Emerging roles of recycling endosomes

Received March 15, 2013; accepted April 11, 2013; published online April 26, 2013

Tomohiko Taguchi*

Laboratory of Pathological Cell Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan

*Tomohiko Taguchi, Laboratory of Pathological Cell Biology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan. Tel: +81-3-5841-4725, Fax: +81-3-3818-3173, email: tom_taguchi@mol.f.u-tokyo.ac.jp

Cells internalize extracellular solutes, ligands and proteins and lipids in the plasma membrane (PM) by endocytosis. The removal of membrane from the PM is counteracted by endosomal recycling pathways that return the endocytosed proteins and lipids back to the PM. Recycling to the PM can occur from early endosomes. However, many cells have a distinct subpopulation of endosomes that have a mildly acidic pH of 6.5 and are involved in the endosomal recycling. These endosomes are dubbed recycling endosomes (REs). In recent years, studies have begun to reveal that function of REs is not limited to the endosomal recycling. In this review, I summarize the nature of membrane trafficking pathways that pass through REs and the cell biological roles of these pathways.

Keywords: endocytosis/exocytosis/phosphatidylserine/recycling endosomes/retrograde transport.

Abbreviations: CI-MPR, cation-independent mannose 6-phosphate receptor; CTxB, cholera toxin B subunit; EEs, early endosomes; HRP, horseradish peroxidase; LEs, late endosomes; PM, plasma membrane; PH, pleckstrin homology; PS, phosphatidylserine; REs, recycling endosomes; SM, sphingomyelin; Tfn, transferrin; TfnR, transferrin receptor; TGN, trans-Golgi network; TLR4, Toll-like receptor 4; TNF-α, tumour necrosis factor α; VSV-G, vesicular stomatitis virus glycoprotein G.

Recycling of proteins back to the plasma membrane (PM) was one of the first characterized examples of recycling process in membrane trafficking, a phenomenon that has now been found in many other membrane trafficking pathways (1, 2). These recycling pathways are essential for maintaining the proper composition of proteins and lipids in various organelles and for returning essential molecules that carry out specific functions to the appropriate organelles.

Following endocytic uptake from the PM, internalized cargoes first reach early endosomes (EEs). EEs serve as the main portal through which internalized cargoes are further transported to other endomembrane compartments (Fig. 1). Cargoes can be targeted for degradation by transport from EEs to late endosomes (LEs) and then eventually to lysosomes. Alternatively, cargoes can undergo recycling to the PM by a direct route from EEs (fast recycling pathway) or an indirect route through recycling endosomes (REs) (slow recycling pathway) (3, 4). The third major pathway is the retrograde pathway, by which cargoes are delivered to the Golgi (5, 6).

The two endosomal recycling pathways (fast and slow recycling pathways) have been elucidated by studies on multiple recycled proteins. Some well-known examples include studies on proteins involved in nutrient uptake, such as transferrin (Tfn) receptor for iron, low-density lipoprotein receptor for cholesterol and glucose transporter type 4 for glucose; proteins and lipids involved in cell adhesion and migration, such as integrins, cadherins and glycolipids; and proteins involved in cell signalling, such as receptor tyrosine kinases and G protein-coupled receptors (1, 2, 7–10). Endosomal recycling is also essential for other cellular and physiological processes, such as cytokinesis, transcytosis and polarity in epithelial cells, morphogenesis and neuronal activities (11–16).

Over the past decade, studies have begun to identify new roles of REs other than their classical role in endosomal recycling. In this review, I only feature these emerging roles of REs; recent advances on endosomal recycling pathways have been reviewed elsewhere (17–19).

Role of REs in exocytic transport

The trans-Golgi network (TGN) has been the presumed sorting site for all newly synthesized membrane and secretory proteins (20, 21). A variety of experiments all consistently showed segregation of cargoes upon exit from the TGN. However, such experiments did not exclude the possibility that at least some sorting can take place at later compartments, for instance, in endosomes. From the late 1980s to 2000, there were a number of important suggestions in mammalian cells that exocytic cargo proteins can, at least to some extent, traverse endocytic compartments en route to the PM (22–25). For example, Futter et al. (23) showed that transferrin receptor (TfnR) was targeted first from the TGN to endosomes and subsequently delivered to the PM.

In the middle of 2000s, Ang et al. (26) provided direct evidence using four independent methods that REs play a role in the exocytic transport of vesicular stomatitis virus glycoprotein G (VSV-G) in the non-polarized stage of MDCK cells. By video microscopy,
immunoelectron microscopy and cell fractionation, newly synthesized VSV-G was found to enter Tfn-positive REs within a few minutes after exit from the TGN. Although transient, the entry into REs appeared essential because VSV-G delivery to the PM was impaired by enzymatic inactivation of REs with Tfn conjugated to horseradish peroxidase (HRP).

The list of exocytic proteins that traverse through REs before their delivery to the PM is expanding (Table 1). In HeLa cells, E-cadherin exited the Golgi in tubulovesicular carriers, which, instead of moving directly to the PM, most frequently fused with REs positive for Rab11 (a small GTPase) (27). In RAW 264.7 cells, tumour necrosis factor α (TNF-α) was trafficked from the Golgi to REs positive for VAMP3 (a v-SNARE) and Tfn, then to the PM at the site of phagocytic cup formation (28). Importantly, knockdown of VAMP3 impaired the PM delivery of TNF-α. In FRT cells in the presence of antibody against AP-1B, an epithelial-specific clathrin adaptor protein complex (29, 30) TfnR exited the TGN normally but became blocked at REs within 3–5 min (31). In polarized MDCK cells, the basolateral delivery of VSV-G was significantly suppressed when REs were enzymatically inactivated with Tfn-HRP (32). In COS-1 cells (33), palmitoylated H-Ras protein was transported from the TGN to REs and subsequently delivered to the PM (Fig. 2) (34). H-Ras has two palmitoyl groups at C181 and C184. A monopalmitoylation mutant H-Ras-C184S was trafficked directly from the Golgi to the PM, while the other monopalmitoylation mutant H-Ras-C181S localized mostly in the Golgi. Therefore, both palmitoyl groups were found essential for the post-Golgi traffic of H-Ras through REs to the PM.

Roles of REs in retrograde transport

Retrograde transport is a process in which proteins and lipids are transported back from the PM/endosomes to the Golgi, and even to the ER (5, 6). Several Golgi proteins, such as TGN38/46, GP73 and furin, routinely escape the Golgi and are retrieved back through retrograde pathways (35–38). A membrane-anchored growth factor, HB-EGF, is targeted to the inner nuclear membrane from the PM after exposure of cells to shedding stimuli (39). Some protein toxins produced by bacteria and plants (such as cholera toxin, Shiga toxin and ricin) exploit this retrograde transport to reach the Golgi/ER, from where they are translocated to the cytosol to exert their cytotoxicity (40–42). The list of proteins that use retrograde transport is expanding rapidly, as is the number of their functions.

To reach the Golgi, retrograde cargoes internalized from the PM must pass through some combinations of EEs, LEs and/or REs. What has been clear is that the routes followed by retrograde cargoes vary depending on the cargo. For example, Tac-tagged furin is transported through EEs to LEs en route to the Golgi, whereas Tac-TGN38, which also cycles between the Golgi and the PM, is transported through EEs to REs en route to the Golgi (43). A more complex route...
may be followed by cation-independent mannose 6-phosphate receptor (CI-MPR), which, at steady state, cycles between the Golgi, PM and LEs. Kinetic evidence suggested that CI-MPR internalized from the PM is transported through EE's en route to the Golgi (44). Retrieval of CI-MPR from LEs to the Golgi appeared to follow a TIP47/Rab9-dependent pathway from LEs (45).

McKenzie et al. (46) examined in detail if the passage through REs is required for a few retrograde cargoes in BSC-1 cells. When REs were enzymatically inactivated with Tf-HRP, the retrograde transport to the Golgi of Shiga toxin and CI-MPR, but not that of furin, was severely impaired. Uchida et al. (47) showed that the retrograde traffic of cholera toxin B subunit (CTxB) was impaired at REs in COS-1 cells depleted of evectin-2, an RE protein with a pleckstrin homology (PH) domain (Fig. 3). The Golgi localizations of TGN38 and GP73 were also compromised by evectin-2 depletion, demonstrating that CTxB, TGN38 and GP73 traverse through REs en route to the Golgi.

One protein complex that is particularly important for retrograde traffic is the retromer (48, 49). The retromer allows cargo to be sorted away from EE's to the lysosomal degradation pathway. The mammalian retromer is a five-component complex, which is divided into two subcomplexes: one is composed of the mammalian homologues of yeast VPS26, VPS29 and VPS35, and the other is composed of two sorting nexin proteins. Although the retromer has been proposed to be engaged in direct retrograde transport from EE's to the PM.
Golgi, it remains possible that the retromer also functions in the retrograde pathway from EEs to REs.

Roles of REs in degradation transport

Transport pathways from REs to degradation organelles have recently been described. Toll-like receptor 4 (TLR4) is indispensable for recognition of Gram-negative bacteria. Husebye *et al.* (50) showed that endogenous TLR4 localizes mostly in Rab11-positive REs in human monocyes. By stimulation with *Escherichia coli*, TLR4 was transported from REs to *E. coli*-positive phagosomes. Knockdown of Rab11 resulted in emptying of TLR4 in REs, reduction of TLR4 around phagosomes and inhibition of *E. coli*-induced interferon regulatory factor-3 activation. Longatti *et al.* (51) showed that Rab11 promotes autophagy, a bulk degradation process characterized by the formation of double membrane vesicles called autophagosomes. They demonstrated a membrane transport pathway from REs to autophagosomes. Matsui *et al.* (52) showed that a small GTPase, Rab12, co-localizes with TfnR and Rab11. Knockdown of Rab12 in mouse embryonic fibroblast inhibited TfnR degradation without affecting the degradation pathway from EEs to lysosomes, suggesting a novel transport pathway from REs to lysosomes.

Determinants of RE localization

Although there has been little information about how proteins are targeted to REs, recent studies (palmitoylation of small GTPases and eevctin-2) have shed light on this topic. Misaki *et al.* (34) showed that a 20-amino acid stretch at the C terminus of H-Ras or N-Ras that contains all the lipid modifications (farnesylation and palmitoylation) is sufficient for RE targeting (Fig. 2). H-Ras has palmitoyl groups at two cysteine residues (C181 and C184). By analysis of the subcellular localization of palmitoyl-deficient mutant H-Ras, introducing serine point mutations, both palmitoyl groups were found essential for the correct H-Ras targeting to REs. A monopalmitoylation mutant, H-Ras C181S, localized exclusively at the Golgi, whereas the other monopalmitoylation mutant, H-Ras C184S, localized at the Golgi and the PM. A null palmitoylation mutant, H-Ras C181/184S, accumulated mostly at the Golgi and a small amount localized at the ER. Interestingly, palmitoylation on C184 could be functionally replaced with L184, since a monopalmitoylation mutant, H-Ras C184L, localized at REs and the PM, in contrast to the localization of H-Ras C184S. Because L184 on N-Ras was found to be involved in N-Ras membrane binding (53, 54), palmitoyl groups and specific amino acid residues buried in membranes can function as the RE localization determinant. Uechi *et al.* (55) showed that three other small GTPases (Rap2A, Rap2B and Rap2C) also localize at REs. Rap2B is geranylgeranylated and Rap2A is farnesylated, and Rap2C is assumed to be farnesylated. All Rap2 proteins have two cysteines (C176 and C177) upstream of the CAAX cysteine (C180), and in Rap2B, C176 and C177 were demonstrated as the sites of palmitoylation (Fig. 2). The palmitoyl-null mutants of Rap2A, 2B and 2C did not localize to REs, showing that palmitoylation of Rap2 is essential for RE targeting, as is the case of H-Ras and N-Ras.

Uchida *et al.* (47) showed that phosphatidylinserine (PS), a relatively minor constituent of biological membranes, is most concentrated in REs in COS-1 cells using a PS-specific probe. The enrichment of PS in REs was also demonstrated in other cell lines (56, 57). PS in REs was found essential for the RE localization of eevctin-2, a regulator of retrograde traffic, through the binding of its PH domain to PS (47, 58).

Several studies indicated that REs have a unique lipid composition. Gagescu *et al.* (59) showed that REs purified from MDCK cells are highly enriched in the raft lipids [sphingomyelin (SM) and cholesterol] and PS. Mondal *et al.* (60) showed that sterols are enriched in REs using the fluorescent sterols. Yachi *et al.* (61) showed that SM is enriched in REs using a SM-binding protein, equinatoxin-II. Therefore, as is the case of eevctin-2 that selectively binds PS through its PH domain, having interactions with these lipids may be one mechanism for RE targeting of proteins. Interestingly, affinity of palmitoyl groups for raft lipids has been demonstrated using *in vitro* reconstitution system (62).

Concluding remarks

Over the past decade, studies have shown that various cargoes, in addition to recycled ones, pass through REs during their travel to final destinations. Although much remains to be examined carefully as to whether the transit through REs is indeed required for individual cargoes, these studies suggest that REs serve as a sorting hub for multiple membrane trafficking pathways. Many questions also remain unanswered regarding the molecular mechanisms underlying the transport through REs. For example, there is no clear model of how cargoes are sorted into distinct carriers, such as recycling and retrograde carriers. *In vitro* reconstitution systems, such as those developed for the early secretory pathway, and *in vivo* imaging systems to allow visualization of sorting process of multiple cargoes in REs would greatly benefit in our further understanding of the nature and regulators of the trafficking through REs. These studies are anticipated to make broad conceptual contributions, beyond the transports through REs, to the understanding of essentials of membrane traffic.

Acknowledgements

I apologize to colleagues whose works I could not cite owing to length restrictions. I thank Dr. Ryo Misaki (Osaka University), Dr. Yasunori Uchida (University of Tokyo) and Dr. Hiroyuki Arai (University of Tokyo) for comments.

Funding

This work was supported by the Core Research for Evolutional Science and Technology (Japan Science and Technology Agency), Grants-in-aid for Scientific Research (18050019).

Conflict of interest

None declared.
Membrane trafficking through recycling endosomes

References

