onto that target genome in four steps, with the aim of assigning target genes to isoenzyme groups so as to evaluate the CNAs. Supplementary figure S2 (Supplementary Material online) shows the assignment results in *B. taurus* at each step of the process. The first step assigns only orthologs, resulting in many unassigned nodes, whereas the full process significantly reduces this number. The remaining cases of unassigned isoenzyme groups may either represent true missing functions in the target genome or nonsequenced/annotated genes in that genome. Table 1 summarizes the results of the full process for the seven target species. Because some species have more metabolic genes than *H. sapiens*, the number of genes we can identify in the target genome was between 92% and 130% of the number of reference human genes. The number of assigned isoenzyme groups (groups we can identify in the target genome relative to the complete *H. sapiens* metabolic network) was between 94% and 98% of the total set of isoenzyme groups for both metabolic networks.

Pathways Enrichment Analysis

We investigated whether particular metabolic pathways seemed to be over or underrepresented among the gene CNAs. We extracted for each the number of isoenzyme groups with CNAs (944 isoenzymes, 1,437 genes, 171 pathways) and estimated the overall relationship between the number of genes in each pathway and the number of CNAs using linear regression (fig. 4A). Adjusted R^2 were 0.659, 0.634, 0.389, 0.591, 0.448, 0.081, and 0.656 for *B. taurus*, *C. familiaris*, *E. caballus*, *M. mulatta*, *M. musculus*, *P. troglodytes*, and *R. norvegicus*, respectively. The extremely low R^2 value for the human–chimpanzee comparison is due to the very small number of CNAs found between these very recently diverged taxa. The normalized residuals from the linear regression. Gray lines are the significance thresholds ($\pm 1.96; \alpha = 0.05$). “*” Values not significantly different from the regression model prediction; “**” Significantly divergent values (outliers).
To explore the discrepancy in observed CNA frequencies, we evaluated the distribution of the isoenzyme groups showing the CNAs across the seven species, examining how often a given isoenzyme group exhibited a CNA. Supplementary figure S3 (Supplementary Material online) shows the proportion of isoenzyme groups with CNAs in a given number of species (using the network of Duarte et al. 2007) as compared with the expected distribution whether the seven networks were independent and CNAs were randomly occurring. The two distributions are statistically distinguishable, but we cannot rule out the influence of the phylogenetic relationships among the species.

Metrics

We next assessed if there was an association between several network statistics (node degree, betweenness, and closeness centrality; Sabidussi 1966; Brandes 2001) and the propensity of a node to possess a CNA. These measures all evaluate, to one degree or another, the “importance” of a particular enzyme (node) in the metabolic network. In other words, nodes of high betweenness or degree represent parts of the network that affect many other nodes, meaning that damage to them is likely to have large effects on metabolism. Because the network of Ma et al. (2007) lacked compartment information, we excluded the latter from this analysis. As described in the Materials and Methods, we introduced a virtual cellular “Transport” compartment: we performed our network statistics analysis both with and without this compartment. For many cellular compartments, we found significant associations between network statistics and CNAs when transport reactions were included in those compartments, but the association was no longer significant when the transport reactions were removed (supplementary tables S1 and S2, Supplementary Material online). The distribution of copy number changes is nonrandom, as judged both by the structure of the network itself and by the distribution of network statistics for nodes with changes in copy number (fig. 5). Specifically, the order Rodentia (fig. 5, node 1) shows copy number changes among Golgi apparatus transporters, whereas in the superorder Laurasiatheria (fig. 5, node 2), we find an excess of duplication/loss among the extracellular transporters. It is especially intriguing that although these patterns are lineage specific, there is an overall trend toward apparent duplication among the transporters.

Table 2. List of the Pathways Over- or Undertargeted by CNAs.

<table>
<thead>
<tr>
<th>KEGG Pathway</th>
<th>Pan troglodytes</th>
<th>Macaca mulatta</th>
<th>Mus musculus</th>
<th>Rattus norvegicus</th>
<th>Bos taurus</th>
<th>Equus caballus</th>
<th>Canis familiaris</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycolysis/gluconeogenesis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Steroid biosynthesis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Steroid hormone biosynthesis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Oxidative phosphorylation</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Pyrimidine metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Alanine, aspartate, and glutamate metabolism</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Glycine, serine, and threonine metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Cysteine and methionine metabolism</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Taurine and hypotaurine metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Starch and sucrose metabolism</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Amino sugar and nucleotide sugar metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Glycosylphosphatidylinositol-anchor biosynthesis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Glycerophospholipid metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Arachidonic acid metabolism</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Linoleic acid metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Glycosphingolipid biosynthesis</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Butanoate metabolism</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Retinol metabolism</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Metabolism of xenobiotics by cytochrome P450</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Drug metabolism—cytochrome P450</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Drug metabolism—other enzymes</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>ABC transporters</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>PPAR signaling pathway</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Peroxisome</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Vascular smooth muscle contraction</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Alzheimer’s disease</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Parkinson’s disease</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Huntington’s disease</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>●</td>
</tr>
</tbody>
</table>

Note.—“●,” Pathway less variable in copy number than expected (9); “○,” Pathway more variable than expected (20). PPAR, Peroxisome proliferator-activated receptor.

For the 17 pathways under selection compared with the average for each species, the distribution of CNAs across the seven species is detailed.

a For the 17 pathways under selection compared with the average for each species, the distribution of CNAs across the seven species is detailed.
b Peroxisome proliferator-activated receptor.
searched the network for clusters enriched in CNAs. To do so, we first removed from the network all nodes without CNAs and then calculated the number of connected components among the subset of nodes with CNAs. Note that this removal implicitly removes any edges that end at nodes lacking CNAs, drastically reducing the number of edges in the network. The result is to reduce the network from one large component (of the form illustrated in fig. 3) to numerous isolated ones (blue regions in fig. 2A). We assessed the statistical significance of these induced clusters by network randomization (fig. 2A; see Materials and Methods). For all seven genomes surveyed, and using either network (Ma et al. 2007 or Duarte et al. 2007, when disregarding the compartmentalized information), we found that there were significantly fewer and larger connected components (e.g., clusters) in the real network than would be expected based on the distribution of component sizes and number seen in the randomized networks ($P < 0.0001$). When we examine the compartmentalized networks, we find fewer cases of significant clustering (table 3), likely because our test for significant clustering relies on interconnected metabolic pathways, pathways that can be hidden in the compartmentalized analysis when shared metabolites are present in separate cellular compartments. The real networks also showed higher than expected in- and out-degrees within these clusters (table 3). For example, the largest cluster found in the $B. taurus$ metabolic network includes 104 isoenzyme groups linking numerous metabolic pathways. The orange nodes in figure 2B illustrate a subsection of this cluster from the Golgi apparatus: All the orange nodes are N-acetylglucosaminyl transferases belonging to keratan sulfate biosynthesis, sphingolipid metabolism, or blood group biosynthesis pathways. These nodes are linked to each other and are connected to other pathways and represent a group of genes that are present in higher copy numbers in $B. taurus$ than in $H. sapiens$ (except for nodes also belonging to sphingolipid metabolism).

Discussion

Using an approach that allows us to map more than 94% of the $H. sapiens$ metabolic network onto other mammalian species, we have explored the patterns of CNAs across these mammalian networks. Despite the fact that mammalian genomes have significant differences in gene content and organization (Murphy et al. 2001), the metabolic network topology is relatively conserved across this group (using $H. sapiens$ as reference). Nonetheless, there are reasonably large numbers of CNAs observed (table 1): many of these variations appear to involve transporter proteins (fig. 5).

Of course, one important caveat of our analysis is that we have only the expertly curated metabolic networks from $H. sapiens$ to use as the basis of our analyses. Thus, we cannot compare the networks from the other seven species directly but must instead contrast their evolutionary path with that in humans. Having a second out-group metabolic network would clarify the evolutionary history of the CNAs. However, we note that although two metabolic

Fig 5. Association of CNAs and network statistics. Several metrics have been used to describe the networks and the distribution of CNAs between species. Using the species tree (Murphy et al. 2007; Prasad et al. 2008) at left, we show how the number of CNAs increases with greater evolutionary distance from the reference human network (“node count,” far right). For each lineage, we show the cellular compartments for which the metric in question significantly differs between nodes with CNAs and those without (supplementary tables S1 and S2, Supplementary Material online). In-/out-degrees describe the number of reactants or products for each isoenzyme group, respectively. Closeness centrality evaluates the proximity of a node to every other isoenzyme node. The node count is the number of isoenzyme groups with CNAs. The squares indicate the compartment name. The “*” denotes the transporters from that compartment rather than the compartment itself. The arrows indicate whether the nodes with CNAs have an increased or decreased mean value compared with the invariant nodes. Labeled branch points in the phylogeny: 1, Rodencia; 2, Laurasiatheria. For example, the $Rattus norvegicus$ network shows a P value significant for the mitochondria “Closeness centrality” metric (supplementary table S1, Supplementary Material online): 0.0270. It is reported as a yellow square. By adding a “transporter” compartment (supplementary table S2, Supplementary Material online) and subtracting the mitochondrial transporters from the mitochondrial compartment, this value became nonsignificant: 0.6245. This illustrates that the mitochondria transporters are carrying the signal; an “*” indicates cases where this is true.

Clustering

The nonrandom distribution of CNAs among pathways and cellular compartments led us to ask whether the CNAs might be clustered in the overall network. We thus

References

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al. 2007

Prasad et al. 2008

Ma et al. 2007

Duarte et al. 2007

Murphy et al. 2001

Murphy et al.

networks for *M. musculus* have been published (Sheikh et al. 2005; Selvarasu et al. 2010), they are less than ideal for our purposes as they only cover a small proportion of the set of enzyme-coding genes (473 and 724, respectively, supplementary fig. S4, Supplementary Material online), as compared with more than 1,400 genes for both human networks and more than 1,800 genes placed in the *M. musculus* network by our techniques above.

Our results clearly show that the CNAs in metabolism are not all selectively neutral: they cluster in the metabolic network, creating a large interconnected subnetwork within the core metabolic network. Random distributions of CNAs do not mimic this pattern, indicating that some form of natural selection has acted to preserve duplications (or to favor gene losses) in the network. This result might seem to conflict with the known importance of genetic drift in preserving eukaryotic duplicate genes (Lynch and Conery 2003). However, we suggest that this difficulty is probably mostly one of perspective, especially as the comparisons being made here tend to be over larger evolutionary distances where selection may play a more prominent role. As mentioned, many of the CNAs involve transporter genes that show significantly different patterns of evolution in copy number than does the remainder of the metabolic network. These transporter alterations are not uniform across the mammalian phylogeny but vary by cellular compartment according to the lineage in question (fig. 5).

Together with the presence of very large clusters interconnected by these transporters (table 3 and fig. 28), the results may indicate that transporter duplication is favored in more central regions of the network, leading to the higher in- and out-degrees of the CNA-associated transporters in figure 5.

Similarly, we find that core sugar metabolism (glycolysis/gluconeogenesis, and glycerophospholipid metabolism) show an excess of CNAs, recalling known patterns of duplication both in vertebrates (Steinke et al. 2006) and in other organisms (Conant and Wolfe 2007). Curiously, although the peroxisome (as defined in KEGG) mainly consists of membrane proteins and transporters, this organelle actually possesses fewer CNAs than does the network at large. We attribute this difference to the relative isolation of this region of the metabolic network: closeness centrality among these reaction nodes is also low (fig. 5).

These general observations support a role for gene dosage as one factor in preserving duplications in the mammalian metabolic network. The association of CNAs and transporters is especially intriguing given that *Saccharomyces cerevisiae* (bakers’ yeast) cells under selection from a glucose-limited environment undergo multiple tandem duplications of their high-affinity glucose transporters (Brown et al. 1998). A particularly interesting illustration of the related phenomenon in mammals is in the metabolism of cattle milk production. As shown by the figure 3, a significant excess of extracellular transporters from *B. taurus* involved in milk production possess CNAs. The pathways involved include milk production itself (Jensen 1995), as well as its regulation (Ingvarsten and Friggens 2005; Hammon et al. 2007) and the induction of mammary angiogenesis (Spitsberg 2005; Nakajima et al. 2009). Notably, one of the transporters showing CNAs between *H. sapiens* and *B. taurus* (DGAT1) is also the site of a quantitative trait locus for milk production (Grisart et al. 2002). These results are also consistent with Lemay et al. (2009). We hypothesize that natural or artificial selection for milk production has shaped these CNAs; indeed, it may be the case that alteration of transporter gene dosage represents one of the more evolutionarily “easy” adaptations. That these CNAs are cattle-specific amplifications is clear from the fact that no similar alterations are seen when comparing other mammalian networks to the human network.

CNAs between species likely represent a complex mixture of dosage-related adaptations, cases of enzymatic “neo-functionalization” through gene duplication, artifacts of genetic drift, and likely other processes we have yet to identify. Given the ability to not only identify copy number changes between sequenced genomes but also to put them into the functional context of a biological network, it
should soon be possible to tease apart the relative contributions of these various mechanisms and even potentially exploit copy number alteration in fields such as agriculture and medicine.

Supplementary Material

Supplementary tables S1–S3 and figures S1–S4 are available at *Molecular Biology and Evolution* online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

We would like to thank Patrick P. Edger, Corey M. Hudson, and J. Chris Pires for helpful discussions. This work was supported by the Reproductive Biology Group of the Food for the 21st Century program at the University of Missouri and by a Research Board grant from the University of Missouri to G.C.C.

References

to G.C.C.

We would like to thank Patrick P. Edger, Corey M. Hudson, and J. Chris Pires for helpful discussions. This work was supported by the Reproductive Biology Group of the Food for the 21st Century program at the University of Missouri and by a Research Board grant from the University of Missouri to G.C.C.

References

