Involvement of ST6Gal I in the biosynthesis of a unique human colon cancer biomarker candidate, α2,6-sialylated blood group type 2H (ST2H) antigen

Received June 16, 2010; accepted July 4, 2010; published online July 23, 2010

Hiroaki Korekane¹, Akio Matsumoto¹,*,
Fumi Ota¹, Tomoko Hasegawa¹,
Yoshiko Misonou², Kyoko Shida²,
Yasuhide Miyamoto² and
Naoyuki Taniguchi¹, ²,³

¹Department of Disease Glycomics (Seikagaku Corporation), The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
²Department of Immunology, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-2 Nakamichi, Higashinari-ku, Osaka 537-8511; and ³Systems Glycobiology Research Group, Advanced Science Institute, Chemical Biology Department, RIKEN, 21-1 Hirosawa Wako, Saitama 351-0198, Japan

*Present address: Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan

¹Naoyuki Taniguchi, Department of Disease Glycomics (Seikagaku Corporation), The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan. Tel./Fax: +81 6 6879 8413, Email: tani52@wd5.so-net.ne.jp

The α2,6-sialylated blood group type 2H (ST2H) antigen (Fucα1-2(NeuAcα2-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer) is a fucoganglioside found in human colon cancer tissues. To elucidate an enzyme responsible for the ST2H antigen formation, we screened some partially purified candidate enzymes, α2,6-sialyltransferases, ST6Gal I and ST6Gal II, and α1,2-fucosyltransferases, FUT1 and FUT2 for their activities towards pyridylaminated type 2H (Fucα1-2Glcα1-4GlcNAcβ1-3Galβ1-4Glc-PA) or LST-tetrasaccharide c (LST-c: NeuAcα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc-PA) as acceptor substrates. Here we show the ST6Gal I transfers NeuAc from the donor CMP-NeuAc to the terminal Gal of PA-type 2H, which formed the ST2H antigen, but the others could not synthesize it. Using a recombinant ST6Gal I, enzymatic reactions with two types of acceptors, PA-type 2H and PA-lacto-N-neotetraose (LNNI), were kinetically analysed. On the basis of catalytic efficiency (Vmax/Km), the specificity of ST6Gal I towards the PA-type 2H was estimated to be 42 times lower than that for PA-LNNI. The overexpression of ST6Gal I in human colon cancer DLD-1 cells effectively resulted in the ST2H antigen formation, as judged by LC-ESI-IT-MS. Many lines of evidence suggest the up-regulation of ST6Gal I in human colon cancer specimens. Collectively, these findings indicate that ST6Gal I is responsible for ST2H antigen biosynthesis in human colon cancer cells.

It is well known that glycans on a cell surface or in extracellular space play important roles in cellular differentiation, adhesion and proliferation (1, 2). The biosynthesis of glycans is tissue-specific and is regulated under physiological and pathological conditions (3–5). Alterations in the oligosaccharide structures of glycosphingolipids (GSLs) in tumour cells occur in essentially all types of human cancer (6, 7). A series of GSLs aberrantly accumulated in cancerous tissues have been isolated and characterized (8–11) and it has been revealed that each type of tumour is characterized by an accumulation of specific types of GSLs having types 1 or 2 chain derivatives such as Lewisα (Leα), Lewisβ (Leβ), Lewisγ (Leγ) or dimeric Leα and their sialylated derivatives, observed in most human adenocarcinomas (9, 11–13), while GD3 has been observed in melanomas (14). A subsequent series of studies have indicated the functional significance of aberrant glycosylation in cancer malignancy, such as metastasis and invasion (6, 7, 15). Furthermore, our previously designed studies showed that a unique human colon cancer biomarker candidate, α2,6-sialylated blood group type 2H, the ST2H antigen [Fucα1-2(NeuAcα2-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer], was first found in human colon cancer tissues (16) and

Keywords: α1,2-fucosyltransferase/α2,
6-sialyltransferase/colon cancer/fucoganglioside/ST2H antigen.

Abbreviations: CID, collision-induced dissociation; EDTA, ethylenediaminetetraacetic acid; ESI, electrospray ionization; FUT, fucosyltransferase; GD3, NeuAcα2-8NeuAcα2-3Galβ1-4Glc; IT, ion trap; LC, liquid chromatography; Leα, Galβ1-3(Fucα1-4)GlcNAc-Leβ; Galβ1-4(Fucα1-3)GlcNAC-Leγ; Fucα1-2Galβ1-4(Fucα1-3)GlcNAC-Leδ; MS, mass spectrometry; lNLe, lactoneotetraosyl-ceramide; NP, normal phase; PNGase F, peptid N-glycosidase F; RP, reversed phase; SDS–PAGE, sodium dodecyl sulphate-polyacrylamide gel electrophoresis; SH, α2, 6-sialylated blood group H; ST2H, α2,6-sialylated blood group type 2H (Fucα1-2(NeuAcα2-6)Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer); ST6Gal, β-galactoside α2,6-sialyltransferase; Type 1, Galβ1-3GlcNAc; Type 2, Galβ1-4GlcNAc.
accumulated in colon cancer cells (17). The ST2H antigen was detected in the cancer cells of all 5 patients having liver metastasis and 4 other patients in whom liver metastasis had not been found, out of a total of 16 patients, though the biosynthetic process and the functional significance of this antigen has not yet been made clear. In view of its simple sugar chain structure, the biosynthetic pathway of the ST2H antigen is easily predicted, as shown in Fig. 1. Two β-galactoside α2,6-sialyltransferases, ST6Gal I (18) and ST6Gal II (19, 20), and two β-galactoside α1,2-fucosyltransferases, FUT1 and FUT2 (21), are candidate enzymes for the ST2H antigen biosynthesis. There are two possible routes for the ST2H antigen formation. One is that FUT1 and/or FUT2 initially act on the nLc4 structure, forming an α1,2-fucosylated nLc4 (type 2H) structure. ST6Gal I and/or ST6Gal II subsequently act on the formed type 2H structure, resulting in the formation of the ST2H antigen. The other possibility is that ST6Gal I and ST6Gal II initially act on the nLc4 as opposed to the first predicted route, forming an α2,6-sialylated nLc4 (LST-c) structure. FUT1 and/or FUT2 subsequently act on the LST-c structure, resulting in the formation of the ST2H antigen. Though the first steps of these two possible pathways, namely the processes of type 2H and LST-c formations, are already well known (22, 23), the final steps of the pathways, that is, ST2H antigen formation by α2,6-sialylation of type 2H or α1,2-fucosylation of LST-c by the candidate enzymes, are really hypothetical and have not yet been characterized. Thus, it is unclear which pathway actually works in an in vivo situation.

In this study, we screened the candidate enzymes, ST6Gal I, ST6Gal II, FUT1 and FUT2, for their activities in making the ST2H antigen as to whether or not the enzymes actually exhibit such an activity to form the ST2H antigen. Among the four glycosyltransferases screened, ST6Gal I was found to possess an activity that transfers a NeuAc from a donor CMP-NeuAc to the terminal Gal of a pyridylaminated (PA) type 2H structure in an α2,6-linkage, resulting in the formation of a PA-ST2H antigen. Using a purified recombinant ST6Gal I, kinetic parameters related to ST2H antigen formation were also compared with those associated with LST-c formation. The ST2H antigen expression was found to be induced by over-expressing the ST6Gal I in the human colon cancer cell line, DLD-1 cells. An activity forming the ST2H antigen, that is, α2,6-sialylation of the terminal position of Gal in PA-type 2H, was found to be certainly detectable in the homogenate of human colon cancer tissue. ST6Gal I is likely to be responsible for the formation of the ST2H antigen in human colon cancer tissue.

Experimental procedures

Materials

Lacto-N-neotetraose (LNnT, Galβ1-4GlcNAcβ1-3Galβ1-4Glc), Lacto-N-fucopentaose I (LNFP I, Fucβ1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc), Lewis-Y hexasaccharide (Le’ H, Fucβ1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1-4Glc) and LS-tetrasaccharide c (LST-c, NeuAcα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc) were purchased from Dextra Laboratories Ltd (Reading, UK). Cytidine 5'-monophospho-β-D-xylohexuronic acid (CMP-NeuAc), Glucosamine 5'-diphospho-β-D-glucose (GDP-Fuc), the anti-FLAG M1 antibody and FLAG peptide were from Sigma-Aldrich Co. (St Louis, MO, USA). Glycosyltransferase affinity Gel-cytidine 5'-diphosphate (CDP-Gel, ligand concentration: 15 μmol/ml) was acquired from Calbiochem-Novabiochem International Inc. (La Jolla, CA, USA). PNGase F came from Roche (Basel, Switzerland). Other common chemicals were obtained from Wako pure chemicals (Osaka, Japan) or Nacalai Tesque (Kyoto, Japan) unless otherwise specified.

Colon cancer tissue

The patients involved in this study had undergone simultaneous resections of primary colon tumours and liver metastases at Osaka Medical Center for Cancer and Cardiovascular Diseases (Osaka, Japan). The cancerous tissues were rapidly frozen with liquid nitrogen and stored at −80°C until use. All the studies that used clinical human samples in this study were carried out at Osaka Medical Center for Cancer and Cardiovascular Diseases. This study was approved by the Local Ethics Committee of Osaka Medical Center for Cancer and Cardiovascular Diseases. Informed consent was obtained from the patients.

Preparation of crude enzyme extract and partially purified glycosyltransferases

Frozen human colon cancer tissue was cut to a thickness of 20 μm with a cryostat microtome (CM 1900, Leica, Milton Keynes, UK). Twenty sections were collected and homogenized in 150 μl of 10 mM Tris–HCl (pH 7.4), and 0.25 M sucrose, supplemented with a

Fig. 1 Hypothetical pathway for ST2H antigen biosynthesis. Solid and dotted arrows indicate the pathways that are already known and unknown, respectively. Both FUT1 and FUT2 enzymes are active on the type 2 lactosamine chain structure and capable of making the type 2H structure, but FUT2 is known to show a little activity on the type 2 chain and a strong preference for the type 1 chain (37).
complete protease inhibitor cocktail (EDTA-free, Roche). After centrifugation at 600g for 5 min at 4°C, the resulting supernatant was used as a crude enzyme extract for the assay of the activity making the ST2H antigen structure. When freshly transfected in COS-1 cells, the majority of the enzyme activities expressed were found to be secreted out of the cells, as previously reported in the case of ST6Gal I transfected into COS-7 cells (24). Therefore, a conditioned medium of COS-1 cells transfected with each enzyme cDNA was used as an enzyme source for partial purification. Briefly, COS-1 cells were transiently transfected with pcDNA3.1/neohST6Gal I or pcDNA3.1/neohST6Gal II and the conditioned medium was collected and the protein portion was concentrated by ammonium sulphate precipitation (70% saturation). The resulting precipitate was dissolved in a small volume of 10 mM 2-(N-morpholino)ethanesulfonic acid (MES)-NaOH buffer (pH 7.0) containing 1 mM MnCl₂, 0.1% CHAPS and 20% glycerol, followed by desalting with a HiTrap desalting column (5 ml, GE Healthcare UK Ltd, Buckinghamshire, UK) that had been equilibrated with the same buffer. The desalted fraction was further concentrated with an Amicon Ultra-4 centrifugal filter device (Millipore Co., Billerica, MA, USA) and then incubated with 1 mM MnCl₂, 0.1% 1-butanol at 4°C for 4 h. The gel was thoroughly washed with the buffer and the bound proteins were eluted with a buffer containing 1 M NaCl. The eluted fraction was desalted and concentrated with a Microcon YM-10 centrifugal filter device (Millipore Co.) and then used for the activity assay. For the preparation of FUT1 and FUT2 fractions, the conditioned medium of HEK293 cells stably transfected with pFLAG-CMV-3-Dest-human FUT1 or human FUT2 was collected and the protein portion was fractionated by ammonium sulphate precipitation (50–70% saturation). The fraction was dissolved in a small volume of phosphate-buffered saline (PBS) (−) followed by desalting with a HiTrap desalting column (5 ml), pre-equilibrated with PBS (−). The desalted fraction was further concentrated with an Amicon Ultra-4 centrifugal filter device and the resulting concentrate was used for the activity assay. As a control fraction for each assay, a protein fraction was prepared from corresponding parental cells for each transfectant using the same procedure described earlier. The protein concentration was determined with a BCA protein assay kit (Pierce Biotechnology, Rockford, IL, USA) using bovine serum albumin (BSA) as standard.

Glycosyltransferase activity assays

Glycosyltransferase activities were assayed using PA-oligosaccharide substrates. The same fractions were incubated in an appropriate reaction mixture for the determination of each enzyme activity. In the assay using a crude extract of human colon cancer tissue, the activity making the ST2H antigen was assayed in a final volume of 20 μl consisting of 50 mM MES-NaOH buffer (pH 6.0), 1 mM MnCl₂, 100 mM 1-Fuc, 1% Triton X-100, 1 mM CMP-NeuAc, 10 μM PA-type 2H and 10 μl of the tissue extract. When the partially purified soluble FLAG-tagged FUT1 and FUT2 fractions were assayed, the reaction was carried out in a final volume of 10 μl using a reaction mixture consisting of 50 mM MES-NaOH buffer (pH 6.0), 1 mM MnCl₂, 0.1% Triton X-100, 1 mM bovine serum albumin (BSA), 5 μM PA-LNnT and 1 mM GDP-Fuc. The soluble ST6Gal I and ST6Gal II fractions were assayed in a final volume of 10 μl using a reaction mixture consisting of 50 mM MES-NaOH buffer (pH 6.0), 1 mM MnCl₂, 0.1% Triton X-100, 1 mM bovine serum albumin (BSA), 5 μM PA-LNnT and 1 mM CMP-NeuAc. Screening of the glycosyltransferase activities forming the ST2H antigen was carried out under the same conditions as above for each enzyme except that the acceptor substrates used were PA-type 2H for ST6Gal I and ST6Gal II, and PA-LSTc for FUT1 and FUT2. After incubation at 37°C for 16 h, the reaction was stopped by boiling for 3 min, followed by centrifugation at 20,000g for 5 min. The resulting supernatant was injected into a TSKgel ODS-80TM column (0.46 x 15 cm, Tosoh) to separate and quantify the products. The elution was performed isocratically at 55°C at a flow rate of 1 ml/min using either of the following mobile phase systems. Mobile phase I consisting of 50 mM acetic acid adjusted to pH 6.0 with triethylamine, containing 0.25% 1-butanol and mobile phase II consisting of 50 mM ammonium acetate to pH 6.0 containing 0.25% 1-butanol.

Electrospray ionization MS² analysis

Mass spectra of PA-oligosaccharides were obtained on a Finnigan LCQ Deca XP ion-trap mass spectrometer (ThermoFischer Scientific, Waltham, MA, USA) equipped with a nano offline source (AMR, Inc., Tokyo, Japan) connected to a Partec MS²μPLC system (Michrom BioResources, Inc., Auburn, CA, USA) as described earlier (17). MS² and MS³ of fucose containing PA-oligosaccharides were performed using sodiated ions instead of protonated ions because intramolecular fucose rearrangements have been found in the CID spectra of protonated ions, but not in sodiated ions produced from oligosaccharides derivatized at their reducing termini with aromatic amines, such as 2-aminobenzamide, that may lead to erroneous conclusions about the oligosaccharide sequence (25).

Purification of soluble recombinant human ST6GalI

COS-1 cells were transfected with the pFLAG-CMV-3-Dest-human ST6Gal I and selected for clones stably express the gene, based on resistance to 300 μg/ml of genetin. The conditioned medium (300 ml) containing the soluble FLAG-tagged human ST6Gal I (FLAG-hST6Gal I) secreted from the clones was collected and the protein portion was concentrated by ammonium sulphate precipitation (70% saturation). The precipitate was dissolved in a small volume of 10 mM MES-NaOH buffer (pH 7.0) consisting of 0.1% CHAPS, 0.15 M NaCl, 10 mM EDTA and 20% glycerol, and then desalted with a HiTrap desalting column that had been equilibrated with the same buffer. The desalted protein fraction was concentrated with a Centriprep YM-30 centrifugal filter device (Millipore), and the resulting concentrate (7 ml) was incubated with CDP-gel (0.8 ml) with gentle rotation at 4°C for 16 h. After washing the gel with the buffer, the bound material was eluted with the buffer containing 1 M NaCl. The eluted fraction was concentrated and desalted with an Amicon Ultra-4 centrifugal filter device (0.6 ml) and the FLAG-hST6Gal I protein in the fraction was subsequently pulled down with an anti-FLAG M1 antibody-conjugated protein G Sepharose 4B (200 μl), which had been equilibrated with 10 mM MES-NaOH buffer (pH 7.0), 0.1% CHAPS, 0.15 M NaCl and 20% glycerol at 4°C for 4 h. The gel was thoroughly washed with the buffer, and the bound proteins were eluted with a buffer containing 0.1 mM FLAG peptide. The buffer of the purified FLAG-hST6Gal I fraction was replaced by 5 mM MES-NaOH buffer (pH 7.0), 0.1% CHAPS and 20% glycerol using a Microcon YM-10, and the resulting fraction was used as an enzyme source for kinetic analyses.

Kinetic analysis of the purified FLAG-hST6GalI

For kinetic analysis, the purified recombinant ST6Gal I (FLAG-hST6Gal I) was incubated in a reaction mixture of 10 μl consisting of 50 mM MES-NaOH buffer (pH 6.0), 0.1% CHAPS, 1 mM MnCl₂, 1 mg/ml BSA and various concentrations of PA-LNnT, PA-type 2H and CMP-NeuAc, at 37°C for 4 h. In all assays, the consumption of substrates was kept below 20% to ensure accurate initial rate measurements.

Expression of ST2H antigen in human colon cancer cell line, DLD-1 cells, by ST6Gal I

The human colon cancer cell line, DLD-1 cells, was maintained at 37°C in an RPMI-1640 medium supplemented with 10% foetal bovine serum, 100 IU of penicillin G and 0.1 μg/ml of streptomycin under a humidified atmosphere of 95% air and 5% CO₂. The DLD-1 cells (three 10-cm-diameter dishes) were transiently transfected with pME-hST6Gal I (16 μg/10-cm-diameter dish) using a Lipofectamine 2000 reagent (Invitrogen, CA, USA) and after a 1 day culture, the cells were harvested. The transfected ST6Gal I activity in the DLD-1 cells was assayed in a final volume of 10 μl consisting of 50 mM MES-NaOH buffer (pH 6.0), 1 mM MnCl₂, 0.5% Triton X-100, 1 mM CMP-NeuAc, 10 μM PA-LNnT and 3 μl of the cell lysate. The detection of ST2H antigen expression was performed by structural analysis of oligosaccharide moieties of acidic GSLs from the transfected cells according to a previously established method (17). In short, the acidic GSLs were extracted from the cell pellets (2 mg), and the oligosaccharide moieties of the extracted acidic GSLs were released by digestion with a recombinant endoglycoceramidase II from Rhodococcus sp. (Takara). The reducing ends of the released oligosaccharides were pyridylamidated, and the resulting PA-oligosaccharides were analysed by
NP- and RP–HPLC. The structures of the PA-oligosaccharides were assessed by 2D sugar chain mapping, and the retention time of each PA-oligosaccharide was given in glucose units (GU) based on the elution times of PA-isomaltooligosaccharides. The PA-oligosaccharides were also analysed by LC-ESI-IT-MS.

Protein expression system in cultured cells, preparation of fluorescent oligosaccharide substrates and authentic products and exoglycosidase digestion and structural analysis of enzymatic product

These sections are described in ‘Supplementary Experimental Procedures’.

Results

ST6Gal I exhibits the activity making the ST2H antigen structure

Two α2,6-sialyltransferases, ST6Gal I and ST6Gal II, and two α1,2-fucosyltransferases, FUT1 and FUT2, were the candidate enzymes for ST2H antigen biosynthesis (Fig. 1). To elucidate an enzyme producing this antigen, we carried out a screening of these candidate enzymes for their activities in making the ST2H anti-gen in vitro. We partially purified the four enzymes, soluble ST6Gal I and ST6Gal II, and soluble FLAG-tagged FUT1 and FUT2, from the conditioned medium of COS-1 or HEK293 cells transfected with each enzyme cDNA, as described in the ‘Experimental Procedures’ section. The partially purified enzymes showed complete activities under standard assay conditions by using their common acceptor substrate, PA-lacto-N-neotetraose (LNnT), whereas the ST6Gal II fraction showed a slightly lower activity than the others (Supplementary Fig. S1). Using these enzyme fractions, the activity making the ST2H antigen was evaluated. It was found that when ST6Gal I was incubated with 5 μM PA-type 2H (Fucα1-2Galβ1-4GlcNAcβ1-3Galβ1-4Glc-PA) and 1 mM CMP-NeuAc at 37°C for 16 h, a small but distinct product peak estimated at 0.6% conversion of the acceptor substrate was detected in its reaction mixture (Fig. 2A), though the others did not show any positive product peak (Fig. 2B–D). To prepare a sufficient amount of the product of the ST6Gal I reaction for structural analysis, the reaction was carried out using an increased concentration (50 μM) of the acceptor substrate, PA-type 2H, and finally 3 pmol of the product was fractionated and collected by NP- and RP–HPLC. A portion of 200 fmol of the collected product was next analysed by ESI-IT-MS. As shown in Fig. 3A–C, the MS²–³ spectra revealed that the product had one extra NeuAc residue linked to the acceptor, PA-type 2H. In order to confirm the type of sialyl linkage, the product was digested with linkage-specific exoglycosidases and the digested products were analysed by RP–HPLC (Fig. 3D–F). The product was sensitive to digestion with Corynebacterium sp. α1,2-fucosidase and the digested product was eluted at the same position as PA-LST-c (NeuAcα2-6Galβ1-4GlcNAcβ1-3Galβ1-4Glc-PA), but not PA-SPG (NeuAcα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glc-PA) (Fig. 3D). Moreover, the α1,2-fucosidase-digested product was resistant to an additional digestion with bovine testis β-galactosidase (Fig. 3E), indicating that the incorporated NeuAc binds to the terminal Gal residue of PA-type 2H in an α2,6-linkage. In addition, the

Fig. 2 The screening of candidate glycosyltransferases, ST6Gal I, ST6Gal II, FUT1 and FUT2, for their activities in forming the ST2H antigen. Reversed phase HPLC profiles of the reaction mixtures of partially purified soluble ST6Gal I (A), soluble ST6Gal II (B), soluble FLAG-tagged FUT1 (C) and soluble FUT2 (D) are shown. The elution was performed isocratically using mobile phase I, as described in the ‘Experimental Procedures’ section. The reactions were performed using the acceptor substrates, PA-type 2H (A and B) and PA-LST-c (C and D), together with appropriate donor substrates for each enzyme (CMP-NeuAc for ST6Gal I and ST6Gal II, GDP-Fuc for FUT1 and FUT2). The results obtained in the reaction of the enzyme fraction (a) and of the control protein fraction (b), which were prepared as in the ‘Experimental Procedures’ section, are shown. The arrow in (A) indicates the potential product of the ST6Gal I reaction.
transferred NeuAc residue was resistant to digestion with *Salmonella typhimurium* LT2 α2,3-sialidase, but was sensitive to digestion with *Arthrobacter ureafaciens* α2,6(3/8)-sialidase (Fig. 3F), indicating again that the transferred NeuAc residue has an α2,6-linkage. Taken together, these findings suggest that human ST6Gal I possesses the activity to make the ST2H antigen. ST6Gal I could not transfer a NeuAc residue to PA-LNFP I, a type 1 chain derivative of the blood group H antigen (Supplementary Fig. S2), suggesting that the N-acetyllactosamine unit presenting an α1,2-fucosyl residue needs to be a type 2 chain for α2,6-sialylated blood group H (SH) antigen production.

Kinetic analysis of the ST6Gal I reaction related to ST2H antigen formation

The elucidation of a kinetic factor associated with the transfer rates is important for understanding the ST6Gal I reaction regarding ST2H antigen formation. For kinetic analysis, we prepared a soluble FLAG-tagged human ST6Gal I recombinant protein (Fig. 4A), as described in the ‘Experimental Procedures’ section. SDS–PAGE analysis of the purified recombinant ST6Gal I showed two bands with molecular weights of 55 K and 57 K (Fig. 4B, lane 2), both of which were found to be recombinant ST6Gal I, as indicated by the immunoblot analysis using an anti-FLAG M1 antibody (Fig. 4B, lane 3). In addition, PNGase F treatment revealed that both species were N-glycosylated to a similar extent (Fig. 4B, lanes 4 and 5). The recombinant ST6Gal I protein was found to keep its activity that transfers a NeuAc from the donor CMP-NeuAc to two types of acceptors, PA-LNnT and PA-type 2H, and the relative activity towards PA-type 2H was estimated to be ~2% when the activity against PA-LNnT is 100% (Fig. 4C). Using this recombinant ST6Gal I, the reaction in relation to the formation of the ST2H antigen was kinetically analysed. The recombinant ST6Gal I was incubated with various concentrations of acceptors, PA-LNnT or PA-type 2H, in the presence of a fixed concentration (1 mM) of the donor substrate CMP-NeuAc (Fig. 5). As indicated by the [S]–v and double reciprocal plots...
it appeared that the enzyme was inhibited by the acceptor PA-oligosaccharide itself in a range of high concentration (>0.8 mM), and thus the down- and up-curvatures observed in the [S]-v and the double reciprocal plots, respectively, were found to be due to ‘substrate inhibition’ kinetics. Therefore, the concentrations of the acceptor in the linear portion of the double reciprocal plots were used to determine the kinetic parameters. With respect to the donor substrate, on the other hand, the reactions followed Michaelis–Menten-type kinetics (Fig. 5C, D, G and H). Table I summarizes the kinetic parameters for the reactions with two types of acceptor substrates. While the apparent K_m values for the donor, which were determined using two types of acceptors, were essentially the same, the K_m values for the acceptors were slightly different. The K_m value for PA-type 2H was 3.9 times higher than that for PA-LNnT, suggesting that the α1,2-fucosyl residue linked to the terminal position of Gal in the LNnT structure affects the binding of the acceptor substrate that accounts in part for the different reaction rate. On the other hand, the V_{max} value found in the analysis using PA-type 2H as the acceptor was 11.1 times lower than that for PA-LNnT. These results suggest that the lower rate of the reaction for ST2H antigen synthesis compared to that for LST-c synthesis can be ascribed to both the binding and the catalytic steps. On the basis of the catalytic efficiency (V_{max}/K_m for the acceptor), the specificity of ST6Gal I with respect to the type 2H structure was estimated to be 42 times lower than that for the LNnT structure.

Overexpression of ST6Gal I directs the expression of the ST2H antigen in DLD-1 cells

To examine whether or not the biosynthetic pathway for the ST2H antigen by ST6Gal I occurs also in vivo, we performed a study on overexpressing ST6Gal I in a human colon cancer cell line, DLD-1 cells. The DLD-1 cells were selected because this cell line was found to substantially express the type 2H structure on its GSLs (Supplementary Fig. S3), which is an essential precursor oligosaccharide substrate for ST2H antigen formation by ST6Gal I (Fig. 1) and, moreover, because β-galactosidase α2,6-sialyltransferase activity was not detected at all in the DLD-1 cell lysate (data not shown), suggesting that ST6Gal I gene expression may be down-regulated in this cell line. The ST6Gal I cDNA or control empty vector plasmid were transfected to the DLD-1 cells, and after a 1-day culture, PA-oligosaccharides were prepared from acidic GSLs in mock- and ST6Gal I-transfected DLD-1 cells, as described in the ‘Experimental Procedures’ section. The expression of the transfected ST6Gal I in the DLD-1 cells was confirmed by the enzyme activity assay (ST6Gal I transfectants: 61.9 pmol/h/mg of protein; mock transfectants: not detected), and also by the detection of the expression of an LST-c structure.
in the acidic GSLs (Supplementary Fig. S4). The prepared PA-oligosaccharides from both mock- and ST6Gal I-transfected cells were first fractionated by NP-HPLC (Fig. S4). In our previous studies (16, 17), the retention times, given in GU with respect to the PA-ST2H antigen in NP- and RP-HPLC, namely, a 2D map, have already been proven to be 4.74 and 5.35, respectively. Thus, we collected a broad peak detected around GU 4.74 by NP-HPLC (Supplementary Fig. S4), and further separated it by RP/C151 HPLC. As shown in Fig. 6, three major PA-oligosaccharide peaks were detected in both mock- and ST6Gal I-transfectant-derived fractions by RP/HPLC. The peaks G2 and G2' from mock- and ST6Gal I-transfected cells, respectively, were eluted at the position of GU 5.35, which was the same value as the PA-ST2H antigen, and the relative expression level of G2' was found to be significantly increased compared to the level of G2. To confirm ST2H antigen formation in the ST6Gal I-transfected DLD-1 cells, the peaks G2 and G2' were next analysed by LC-ESI-IT-MS (Fig. 7). G2 was confirmed to be a single oligosaccharide species by mass chromatography (Fig. 7A), and to have an m/z value of 1369 [M+H]+, NeuAc2Hex3HexNAc1-PA (Fig. 7B), indicating that G2 was not an ST2H antigen, and that the DLD-1 cells exhibited a basal expression of this type of sugar chain in their acidic GSLs. The peak G2', on the other hand, was found to be a mixture of two oligosaccharide species (Fig. 7C) having m/z values of 1369 [M+H]+, which was estimated to be the same species as G2, and 1223 [M+H]+, NeuAc2Hex3HexNAc1dHex1-PA, which was a PA-ST2H antigen (Fig. 7D), indicating that the ST2H antigen was surely biosynthesized in the ST6Gal I-transfected DLD-1 cells. The structure of the PA-ST2H antigen in G2' was further confirmed by MS2 analysis (Fig. 7E). The observed increase in the level of G2' as compared to the level of G2 (Fig. 6) can therefore be ascribed to the increase in the newly synthesized ST2H antigen in the ST6Gal I transfectants. Collectively, these findings demonstrated that the biosynthetic pathway of the ST2H antigen by ST6Gal I certainly occurs in vivo.

<table>
<thead>
<tr>
<th>Acceptor substrate</th>
<th>V_{max} (nmol/h/ml)</th>
<th>K_m (mM)</th>
<th>V_{max}/K_m (%)</th>
<th>app. K_m (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA-LNnT</td>
<td>455</td>
<td>0.9</td>
<td>500 (100)</td>
<td>0.11</td>
</tr>
<tr>
<td>PA-type 2H</td>
<td>41</td>
<td>3.5</td>
<td>12 (2.4)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

*aCMP-NeuAc, parameters were determined in the presence of 5 μM of the acceptor substrates.

Table I. Kinetic parameters for the ST6Gal I reactions with PA-LNnT and PA-type 2H.

![Fig. 5 Kinetic analysis of the ST6Gal I reactions involving PA-LNnT and PA-type 2H.](https://academic.oup.com/jb/article-abstract/148/3/359/2182608)
The ST2H antigen-producing activity can be detected in human colon cancer tissue homogenate

In order to examine whether the activity in making the ST2H antigen is actually detectable in human colon cancer tissue (which is the only tissue so far known to express the ST2H antigen), we carried out an exploration of the activity in the human colon cancer tissue homogenate. It was found that the ST2H antigen-producing activity was actually detected in the human colon cancer tissue homogenate when the homogenate was incubated with 10 μM PA-type 2H and 1 mM CMP-NeuAc at 37°C for 16 h (Fig. 8A, label P). MS spectra of the product further confirmed ST2H antigen formation by the tissue extract (Fig. 8B–D).

Discussion

It has been reported that glycosphingolipids (GSLs) having type 2 lactosamine chain derivatives, i.e., those with Lea, Leb, dimeric Lea and their sialylated derivatives are accumulated in human colon cancer (9, 11, 13). In addition, we previously reported that a unique and a novel fucoganglioside structure, the ST2H antigen was also accumulated in human colon cancer cells (17). However, until now, little is known about the enzymatic basis for ST2H antigen biosynthesis and the biological function(s) of this newly identified fucoganglioside structure. In this study, as the first trial to elucidate an enzymatic basis for ST2H antigen biosynthesis, we have explored the enzyme responsible for the formation of the ST2H antigen. We first planned to purify the activity forming the ST2H antigen from human colon cancer tissues, but we could not obtain substantial amount of the cancer tissues as an enzyme source. Next, we tried to explore the human colon cancer cell lines expressing the ST2H antigen by screening the cell lines, such as WiDr, HCT-116, Colo-320, HT-29 and DLD-1 cells, but none of them were found to express this antigen (the data for DLD-1 cells are shown in Supplementary Fig. S3, and the others are not shown). Therefore, we decided to screen candidate known glycosyltransferases, two α2,6-sialyltransferases, ST6Gal I and ST6Gal II, and two α1,2-fucosyltransferases, FUT1 and FUT2, for their activities in making the ST2H antigen (Fig. 1), and have revealed that among the four candidate enzymes, ST6Gal I really exhibits the activity that makes the ST2H antigen by transferring a NeuAc from the donor CMP-NeuAc to the terminal position of Gal in the acceptor type 2H structure via an α2,6-linkage (Figs 2A and 3). To our knowledge, this is a novel acceptor substrate specificity of the mammalian ST6Gal I that is directly associated with ST2H antigen formation and has not previously been reported by others. Contrary to this result, neither FUT1 nor FUT2 exhibited the activity that transfers an α1,2-fucosyl residue onto the terminal Gal of the LST-c structure in this experiment, which is another possible pathway for ST2H antigen biosynthesis (Fig. 2C and D). These findings suggest that the pathway for ST2H antigen formation proceeds via α2,6-sialylation of the type 2H structure by ST6Gal I, rather than via α1,2-fucosylation of the LST-c structure by FUT1 or FUT2. The reaction order of these enzymes with respect to ST2H antigen biosynthesis is accordingly predicted as follows. FUT1 or FUT2 initially act on the nLc4 structure and the essential precursor oligosaccharide of the ST2H antigen, that is, the type 2H structure, is synthesized. ST6Gal I subsequently acts on the type 2H structure, resulting in the formation of the ST2H antigen. As for ST6Gal II, we could not prepare an enzyme fraction with an activity comparable to the other candidate enzymes in the standard assay (Supplementary Fig. S1B) because of the difficulty in purifying it in high yield. Although Takashima et al. (19) previously reported that ST6Gal II gene expression was not detected in human colon cancer tissues by semiquantitative RT–PCR on commercially available human multiple-tissue cDNA panels, and that ST6Gal II could not transfer a sialic acid to ceramide-conjugated oligosaccharide substrates such as paragloboside (Galβ1-4GlcNAcβ1-3Galβ1-4Glc-Cer), re-evaluation of ST6Gal II regarding its ability to form the ST2H antigen using an enzyme preparation having higher activity than that used in this study might be necessary for obtaining a more definite result.

It appears that the blood group H antigen structure needs to be a type 2 lactosamine chain derivative for SH antigen formation because of the inability of ST6Gal I to transfer an α2,6-sialyl residue onto a type 1 chain derivative of the blood group H antigen, LNFP I (Supplementary Fig. S2B). The result is
compatible with our present finding that a type 1 chain derivative of the SH antigen has not been discovered in colon cancer tissues and with previous reports on the acceptor substrate specificity of human ST6Gal I that the enzyme hardly transfers a sialyl residue onto a type 1 lactosamine chain compared to that for the type 2 chain (18, 26).

In this study, we tried to explore human colon cancer cell lines expressing the ST2H antigen by screening several colon cancer cell lines, such as WiDr, HCT-116, Colo-320, HT-29 and DLD-1 cells, but none of them were found to express the ST2H antigen on their GSLs. Thus, the human colon cancer cells in human colon cancer specimens are the only examples of the cells so far known to exhibit ST2H antigen expression. Although the cell lines expressing the ST2H antigen have not yet been identified, the DLD-1 cells, among the five examined cell lines, were found to exhibit a substantial expression of the type 2 lactosaminyl chain (neo-lacto-series) and type 2H structures on their GSLs (Supplementary Fig. S3), whereas the others did not substantially express these structures (data not shown). Furthermore, β-galactoside α2,6-sialyltransferase activity and a representative ST6Gal I product, LST-c structure were not detected at all in the DLD-1 cells, and this may suggest a down-regulation of ST6Gal I gene expression in this cell line. We postulated that the transfection of ST6Gal I cDNA into the DLD-1 cells may induce ST2H antigen expression in the cells by the reaction of the transfected ST6Gal I with an endogenously expressed type 2H structure. As we had expected, the overexpression of ST6Gal I could induce ST2H antigen expression in the DLD-1 cells (Figs 6 and 7), directly demonstrating that the biosynthetic pathway for the ST2H antigen by the enzyme proceeds in vivo.

Kinetic analysis using purified recombinant ST6Gal I revealed that the presence of an α1,2-fucosyl residue on the terminal position of Gal in the LNnT structure affects both the binding and, more profoundly, the catalytic steps of the ST6Gal I reaction. The catalytic efficiency with respect to the production of the ST2H antigen has been found to be 42 times lower than that for the LST-c structure. This lower specificity of ST6Gal I towards type 2H structure might explain one of the reasons why the ST2H antigen was present only in quite small quantities in human colon cancer

\[\text{Relative abundance} \]

\[\text{Retention time (min)} \]

\[\text{1369 [M+H]+ NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1223 [M+H]+ NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+H]+ NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} \]

\[\text{1369 [M+H]+ NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} \]

\[\text{1223 [M+H]+ NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{MS2 (1245) \[(M+Na)-NeuAc\]+} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]

\[\text{Retention time (min)} \]

\[\text{1369 [M+H]+ NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1223 [M+H]+ NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{MS2 (1245) \[(M+Na)-NeuAc\]+} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]

\[\text{Retention time (min)} \]

\[\text{1369 [M+H]+ NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1223 [M+H]+ NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{1390 [M+Na]+ \text{NeuAc}_2\text{Hex}_3\text{HexNAc}_1\text{-PA} } \]

\[\text{1245 [M+Na]+ \text{NeuAc}_1\text{Hex}_3\text{HexNAc}_1\text{dHex}_1\text{-PA} } \]

\[\text{MS2 (1245) \[(M+Na)-NeuAc\]+} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]

\[\text{Relative abundance} \]
tissues compared to other ST6Gal I products, such as LST-c (IV\(^6\)NeuAc\(\alpha\)-nLc4), IV\(^6\)NeuAc\(\alpha\)-nLc6, IV\(^6\)NeuAc\(\alpha\),III\(^3\)Fuc\(\alpha\)-nLc6 and so on (16). Moreover, the finding might also suggest that a relatively higher level of ST6Gal I activity than that in normal cells is necessary for producing the ST2H antigen in colon cancer cells.

There are many lines of evidence that suggest the up-regulation of ST6Gal I in the malignant transformation of human colon epithelial cells. The increase in \(\beta\)-galactoside \(\alpha\)2,6-sialyltransferase activity in human colon cancer specimens was first reported by Dall’Olio et al. (27) and thereafter confirmed by other groups and our group (17, 28, 29). The up-regulation of \(\alpha\)2,6-sialyltransferase activity in human colon cancer seems to be consistent with its mRNA level. Several groups have examined the transcript level of glycosyltransferase genes in human colon cancer by oligonucleotide arrays (30) or a semiquantitative RT–PCR (31, 32) and have reported that ST6Gal I gene expression was markedly enhanced in malignant transformation. In addition, the accumulation of glycoconjugates having \(\alpha\)2,6-sialylated lactosaminyl structures in human colon cancer, which was detected using specific monoclonal antibodies, lectins or 2D sugar chain mapping and mass spectrometry, has been reported (17, 33–36). All the above findings equally suggest the up-regulation of ST6Gal I in human colon cancer, and a milieu preferable for ST2H antigen biosynthesis is likely to emerge in human colon cancer cells.

In summary, this study has demonstrated that human ST6Gal I possesses a novel acceptor substrate specificity that has not so far been reported by others, that is, \(\alpha\)2,6-sialylation of the terminal position of Gal in the type 2H structure, directly related to ST2H antigen formation. The biosynthesis of the ST2H antigen by ST6Gal I has been demonstrated to surely proceed in vivo, and ST2H antigen expression can be certainly induced by the action of ST6Gal I in the human colon cancer cell line, DLD-1 cells. ST6Gal I would be responsible for the formation of the ST2H antigen in human colon cancer tissues through this novel acceptor substrate specificity. However, the functional aspect

Fig. 8 The activity forming the ST2H antigen in human colon cancer tissue. (A) A reversed phase HPLC profile of the reaction mixture of the homogenate of human colon cancer tissue with the use of PA-type 2H and CMP-NeuAc as the acceptor and donor substrates, respectively, is shown. Elution was performed isocratically using mobile phase I, as described in the ‘Experimental Procedures’ section. The results in the reactions with (a) or without (b) the donor substrate are shown. Labels S and P indicate the peaks of acceptor substrate PA-type 2H and the product PA-ST2H antigen, respectively. The arrow indicates the elution position of the authentic PA-ST2H antigen. Xs indicate the unidentified peaks, which might not be PA-oligosaccharides, since these peaks did not exhibit typical saccharide spaced ladder signals in the MS\(^2\) analysis (data not shown). (B) The MS\(^2\) spectrum of the product P. (C) The MS\(^2\) spectrum of \([M+Na]^+\) precursor ion at \(m/z\) 1245 detected in MS\(^1\)(D) MS\(^3\) spectrum of \([M+Na]-NeuAc]^+\) precursor ion at \(m/z\) 954 detected in MS\(^2\). The MS\(^{2–3}\) fragment ions were assigned as shown schematically.
of this antigen in human colon cancer cells remains unclear. Further studies are needed to clarify the biological function(s) of the ST2H antigen in human colon cancer cells. We believe that the finding concerning the enzymatic basis for ST2H antigen formation elucidated in this study will be beneficial for performing functional analyses of the ST2H antigen using gene manipulation methods, such as overexpression and knock down of the related glycosyltransferases.

Supplementary Data

Supplementary Data are available at JB Online.

Acknowledgements

We thank Dr Hisashi Narimatsu and Dr Takashi Sato (AIST) for providing us with cDNA clones for human FUT1, FUT2, ST6Gal I and ST6Gal II. We also thank Dr Norimitsu Inoue (Osaka Medical Center for Cancer and Cardiovascular Diseases) for providing us with a mammalian expression vector, pME18S.

Funding

Grants-in-Aid for Scientific Research Frontier Biomedical Science Underlying Organelle Network Biology; the Japan Society for the Promotion of Science (JSPS) Global COE (Center of Excellence) Program of Osaka University; Grants-in-Aid for Scientific Research (A) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; and grants from the Cancer Research Scholarship Program of the Osaka Cancer Foundation.

Conflict of interest

None declared.

References

23. Iwamori, M., Tanaka, K., Kubushiro, K., Lin, B., Kiguchi, K., Ishiwata, I., Tsukazaki, K., and Nozawa, ...