Estimating Empirical Codon Hidden Markov Models

Nicola De Maio,*1 Ian Holmes,2 Christian Schlötterer,1 and Carolin Kosiol1

1Institut für Populationsgenetik, Vetmeduni Vienna, Wien, Austria
2Department of Bioengineering, University of California, Berkeley

*Corresponding author: E-mail: nicola.de.maio.85@gmail.com.

Associate editor: Xun Gu

Abstract

Empirical codon models (ECMs) estimated from a large number of globular protein families outperformed mechanistic codon models in their description of the general process of protein evolution. Among other factors, ECMs implicitly model the influence of amino acid properties and multiple nucleotide substitutions (MNS). However, the estimation of ECMs requires large quantities of data, and until recently, only few suitable data sets were available. Here, we take advantage of several new Drosophila species genomes to estimate codon models from genome-wide data. The availability of large numbers of genomes over varying phylogenetic depths in the Drosophila genus allows us to explore various divergence levels. In consequence, we can use these data to determine the appropriate level of divergence for the estimation of ECMs, avoiding overestimation of MNS rates caused by saturation. To account for variation in evolutionary rates along the genome, we develop new empirical codon hidden Markov models (ecHMMs). These models significantly outperform previous ones with respect to maximum likelihood values, suggesting that they provide a better fit to the evolutionary process. Using ECMs and ecHMMs derived from genome-wide data sets, we devise new likelihood ratio tests (LRTs) of positive selection. We found classical LRTs very sensitive to the presence of MNSs, showing high false-positive rates, especially with small phylogenies. The new LRTs are more conservative than the classical ones, having acceptable false-positive rates and reduced power.

Key words: empirical codon model, rate heterogeneity, hidden Markov models, positive selection, Drosophila substitution patterns.

Introduction

Markov models of genomic sequence evolution are widely used in bioinformatics and usually belong to one of three classes: nucleotide, amino acid, or codon models. Nucleotide models are widely used, even for coding sequences (CDSs), because of their simplicity and broad applicability. Amino acid models are more often applied to diverged alignments. However, it has been shown that codon models should be preferred over both nucleotide and amino acid models when describing CDS evolution (Shapiro et al. 2006; Seo and Kishino 2009), unless the number of sequences in the alignment makes their use too computationally demanding.

Furthermore, codon models have the convenient property of being able to detect selective forces acting along protein-coding DNA sequences by distinguishing between nonsynonymous (amino acid replacing) and synonymous (silent) codon changes. They have therefore long been applied to detect positive selection (for reviews see Yang and Bielawski 2000; Anisimova and Liberles 2007).

Traditionally, codon models are defined as mechanistic and rely on a very small number of parameters (e.g., the model M0, Yang et al. 2000). However, empirical features have been introduced in codon models by Doron-Faigenboim and Pupko (2007), who proposed a combination of a mechanistic codon model (whose parameters are estimated per gene or small genomic region) with an empirical amino acid model (which is instead pre-estimated from large databases and thus fixed). Later, other semiempirical models incorporating amino acid propensities were devised (e.g., Delport et al. 2010; Rodrigue et al. 2010).

With larger and more numerous genomic data sets and more powerful computers, models with increasing complexity have been proposed (for a review see Anisimova and Kosiol 2009). These new approaches account for phenomena such as selection acting on synonymous codon substitutions (see e.g., Nielsen et al. 2007) and substitutions affecting more than one nucleotide (multiple nucleotide substitutions [MNSs], see e.g., Whelan and Goldman 2004).

Kosiol et al. (2007) estimated a full empirical codon model (ECM) by maximum likelihood. ECMs need large amounts of data to be estimated but implicitly account for many biologically relevant phenomena without making any assumptions except for reversibility of the Markov process. In particular, instantaneous double and triple nucleotide changes within one codon are accommodated by allowing for nonzero instantaneous MNS rates in the codon substitution matrix. These changes may result from mutational events that affect multiple nearby nucleotides (e.g., see Schrider et al. 2011). With the classical ECM, all possible MNSs between codons are treated individually. In this article, however, we propose a new simplified ECM that makes use of considerably fewer free parameters when incorporating MNSs.

© The Author(s) 2012. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The classical ECM does not account for the heterogeneity of the evolutionary process along the genome. For example, some genes or some parts of genes might evolve at significantly slower rates than others due to stronger purifying selection or lower mutation rates. Thus, models assuming homogeneity of rates across a sequence might not be adequate. In fact, using such a rate-homogeneous model can create a bias, for example, by over-estimating the amount of MNSs (Smith et al. 2003). For nucleotide models, several approaches have been pursued to account for rate heterogeneity among sites. Yang (1993) used a gamma distribution to model the pattern of substitution rates among sites. Yang (1995) and Felsenstein and Churchill (1996) used hidden Markov models (HMMs), which not only allow different sites to belong to different evolution classes but also describe cases in which neighboring sites tend to belong to the same class. Since then, the application of HMMs for the analysis of comparative genomic data has been very fruitful (reviewed in Siepel and Haussler 2004).

Among-site rate variation has also been incorporated into codon models. In particular, in addition to incorporating heterogeneity in the total rate of substitutions (as in nucleotide models), heterogeneity in selection pressure is modeled via discrete and continuous distributions for the nonsynonymous/synonymous rate ratio (Yang et al. 2000). Heger et al. (2009) implemented a mechanistic codon model within the software package XRATE (Klosterman et al. 2006) with an HMM structure distinguishing the two selective regimes of intracellular and secreted regions of transmembrane proteins. In general, XRATE allows the definition of an HMM along the sequence as a particular case of a “phylo-grammar” (Knudsen and Hein 1999), a tool commonly used to infer protein and gene structure.

In this study, we incorporate HMMs into ECMs. First, we estimate simple ECMs from new genomic data sets from several lineages and clades across the Drosophila phylogeny. Then we use the framework of XRATE to create an empirical codon HMM (eCHMM): we extend ECMs with an HMM structure along the sequence defining different classes accounting for variation in codon usage and selective pressure on amino acids.

Although codon models have also been applied to phylogenetic estimation (Ren et al. 2005) and classification of genomic sequences (see Lin et al. 2011, for an application of ECMs in this field), they are most commonly used to test for positive selection. We demonstrate the utility of our newly devised ECMs and eCHMMs by using them in tests of positive selection on simulated data and on a real data set of 181 Drosophila immunity genes previously investigated by Sackton et al. (2007).

Materials and Methods

Basic Markov Models for CDSs

Most codon models in common use describe CDS evolution as a continuous time Markov process. The process is further assumed to be time homogeneous and thus can be defined by an instantaneous rate matrix $Q = \{q_{ij}\}$, whose elements specify instantaneous rates of change among the 61 sense codons. Substitutions to/from stop codons are not allowed, because such events are usually not tolerated by a functional protein. The diagonal elements of Q are defined by the mathematical requirement that the rows sum up to zero (i.e., $q_{ii} = -\sum_{j \neq i} q_{ij}$). Given such a Q, the substitution probability matrix of the Markov process can be calculated as $P(t) = (p_{ij}(t)) = e^{Qt}$, where each entry $p_{ij}(t)$ is the probability that codon i is substituted by codon j after time t.

In the ECM (see Kosiol et al. 2007), the instantaneous substitution rate from codon i to codon $j \neq i$ is defined as

\[q_{ij} = s_i \tau_j \]

where $s_i = s_j$ is called an exchangeability parameter, and τ_j is the frequency of codon j. Therefore, the number of free parameters in the ECM is $n^3 = 1,890$ for s_j and further 60 for τ_j, so 1,850 in total.

Because such a large number of free parameters is undesirable, we tested whether the ECM could maintain a comparable performance with greatly reduced complexity. Our new version of the ECM, the simplified ECM, is obtained by summarizing all exchangeability parameters modeling MNSs with four parameters. The new exchangeability parameters are obtained setting the following constraints:

\[
q_{ij} =
\begin{cases}
 s_i \tau_j & \text{if } i \to j \text{ single nucleotide change} \\
 s_{2s} \tau_j & \text{if } i \to j \text{ double syn. nt change} \\
 s_{2ns} \tau_j & \text{if } i \to j \text{ double nonsyn. nt change} \\
 s_{3s} \tau_j & \text{if } i \to j \text{ triple syn. nt change} \\
 s_{3ns} \tau_j & \text{if } i \to j \text{ triple nonsyn. nt change}
\end{cases}
\]

thus the four parameters s_{2s}, s_{2ns}, s_{3s}, and s_{3ns} replace 1,567 parameters of the ECM (eq. 1), reducing the total number of free parameters to 323. For small data sets, the estimation of s_{2s} and s_{3s} might be based only on few MNSs (supplementary table S2, Supplementary Material online) and thus will not be reliable (supplementary fig. S8, Supplementary Material online). Nevertheless, the estimation of these parameters is less prone to overfitting than the estimation of those in the classical ECM.

Supplementary files S1 and S2, Supplementary Material online, define, respectively, the ECM and the simplified ECM as phylo-grammars. They are the input files we used in XRATE to estimate the model parameters. We also devised other variants of the general ECM and investigated different levels of model complexity without presumptions about what might best fit real sequence data (see supplementary text, Supplementary Material online).

Empirical Codon Hidden Markov Models

When modeling CDS evolution, the process is often assumed to be identical for all sites in a sequence. However, some aspects of the evolution are variable across sites, such as selective pressure on amino acid state and on codon usage. To account for variation in these and other factors, we use an HMM. We assume that each codon in the sequence alignment can belong to any of a certain number of classes (the number of classes is fixed a priori). The probability for a
codon to fall in one class also depends on the class of nearby codons (each codon is not independent of the others). In this model, evolutionary features can differ for each class, but the process is assumed to be homogeneous along the phylogeny.

In particular, here we focus on modeling two variable aspects in sequence evolution: codon usage (with codon usage site classes or cu-classes) and nonsynonymous substitution rate (with R-classes, see later).

Given any two HMM site classes, C₀ and C₁, we define the free parameter τ₀₁ as the probability that a codon belongs to C₁ conditioned on the previous codon belonging to C₀. Similarly, τ₁₀ represents the probability that a codon belongs to C₀ conditioned on the previous codon belonging to C₁ (consequently τ₀₀ = 1 − τ₀₁ and τ₁₁ = 1 − τ₁₀). For a more detailed description of the HMM parameter space, see the supplementary text, Supplementary Material online.

Although some ecHMM parameters are defined for a single class, most of them are shared among classes. For example, to model variation in codon usage, we define a set of 60 free parameters (|Π(k)|) describing codon frequencies for each class k. In contrast, all the exchangeability parameters have the same values for all K classes. The instantaneous rates for cu-class k are therefore:

\[q_{ij}^{(k)} = s_{ij}^{(k)} \tau_{ij}^{(k)}, \]

for any \(k \in \{0, 1, \ldots, K - 1\} \), where K is the total number of classes. An ecHMM with K cu-classes will be called K cu-ecHMM (K codon usage classes ecHMM).

Alternatively, to model variation in the total nonsynonymous substitution rate, we use one parameter R in each class (R-class). Here R(k) (k ∈ \{0, 1, \ldots, K-1\}) represents the relative nonsynonymous rate in class k with respect to the first class (R(0) = 1). R has a general discrete distribution among classes \{1, \ldots, K - 1\}. The instantaneous rates for R-class k are:

\[q_{ij}^{(k)} = \begin{cases} s_{ij}^{(k)} \tau_{ij}^{(k)} & \text{if } i \rightarrow j \text{ syn. change} \\ R(k) s_{ij}^{(k)} \tau_{ij}^{(k)} & \text{if } i \rightarrow j \text{ nonsyn. change} \end{cases} \]

The nonsynonymous rate for the first class (k = 0) is only determined by the exchangeabilities \(s_{ij} \). Also, the exchangeability values are shared among all the classes. The only difference between R and the parameter \(\omega \) of classical codon models is that here \(R = 1 \) does not need to correspond to neutrality. We call this model with K classes KR-ecHMM.

In all ecHMMs, the \(s_{ij} \) are as defined in the simplified ECM (eq. 2). The \(s_{ij} \) parameter values are always shared among classes and are estimated together with the class-specific parameters, \(R(k) \) or \(|\Pi(k)| \). More ecHMMs can be obtained defining cu-classes (eq. 3) and R-classes (eq. 4) within a single model. For example, we combine two R-classes and two cu-classes into a 2R-2cu-ecHMM. This model is presented as input phylo-grammar for the software XRATe in supplementary file S3, Supplementary Material online. This and further types of ecHMM are presented and discussed in the supplementary text, Supplementary Material online.

Models for Positive Selection Tests

The classical Goldman–Yang model M0 (Goldman and Yang 1994; Yang et al. 2000) is defined as

\[q_{ij} = \begin{cases} \pi_j & i \rightarrow j \text{ syn. transversion} \\ \kappa \pi_j & i \rightarrow j \text{ syn. transition} \\ \omega \pi_j & i \rightarrow j \text{ nonsyn. transversion} \\ \kappa \omega \pi_j & i \rightarrow j \text{ nonsyn. transition} \\ 0 & i \rightarrow j \text{ MNS} \end{cases} \]

where \(\kappa \) is the transition/transversion rate ratio, and \(\omega \) is the nonsynonymous/synonymous rate ratio.

Here, we modify this model to include the genome-wide empirical codon exchangeability parameter estimates \(s_{ij} \). This way, the number of free parameters remains unchanged, but the new model accounts for MNSs and for different instantaneous substitution rates among codons:

\[q_{ij} = \begin{cases} \hat{s}_{ij} \pi_j & i \rightarrow j \text{ syn. transversion} \\ \hat{s}_{ij} \kappa \pi_j & i \rightarrow j \text{ syn. transition} \\ \hat{s}_{ij} \omega \pi_j & i \rightarrow j \text{ nonsyn. transversion} \\ \hat{s}_{ij} \kappa \omega \pi_j & i \rightarrow j \text{ nonsyn. transition} \\ \hat{s}_{ij} & i \rightarrow j \text{ Syn. MNS} \end{cases} \]

Here, the \(\hat{s}_{ij} \) are constants, whereas \(\omega, \kappa, \pi_j \) are free parameters. We call this model ecM0. Note that despite including empirical estimates, this model has only a small number of free parameters. Therefore, this model is appropriate for data sets as small as a single gene.

ECM exchangeability parameters \(\hat{s}_{ij} \) (eq. 6) implicitly include information about the genome-wide average transition/transversion rate \(\hat{\kappa} \) and the genome-wide average nonsynonymous/synonymous rate \(\hat{\omega} \). Therefore, values of \(\kappa \) and \(\omega \) in ecM0 (eq. 6) do not have necessarily the same interpretation as in M0 (eq. 5).

We do not correct for the difference in \(\kappa \) estimates, because we are not interested in interpreting or comparing them. In contrast, in eq. 6, we want to associate purifying selection to values of \(\omega \) below a certain threshold and positive selection to values above it. A natural choice for this threshold is \(1/\hat{\omega} \), once we have precisely defined \(\hat{\omega} \).

As an estimate of \(\hat{\omega} \), Kosiol et al. (2007) used

\[\hat{\omega} = \frac{\rho_0}{\rho_1} \frac{0.21}{0.79} \]

where \(\rho_0 = \sum_{i,j \in \mathcal{N}} \hat{\pi}_{ij} \hat{\theta}_{ij} + \hat{\pi}_{ij} \) is the total substitution rate of the set of nonsynonymous codon pairs \(\mathcal{N} \). Similarly \(\rho_1 = \sum_{i,j \in \mathcal{S}} \hat{\pi}_{ij} \hat{\theta}_{ij} \) is the total substitution rate over the set of synonymous codon pairs \(\mathcal{S} \). The constant 0.79/0.21 associated with neutrality was determined by Nei and Gojobori (1986).

This method is not robust to variation in the transition/transversion rate ratio. For example, if we consider the model M0 (eq. 5) as an ECM estimate, we would like \(\hat{\omega} \approx \omega \) to approximate \(\omega \). However, keeping \(\omega \) constant in M0 and varying \(\kappa \), the estimate \(\hat{\omega} \) changes (supplementary table S1, Supplementary Material online). This happens because, at third codon position, most nonsynonymous substitutions are
transversions, or equivalently most transitions are synonymous. Increasing κ therefore increases ρ, relative to ρ_a.

An appropriate definition of $\hat{\omega}$ is fundamental for the identification of positive selection. Therefore, we pursue a different, more robust, strategy, aimed at having an $\hat{\omega}$ that gives values comparable to the ω of M0. The idea is to estimate nonsynonymous/synonymous rate ratios for transitions and transversions separately and then average them. More specifically, we estimate a distinct nonsynonymous/synonymous rate ratio for transitions and transversions, or equivalently most transitions are synonymous. Increasing κ therefore increases ρ, relative to ρ_a.

$$\hat{\omega}_{n_1 \to n_2} = \frac{\sum_{(i,j) \in N_{n_1 \to n_2}} \hat{P}_{i,j}}{\sum_{(i,j) \in \hat{P}_{i,j}}} .$$

and the average synonymous rate for mutation $n_1 \to n_2$

$$\tilde{\omega}_{n_1 \to n_2} = \frac{\sum_{(i,j) \in S_{n_1 \to n_2}} \hat{P}_{i,j}}{\sum_{(i,j) \in \hat{P}_{i,j}}} .$$

Here N_{n_1,n_2} (S_{n_1,n_2}) is the set of nonsynonymous (synonymous) codon pairs (i,j) corresponding to substitutions from codon i to j that involve a single mutation ($n_1 \to n_2$).

The nonsynonymous/synonymous rate ratio for $n_1 \to n_2$ is then

$$\hat{\omega}_{n_1 \to n_2} = \frac{\tilde{\omega}_{n_1 \to n_2}}{\tilde{\omega}_{S_{n_1 \to n_2}}} ,$$

and the final $\hat{\omega}$ is obtained by averaging $\hat{\omega}_{n_1 \to n_2}$ over all mutations:

$$\hat{\omega} = \frac{\sum_{n_1 \to n_2} \hat{\omega}_{n_1 \to n_2}}{\sum_{n_1 \to n_2} \hat{\omega}_{S_{n_1 \to n_2}}} .$$

If we consider the model M0 as a special case of an ECM, we observe that $\hat{\omega}$ recovers ω correctly, independently of κ (supplementary table S1, Supplementary Material online). To keep the notation simple, we multiply all nonsynonymous $\hat{\omega}_{i,j}$ (eq. 6) by the factor $1/\hat{\omega}$ so that $\omega = 1$ in the ecM0 will correspond to neutrality as in M0.

After this modification, Model ecM0 can be used to estimate the average selective pressure on amino acids within a gene. However, to infer positive selection limited to only a few sites of a gene, we need a model allowing for different ω at different sites. Among-site variation of ω can be described by any of several probability distributions. The simplest site models use the general discrete distribution with a prespecified number of site classes K. Each site class $i = 0, 1, \ldots, K - 1$ has a specific ratio parameter ω_i and a specific proportion p_i of sites belonging to it. The discretized versions of continuous distributions (such as gamma and beta) or mixture distributions have been also successfully applied to positive selection scans (Yang et al. 2000).

Here, we modify the most popular models to include empirical parameter estimates (as we did for ecM0 in eq. 6). Analogous to M1a (Yang et al. 2005), we define ecM1a as a model with two site classes, one for purifying selection ($\omega_1 < 1$) and the other for neutrality ($\omega_1 = 1$). This model lacks sites with $\omega > 1$ and, therefore, can be used as a null hypothesis in tests of positive selection. Analogous to the alternative model of M1a, M2a (Yang et al. 2005), the alternative model ecM2a extends ecM1a by adding a further (third) site class with $\omega_3 > 1$ to accommodate sites evolving under positive selection.

Similarly, we modify another test comparing the model M7 versus M8 (Yang et al. 2000). The model ecM7 has a beta-distributed ω (with $0 < \omega < 1$), whereas ecM8 has a discrete class for positive selection ($\omega > 1$) and a beta-distributed ω (with $0 < \omega < 1$) in the rest of the codons. We approximate the beta distribution with 10 site classes. Significance of the likelihood ratio tests (LRT) was determined at the 5% and 1% level with a χ^2 distribution. A summary of these models is given in table 1.

We will provide our modified version of codeml (from PAML 4.2) that we used for tests of positive selection with empirical models upon request.

Genomic Data Sets

We trained our models on codon alignments of a subset of the 12 Drosophila genomes (Stark et al. 2007) consisting of D. melanogaster (Dmel), D. simulans (Dsim), D. yakuba (Dyak), and D. ananassae (Dana). The choice of species was made to minimize incomplete lineage sorting (see Pollard et al. 2006) and saturation caused by large divergence. For some of the analyses, we added a second Dmel sequence derived from the consensus of 5 full-genome sequenced individuals from the Raleigh population of the 50 Drosophila genomes project (Release 1.0, http://www.dpgp.org; last accessed 7 Dec 2012).

Whole-genome CDS alignments were downloaded from the UCSC table browser (http://genome.ucsc.edu; last accessed 7 Dec 2012). We included only one alignment for each Dmel CDS and excluded CDS alignments with more than 25% of divergence between any two species. We excluded CDS alignments with nonsense codons or frame shifts. We also trimmed start and stop codons (stop codons could thereby be excluded from the models). Number of codons and number of CDSs for each data set are listed in table 2.

We compared ECM estimates from three Drosophila clades. The melanogaster clade was represented by the alignments of Dmel and Dsim, the ananassae clade by alignments of Dana and D. bipectinata (Dbip), and the pseudoobscura clade by alignments of D. lowei (Dlow) and D. pseudoobscura (Dpse). CDSs of Dana were downloaded from ftp://ftp.drosophila.net (D. ananassae version r1.3_FB2011_05; last accessed 7 Dec 2012). Preliminary Dbip sequence data were obtained from Baylor College of Medicine Human Genome Sequencing Center website at http://www.hgsc.bcm.tmc.edu (last accessed 7 Dec 2012). We aligned Dana and Dbip as described.
in the supplementary text, Supplementary Material online. The same protocol was used for the species pair *Dpse–Dlow* by Palmieri et al. (personal communication) who kindly gave us access to the alignments.

Finally, we performed a positive selection scan on a real data set of 181 immune system genes that was created by Saccton et al. (2007). Orthologous gene alignments were kindly provided to us by the author. These alignments comprise six species: *Dmel, Dsim, D. sechellia (Dsec), Dyak, D. erecta (Dere)*, and *Dana*.

Simulations

CDS alignments were simulated using the program SimGram (Varadarajan et al. 2008) in the DART package.

To test the accuracy of the estimation procedure, we simulated data sets using three different ECM real data estimates (from the two, three, and four species *melanogaster* data sets), three different phylogenetic trees estimated from real data (again the two, three, and four species *melanogaster* data sets), and seven different total alignment lengths (5×10^4, 2×10^5, 5×10^5, 10^6, 5×10^6, 10^7, and 3×10^6 codons). We then estimated ECMs from these simulated data sets and checked how well they recovered the true ECMs.

We also tested the accuracy of the estimation of the 2cu-ecHMM (a 2 cu-ecHMM with $K = 2$). We simulated data according to the 2cu-ecHMM estimated on *Dmel–Dsim* and according to the tree from the same data. Although single exons where simulated with the same mean length as in real data, the total alignment length was 10^4, 2×10^5, 5×10^5, 10^6, 2×10^7, 5×10^7, or 10^8 codons.

We created a third set of simulated data to compare the performance of mechanistic and empirical tests of positive selection. Each scenario consists of 1,000 genes, each 500 codons long. The simulations were performed on three different phylogenetic trees (the ones estimated on *Dmel–Dsim*, on *Dmel–Dsim–Dyak*, and on *Dmel–Dsim–Dsec–Dyak–Dere–Dana*). However, we always simulated under the 2cu-ecHMM substitution model estimated from the *Dmel–Dsim* alignments (but using only one of the two estimated sets of codon frequencies). The four scenarios we chose to study the statistical behavior of our tests were inspired by Wong et al. (2004): we have two scenarios with positive selection and two without (see supplementary table S10, Supplementary Material online, for detailed description of the parameter choices). Corresponding selective pressures are obtained by scaling the nonsynonymous substitution rates in the empirical model, so that a neutral codon is simulated according to an ECM with $\omega = 1$. Choosing these scenarios made our results comparable to those of Wong et al. (2004), although those were obtained simulating under classical mechanistic codon models, that is, without MNSs.

The last simulated data set was created to test the performance of ecHMMs in detection of positive selection. In contrast to the other simulations, the codon sites were simulated nonindependently, such that each codon position had a high probability of having the same selective pressure than the previous one (see supplementary table S10, Supplementary Material online, for details). Again we simulated 1,000 genes, each of 500 codons, for each of four scenarios, two with positive selection and two without. We use a tree with eight species and with uniform branch lengths. Furthermore, we use the ECM estimated on *Dmel–Dsim–Dyak* to simulate substitutions.

All details for all simulation scenarios are summarized in supplementary table S10, Supplementary Material online.
Tree Estimation
For the estimation of empirical models with Xrate, and for simulations with SimGram, we used phylogenetic trees that were estimated on whole-genome data sets using baseml (Yang 2007) with model HKY85 + Γ. Whenever simulated data were used, the correct tree was fixed for the estimation of the models, except in positive selection tests with codeml (Yang 2007), where branch lengths were re-estimated with codeml itself.

Results and Discussion
Simplified ECM
We estimated codon models with various levels of complexity to compare model performances and estimates of MNSs. In particular, we were interested in investigating whether the complexity of the ECM could be reduced without affecting its performance. To this end, models were fitted on data sets spanning different levels of species divergence. When only Dmel and Dsim were aligned, their divergence (calculated here as the proportion of mismatching bases) was 4.0%. When Dyak is also included, the divergence between Dmel and Dsim is reduced because many poorly conserved CDSs are lost from the data set, and the divergence between Dmel and the outgroup (Dana) becomes 7.7%. Similarly, when Dana is added, the divergence between Dmel and the outgroup Dana is 15.8%. Performances of codon models were compared with AIC (Akaike 1974) and BIC (Schwarz 1978) scores.

Generally, we find that more complex models tend to fit the data better, and this is even more pronounced if using AIC instead of BIC (table 2 and supplementary table S3, Supplementary Material online). The empirical models outperformed the codon extension of the nucleotide general time reversible (GTR) model (see supplementary text, Supplementary Material online), as expected, because the latter model cannot account for amino acid affinities. Our Combined model (obtained by combining an empirical amino acid and a nucleotide GTR model into a codon model, see supplementary text, Supplementary Material online) was also outperformed by ECMs, although it contains empirical amino acid affinities and mutation rate parameters. As both the nucleotide GTR and the Combined models were strongly and generally outperformed (supplementary table S3, Supplementary Material online), both were removed from further analysis.

Interestingly, the simplified ECM was always preferred by BIC score to the standard ECM (but not by AIC score, table 2). The nonreversible ECM (see supplementary text, Supplementary Material online) only performed better than the reversible ECMs when more diverged species such as Dyak and Dana were added to the closely related species pair Dmel–Dsim. The reason might be that in the Dmel–Dsim data set, there are fewer substitutions, and this favors simpler models.

We investigated the accuracy of our methods in estimating ECMs and recovering evolutionary features. For this purpose, we used data sets simulated according to three different phylogenetic trees and three different ECMs (see Materials and Methods). We then estimated an ECM and a simplified ECM on each data set and compared the estimated parameters with the true ones used for simulations. As a measure of the estimation error, we used the Euclidean distance between the vector of parameter estimates, and the vector of true parameters, normalized by the norm of the vector with true parameters. As expected, with increased alignment length, the estimation improved (fig. 1 and supplementary figs. S2 and S3, Supplementary Material online). On data simulated according to a short-branched phylogenetic tree, and according to genomic sizes (2, 000, 000 codons or more), the model parameters were recovered with error rate below 5% (fig. 1 and supplementary figs. S2 and S3, Supplementary Material online).

For the largest tree (Dmel, Dsim, Dyak, and Dana), the estimates were unsatisfactory. This suggests that ECMs estimated on high-divergence data sets should not be used for interpreting evolutionary patterns, although they could still be used to describe sequence evolution because of their better fit to data in terms of BIC and AIC scores. Increasing the amount of data to beyond 10⁶ codons had generally negligible effects on the accuracy of the estimates.

We also determined the proportion of MNSs in estimated ECMs, defined as:

\[
\rho_{\text{MNS}} = \frac{\sum_{(i,j) \in \mathcal{M}} \hat{q}_{ij}}{\sum_{(i,j) \in \mathcal{M}} \hat{q}_{ij}},
\]

where \(\mathcal{M}\) is the set of pairs of codons separated by at least two nucleotide changes.

We estimated between 2.3% and 4.4% of MNSs in real data (table 2). The simplified ECM always showed lower proportions of MNS than the standard ECM. We interpret this as a symptom of overfitting for the standard model (see later). It is also noteworthy that for lower divergences (e.g., Dmel and Dsim), estimates of MNS rates were smaller than for higher divergences (e.g., Dmel, Dsim, Dyak, and Dana).

In simulated data sets with low and medium divergence levels, estimates of MNS rate were relatively precise, in fact the difference between true and estimated proportion of MNSs was below 1% (fig. 2). For the most diverged simulated data set, large MNS rates (far above the simulated ones) were estimated, suggesting that saturation and overfitting have contributed to MNS rate overestimation in this and in previous studies with ECMs (e.g., Kosiol et al. 2007). Other causes leading to MNS rate overestimation in real data are site and branch evolutionary heterogeneity. In fact, we later show that accounting for variability of evolutionary rates among sites reduces MNSs estimates.

Schröder et al. (2011) estimated that approximately 3% of mutations in eukaryotes are due to multiple nucleotide mutations (MNMs, mutations affecting simultaneously multiple nearby nucleotides). Their estimates were derived mutation accumulation (MA) experiments data comprising several organisms (including Dmel). In MA experiments, mutations are accumulated while avoiding the influence of selective forces. There are three reasons why the estimate by
Schrider et al. has to be considered an upper bound for our MNS rate. First, they analyzed both coding and non-CDSs, and in CDSs, MNMs are likely to be deleterious and, therefore, to be purged by selection. Second, Schrider et al. considered mutations separated by less than 20 bp to be MNMs, whereas we only considered changes within the same codon as MNSs. Third, we estimated the proportion of MNS events and not the proportion of nucleotides modified by MNSs, so that our estimates should be less than half of the 3% estimated by Schrider et al.

ECMs Estimated on Different Drosophila Clades

We repeated the analysis of the previous section on a larger collection of data sets to compare evolution among different clades of the genus *Drosophila* and to seek confirmation of our previous results. As described in Materials and Methods section, we obtained sets of alignments for two additional pairs of *Drosophila* species. The first alignment is between *Dana* and *Dbip* (from the *ananassae* clade) and the second between *Dpse* and *Dlow* (from the *pseudoobscura* clade). The *melanogaster* clade is represented by the *Dmel–Dsim* alignment. From the observations of the previous section, we deduced that we could reliably estimate ECMs from these three pairwise alignments. We therefore used these three data sets to estimate all previously introduced ECMs. The comparison of different models led to the same ranking and confirmed all other observations of the previous section (table 3 and supplementary table S4, Supplementary Material online).

Here, we focus on the comparison between clades. We wanted to assess differences in CDS evolution among the clades and whether the difference scales with their phylogenetic relatedness. It is a concern of this analysis that results can be biased by the different levels of divergence between species within the pairs. Although the divergence *Dmel–Dsim* is comparable to that of *Dpse–Dlow* (in the first alignment 4.01% of the bases are substituted, in the second 3.58%), *Dana–Dbip* shows much larger divergence (8.62%). In more divergent alignments, we found smaller estimates of the non-synonymous/synonymous rate ratio (\(\hat{\omega} \approx 0.14 \) in *Dmel–Dsim*, \(\hat{\omega} \approx 0.15 \) in *Dpse–Dlow*, and \(\hat{\omega} \approx 0.07 \) in *Dana–Dbip*), probably due to the fact that with higher divergence we can only align more conserved genes. We also cannot exclude that other effects may act on the most diverged pair, such as higher saturation, which could make the parameters estimates different from those from the other data sets.

However, despite all these possible biases, we found that CDS evolution is more similar between the *melanogaster* and *ananassae* clades than it is for both compared to the *pseudoobscura* clade (table 4 and supplementary table S5, Supplementary Material online). This is consistent with the fact that *melanogaster* and *ananassae* are more phylogenetically related to each other than they are to *pseudoobscura*. This result held when we compared instantaneous rates \(q_{ij} \), exchangeability parameters \(s_{ij} \), or codon frequencies \(\pi_i \) (table 4 and supplementary table S5, Supplementary...
Table 3. Performance of ECMs Estimated on Data from Different Drosophila Clades

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Number of Parameters</th>
<th>BIC Score(^a)</th>
<th>MNS Proportion(^b) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dmel–Dim: 47,689 CDSs and 5,578,031 codons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonrev. ECM</td>
<td>3,720</td>
<td>—</td>
<td>3.0</td>
</tr>
<tr>
<td>ECM</td>
<td>1,890</td>
<td>+9,279</td>
<td>3.2</td>
</tr>
<tr>
<td>Simpl. ECM</td>
<td>323</td>
<td>—8,409</td>
<td>2.6</td>
</tr>
<tr>
<td>2R-ecHMM</td>
<td>328</td>
<td>—102,306</td>
<td>0.8</td>
</tr>
<tr>
<td>2cu-ecHMM</td>
<td>387</td>
<td>—194,133</td>
<td>2.6</td>
</tr>
<tr>
<td>2R-2cu-ecHMM</td>
<td>398</td>
<td>—332,099</td>
<td>1.8</td>
</tr>
<tr>
<td>Dpsel–Dlow: 29,483 CDSs and 3,796,335 codons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonrev. ECM</td>
<td>3,720</td>
<td>—</td>
<td>2.7</td>
</tr>
<tr>
<td>ECM</td>
<td>1,890</td>
<td>—18,158</td>
<td>2.7</td>
</tr>
<tr>
<td>Simpl. ECM</td>
<td>323</td>
<td>—37,323</td>
<td>2.2</td>
</tr>
<tr>
<td>2R-ecHMM</td>
<td>328</td>
<td>—84,089</td>
<td>0.6</td>
</tr>
<tr>
<td>2cu-ecHMM</td>
<td>387</td>
<td>—139,756</td>
<td>2.1</td>
</tr>
<tr>
<td>2R-2cu-ecHMM</td>
<td>398</td>
<td>—218,253</td>
<td>1.4</td>
</tr>
<tr>
<td>Dana–Dip: 32,962 CDSs and 4,306,332 codons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonrev. ECM</td>
<td>3,720</td>
<td>—</td>
<td>4.5</td>
</tr>
<tr>
<td>ECM</td>
<td>1,890</td>
<td>+17,655</td>
<td>4.5</td>
</tr>
<tr>
<td>Simpl. ECM</td>
<td>323</td>
<td>+9,383</td>
<td>3.2</td>
</tr>
<tr>
<td>2R-ecHMM</td>
<td>328</td>
<td>—108,776</td>
<td>1.5</td>
</tr>
<tr>
<td>2cu-ecHMM</td>
<td>387</td>
<td>—155,564</td>
<td>2.7</td>
</tr>
<tr>
<td>2R-2cu-ecHMM</td>
<td>398</td>
<td>—277,451</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Note.—The best model for each data set according to BIC score is underlined.
\(^a\)BIC score difference between the current model and the non reversible ECM trained on the same data set.
\(^b\)Proportion of MNSs estimated by the model.
\(^c\)Nonreversible empirical codon model.
\(^d\)Simplified empirical codon model.
\(^e\)The ecHMM having two classes for nonsynonymous/synonymous rate variation and two classes for codon usage variation.

Table 4. Comparisons between Models Estimated on Different Clades

<table>
<thead>
<tr>
<th>Feature(^a)</th>
<th>Dmel–Dim vs. Dana–Dip (%)</th>
<th>Dmel–Dim vs. Dpsel–Dlow (%)</th>
<th>Dana–Dip vs. Dpsel–Dlow (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECM Q</td>
<td>17.3</td>
<td>20.3</td>
<td>23.8</td>
</tr>
<tr>
<td>Simpl. ECM Q</td>
<td>16.8</td>
<td>20.3</td>
<td>23.1</td>
</tr>
<tr>
<td>2R-2cu-ecHMM Q</td>
<td>15.2</td>
<td>17.8</td>
<td>22.1</td>
</tr>
<tr>
<td>ECM</td>
<td>7.0</td>
<td>12.5</td>
<td>12.7</td>
</tr>
<tr>
<td>ECM nucleotide</td>
<td>2.3</td>
<td>11.5</td>
<td>15.4</td>
</tr>
</tbody>
</table>

Note.—Comparison of parameter vectors estimated on different clades. Values show the Euclidean distances between vectors, normalized by the average of the norm of the two vectors compared and expressed as a percentage.

\(^a\)Model feature that is compared between clades: "Q" is the instantaneous substitution rates matrix, "\(\pi\)" is the codon frequencies vector, and "Nucleotide" stands for the nucleotide instantaneous substitution rates matrix extracted from the ECM averaging the single-nucleotide synonymous substitution rates for each ordered pair of nucleotides.

Material online). Supplementary figures S4–S6, Supplementary Material online, show bubbleplot visualizations of the ECMs on the three different clades.

A cross validation experiment also indicated that the melanogaster and pseudoobscura clades have evolved differently.

We split both data sets into two subsets: one containing 99% of the CDSs (randomly chosen), used to train ECM substitution matrices, and the remaining 1% of CDSs, used to assess the goodness of fit of the models. The best performing model was the one trained on the same clade it was tested on (see supplementary text, Supplementary Material online).

Empirical Codon Hidden Markov Models

We estimated ecHMMs (see Materials and Methods) on the same data sets used previously for ECMs. In particular, we assessed whether empirical models that include site heterogeneity better describe the process of sequence evolution and which heterogeneity feature leads to the largest improvement. Models with HMM structure usually outperform models with multiple independent classes or models in which codon classes are constant along exons (see supplementary text and supplementary tables S6 and S7, Supplementary Material online).

Using ecHMMs that account for variation in selective pressure (R-ecHMM, eq. 4), as well as ecHMMs modeling variation in codon usage (cu-ecHMM, eq. 3), always resulted in a significant increase of fit with respect to ECMs (tables 3 and 5 and supplementary table S4, Supplementary Material online).

However, using more than two site classes of the same type only brought a small fit increase (supplementary table S8, Supplementary Material online). The combination of the two class types in the same model (the 2R-2cu-ecHMM, see supplementary text, Supplementary Material online) always gave the best fit to data. Furthermore, R-ecHMM and cu-ecHMM were preferable to the modeling of variable transition/transversion rate (x-ecHMM), MNS rate (MNS-ecHMM), or total substitution rate (T-ecHMM) (supplementary table S7, Supplementary Material online). We also observed a general decrease in the estimated rate of MNSs in ecHMMs with respect to simple ECMs (table 5 and supplementary table S8, Supplementary Material online), similarly to what shown by Smith et al. (2003) regarding MNMs.

We tested whether an ecHMM can recover parameters from data with acceptable error and better precision than simple ECMs. We simulated alignments of different length under the 2cu-ecHMM (see Materials and Methods). On these, we estimated three models: the cu-ecHMM, the ECM, and the simplified ECM. The 2cu-ecHMM correctly recovered the codon frequencies of both classes (fig. 3). It also slightly improved the estimation of exchangeability rates (supplementary fig. S7, Supplementary Material online) and MNS rates with respect to simple ECMs (fig. 4). We also show the error in estimating each MNS parameter of the simplified ECM individually (supplementary fig. S8, Supplementary Material online).

In contrast, when simulating and estimating under the 2RechHMM, we did not recover the correct parameter values. The problem is likely a partially flat likelihood surface (see supplementary text, Supplementary Material online). This means that although the R-ecHMM and 2R-2cu-ecHMM might be often preferable in likelihood, their parameter estimates (in particular nonsynonymous rates) should not be
considered reliable. Therefore, we recommend the use of the cu-ecHMM instead.

The computational time required for the estimation of a 2cu-ecHMM from 10^6 codons with a 2.66 GHz processor on a MacPro5.1 was \(6h \) (see supplementary table S9, Supplementary Material online, for more computational times of this and other ECMs).

Table 5. Performances of ecHMMs on Real Data

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Number of Parameters</th>
<th>BIC Score</th>
<th>MNS Proportion (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Dmel–Dsim</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2cu-ecHMM</td>
<td>387</td>
<td>-181,736</td>
<td>2.3</td>
</tr>
<tr>
<td>3cu-ecHMM</td>
<td>453</td>
<td>-217,866</td>
<td>2.3</td>
</tr>
<tr>
<td>4cu-ecHMM</td>
<td>521</td>
<td>-231,229</td>
<td>2.3</td>
</tr>
<tr>
<td>2R-ecHMM</td>
<td>328</td>
<td>-100,305</td>
<td>2.0</td>
</tr>
<tr>
<td>3R-ecHMM</td>
<td>335</td>
<td>-105,603</td>
<td>2.0</td>
</tr>
<tr>
<td>4R-ecHMM</td>
<td>344</td>
<td>-112,395</td>
<td>2.0</td>
</tr>
<tr>
<td>2R-2cu-ecHMM(c)</td>
<td>398</td>
<td>-297,460</td>
<td>1.7</td>
</tr>
<tr>
<td>Dmel–Dsim–Dyak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4cu-ecHMM</td>
<td>521</td>
<td>-239,972</td>
<td>2.5</td>
</tr>
<tr>
<td>4R-ecHMM</td>
<td>344</td>
<td>-289,980</td>
<td>2.3</td>
</tr>
<tr>
<td>2R-2cu-ecHMM(c)</td>
<td>398</td>
<td>-428,746</td>
<td>2.2</td>
</tr>
<tr>
<td>2Dmel–Dsim–Dyak–Dana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4cu-ecHMM</td>
<td>521</td>
<td>-228,193</td>
<td>2.4</td>
</tr>
<tr>
<td>4R-ecHMM</td>
<td>344</td>
<td>-283,604</td>
<td>2.1</td>
</tr>
<tr>
<td>2R-2cu-ecHMM(c)</td>
<td>398</td>
<td>-413,221</td>
<td>2.1</td>
</tr>
<tr>
<td>2Dmel–Dsim–Dyak–Dana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4cu-ecHMM</td>
<td>521</td>
<td>-61,579</td>
<td>2.7</td>
</tr>
<tr>
<td>4R-ecHMM</td>
<td>344</td>
<td>-111,026</td>
<td>2.7</td>
</tr>
<tr>
<td>2R-2cu-ecHMM(c)</td>
<td>398</td>
<td>-131,030</td>
<td>2.7</td>
</tr>
</tbody>
</table>

NOTE.—The best model for each data set according to BIC score is underlined.

\(^a \) BIC score difference between the current model and the simplified ECM trained on the same data set.

\(^b \) Proportion of MNSs estimated by the model.

\(^c \) The ecHMM having two classes for nonsynonymous/synonymous rate ratio variation and two classes for codon usage variation.

Application of ECMs and ecHMMs to Tests of Positive Selection

We assessed the performance with respect to the power and the amount of false positives for the new LRTs of positive selection. ecM1a–ecM2a (empirical with discrete \(\omega \) classes) and ecM7–ecM8 (empirical with beta-distributed \(\omega \)) were compared, respectively, to the classical tests M1a–M2a (mechanistic with discrete classes) and M7–M8 (mechanistic with beta-distributed \(\omega \)), on 1,000 genes simulated according to the same ECM used to define ecM0 (see Materials and Methods). Model estimations were here performed with a modification of codeml, which is part of the PAML package (version 4.2).

We used some of the scenarios simulated by Wong et al. (2004) that showed that the standard tests for positive selection are conservative. However, for standard tests M1a–M2a

![Fig. 3. Estimation error of codon frequencies with 2cu-ecHMM.](https://academic.oup.com/mbe/article-abstract/30/3/725/1041198)

![Fig. 4. Estimation of MNS rate with 2cu-ecHMM.](https://academic.oup.com/mbe/article-abstract/30/3/725/1041198)
and M7–M8, we observed high proportions of false positives (table 6), often above acceptable levels, especially with small phylogenetic trees (e.g., 26.9% and 28.0% for the Dmel–Dsim tree). In contrast to Wong et al. (2004), we simulated with an ECM and therefore generated MNSs. These MNSs are not accounted for by classical models such as M1a–M2a or M7–M8 and will be interpreted as multiple substitutions clustered within the same codon and same branch. If these substitutions are nonsynonymous, they represent a signal of positive selection, especially with a small number of species.

For the analysis based on empirical models ecM1a–ecM2a and ecM7–ecM8, we found that the new tests are more conservative than the standard ones, having both acceptable false positives and reduced power (table 6). Alternatively, the problem of high false positives in classical tests could be solved by requiring a more stringent significance level, but this approach lowers the power of classical tests (supplementary fig. S9, Supplementary Material online). The test ecM1a–ecM2a found no positive genes.

Finally, we assessed whether the introduction of HMM structure could improve the detection of within-gene positive selection. In principle, this could happen if sites with positive selection tend to cluster (hypothesis confirmed in supplementary text, Supplementary Material online). The tests ecM1a–ecM2a and ecM7–ecM8 were also detected by M7–M8 (10 of 12), but nevertheless the reduction in number of positives is remarkable: from 29 to 12 (supplementary fig. S9, Supplementary Material online). The test ecM1a–ecM2a found no positive genes.

We addressed the question whether the different performance of the new tests was due to the generally more precise modeling of all substitutions or in particular to the inclusion of MNSs. For this reason, we used a modification of the new empirical models in which we set the rates of all multiple substitutions or in particular to the inclusion of MNSs. For this reason, we used a modification of the new tests restricted to cluster (hypothesis confirmed in Drosophila by Ridout et al. [2010]). Therefore, we modified the models ecM1a and ecM2a to include an HMM structure among the ω classes, the new models being called ecHMM1a and ecHMM2a (see supplementary text, Supplementary Material online). The tests were performed using Xrate and generally gave more conservative results than the previous tests performed with PAML.

Models (supplementary table S11, Supplementary Material online). Similarly, the restricted empirical tests showed high false positives. These two observations suggest that the difference in performance is mainly attributable to the introduction of MNSs in the model.

We also applied the new empirical tests to the real data set consisting of the Drosophila immune system gene alignments created by Sackton et al. (2007) (see Materials and Methods). We included the ECM parameter estimates from Dmel–Dsim–Dyak–Dana in the models ecM1a, ecM2a, ecM7, and ecM8, as constants. Most of the positives found with ecM7–ecM8 were also detected by M7–M8 (10 of 12), but nevertheless the reduction in number of positives is remarkable: from 29 to 12 (supplementary fig. S9, Supplementary Material online). The test ecM1a–ecM2a found no positive genes.

Table 6. Performance of Positive Selection Tests on Simulated Data

<table>
<thead>
<tr>
<th>Model</th>
<th>No Positive Selection (False Positives)</th>
<th>With Positive Selection (Power)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ0 = 0.5, μ1 = 0.5</td>
<td>μ0 = 0.5, μ1 = 0.5</td>
</tr>
<tr>
<td>M1a–M2a</td>
<td>11.8% (4.4%)</td>
<td>26.9% (13.1%)</td>
</tr>
<tr>
<td>ecM1a–ecM2a</td>
<td>3.1% (0.8%)</td>
<td>1.1% (0.5%)</td>
</tr>
<tr>
<td>M7–M8</td>
<td>14.0% (5.3%)</td>
<td>28.0% (13.5%)</td>
</tr>
<tr>
<td>ecM7–ecM8</td>
<td>3.5% (1.1%)</td>
<td>1.2% (0.5%)</td>
</tr>
</tbody>
</table>

The test ecM1a–ecM2a found no positive genes.

Note.—Proportion of tests detecting positive selection over 1,000 simulations. LRTs were performed with β = 0.05 significance according to a χ² distribution. Alignments were simulated according to substitution rates of the 2c–eHMM. The exchangeability parameters of the model used for simulations are also used as constants in ecM1a, ecM2a, ecM7, and ecM8. Simulations are performed under the phylogenetic trees estimated on real data and indicated in the table (see Materials and Methods and supplementary table S10, Supplementary Material online).
slightly outperform the ones with independent sites (supplementary table S12, Supplementary Material online), which suggests that inclusion of HMM structure can bring a small improvement in tests of positive selection.

Conclusions

In the future, we expect next-generation sequencing technologies to heavily contribute to the availability of genome-wide sequence data sets of related species. These data sets will represent both an opportunity and a challenge for the modeling of sequence evolution. In particular, there will be the chance to estimate ECMs from many distinct clades. With simulations, we have shown that it is possible to accurately estimate models as complex as ECMs from CDS alignments of pairs of related species of approximately 10^6 codons. Most studied species have exomes of this size or larger, making the ECM approach generically suitable. On the other hand, model estimation risks to be inaccurate if alignments of highly diverged species are used.

A precise model of sequence evolution needs to account for the heterogeneity of the genome. To accomplish this, we included an HMM structure in ECMs, and we used this new ecHMM to describe variation in codon usage. Using simulations, we determined that such a model can be correctly estimated in similar circumstances as for ECMs. We have estimated ECMs, ecHMMs, and other less complex models from several Drosophila data sets. Comparing AIC and BIC, we have established that ECMs, and in particular ecHMMs, guarantee a better fit to the data. Therefore, we recommend the use of these models in the future, in cases where there are enough data and low divergence. Furthermore, models estimated from different clades show large differences, above the error expected from simulations, and the difference between models grows as the phylogenetic distance between the compared clades increases. This result speaks against the use of models estimated on data sets with species different from the ones currently analyzed.

Finally, we applied our newly estimated models to one of the most important applications of codon models: the detection of positive selection. We found that, on data simulated according to an ECM, and with small phylogenies, classical positive selection tests show high levels of false positives, far above the standard levels of significance (5% or 1%). Tests performed with ECMS are immune to this problem but have reduced power. These results are conditional on the fact that the ECM is correctly estimated from data. If, for example, the data come from too diverged species, ECM estimation might be inaccurate and its performance might be reduced. In summary, we suggest that the use of codon models that include MNSs might eliminate spurious signals of positive selection coming from MMNs and compensatory substitutions, at the expense of power. We expect that these patterns would be even more pronounced for branch-site tests (Yang and Nielsen 2002), because an apparent acceleration of evolution at a specific codon and at a specific branch is barely distinguishable from an MNS event.

Supplementary Material

Supplementary material, files S1–S3, tables S1–S13, and figures S1–S9 are available at Molecular Biology and Evolution online (http://www.mbe.oxfordjournals.org/).

Acknowledgments

The authors thank Maria Anisimova, Andrea Betancourt, Raymond Tobler, and the anonymous reviewers for very helpful comments on this manuscript and Claus Vogl, Florian Clemente, and Oscar Westesson for insightful discussions. They are grateful to Mohamed Noor for sharing sequence reads of the D. lowei species and Baylor College of Medicine Human Genome Sequencing Center for data of the D. bipectinata species. Nicola Palmieri, Ram Vinay Pandey, Viola Nolte, Artyom Kopp, and Tim Sackton kindly provided us with sequences and orthologous alignments. This work was supported by a PhD fellowship of the Vetmeduni Vienna and the Austrian Science Fund (FWF, W1225-B20) to N.D.M., partially supported by NIH grant 2R01HG004483 to I.H., and partially supported by Austrian Science Fund to C.K. (FWF, P24551-B25).

References

