P435
Evaluation of remote triazole capillary blood testing to facilitate remote therapeutic drug monitoring (TDM): A validation study
Lisa Neanes1, Jackie Donovan1, Melody N1, Michael Leobinger4, Darius Armstrong-James4,5, Anand Shah4,5
1Royal Brompton and Harefield Hospital NHS Trust, London, United Kingdom
2Pharmacy department, London, United Kingdom
3Department of pathology, London, United Kingdom
4Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, United Kingdom
5MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, London, United Kingdom
6Department of Infection Disease Epidemiology, School of Public Health, Imperial College, United Kingdom
7Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
Poster session 5, September 23, 2022, 12:30 PM - 1:30 PM

Background: The advent of COVID-19 has meant that patients with chronic diseases needed to shield, however, investigations were needed to guide continued management of their disease. Remote monitoring options were evaluated to ensure the standard of care is not compromised.

Purpose and Hypothesis: The aim was to validate remote (finger-prick) capillary triazole blood testing and evaluate the potential role of remote TDM in chronic antifungal therapy.

Materials and Methods: A single-center prospective cross-sectional study ofremotefinger prick capillary blood testing compared with gold standard venous testing was performed. Remote finger prick capillary blood testing was validated compared to local standard testing using comparative statistical analysis. Comparative statistical analysis: Paired t-test, correlation and Bland-Altman were used to determine if there was agreement or association between the sampling methods.

Results: A total of 66 patients receiving triazole therapy were recruited and 17 pooled pairs of remote capillary and venous triazole concentrations and metabolites were prospectively analysed, with the rest of the blood samples not being analysed due to insufficient sample, hemolysis, or undetectable triazole level (<0.2 mg/l). There was no significant difference in the comparison of the two methods of sampling with paired t-test at P < 0.001. Bland-Altman analysis yielded wide bias (−49.07%) and wide limits of agreement (−85.5% to −22.4%). On average capillary triazole concentrations were 57% lower than venous concentrations (Fig. 1). There was however a very strong correlation between capillary and venous triazole (Pearson’s correlation coefficient r = 0.9215, P < 0.0001, Fig. 2).

Conclusions: Remote capillary triazole sampling does not appear interchangeable with venous sampling, but being strongly correlated and on average 2-fold of the venous value, could be a predictor of venous triazole level, or be useful for intra-patient longitudinal monitoring. When incorporated into an outpatient clinical pathway it can improve shared-decision making and patient experience. Further research is required to determine appropriate target reference ranges if the new lower capillary levels can be used routinely, especially in the climate of COVID-19 where social distancing measures limit patient access to hospitals and clinics for routine investigations.
Paired t test - pooled azole

Paired T comparison for capillary and venous samples

n=57 pairs
A study to compare detection of *Aspergillus* galactomannan in patients with clinically suspected invasive *Aspergillus* infection using the Lateral Flow Assay (LFA) in comparison with Enzyme Linked Immunoassorbent Assay (ELISA) and identification of new risk factors as per BM-ApICU criteria

Priyadarshini Padaki¹, Jayanthi Savir², Priya Rameshchandran², Shravana Krishna²

¹St. John’s Medical College and Hospital, Bangalore, India
²St. John’s Medical College and Hospital, Bangalore, India
³St. John’s Medical College and Hospital, Bangalore, India

Poster session 5, September 23, 2022, 12:30 PM - 1:30 PM

Objectives

1. To compare performance characteristics of lateral flow assay (*Aspergillus* galactomannan LFA, Italy) vs. ELISA assay in comparison with ELISA (Platelia*®* Aspergillus antigen, Bio-Rad, USA) for detection of galactomannan antigen in blood and BAL samples from suspected cases of invasive *Aspergillus* infection (IA).

Methods

A total of 50 consecutive sputum samples (30 blood and 20 BAL) received for testing by Galactomannan assay by ELISA method were included. LFA and ELISA were performed as per manufacturers’ instructions. Results were recorded using the Digital Reader provided which gives readings as Positive (>0.5) and <0.5 Negative. Additionally, results were read visually by two different people and graded as 0 (negative), 1+ (very faint band), 2+ (faint band), and 3+ (strong band). The values obtained by ELISA were reported as Galactomannan Index. Results of LFA and ELISA were compared. Parent profiles were studied to identify the possible and probable cases of IA as per BM-ApICU guidelines.

Results

Overall, 92% samples (n = 46) were positive with ELISA. Results of LFA and ELISA were comparable in 66% samples (n = 34). For all except two samples, visual readings of LFA (≥ 2+ with 2+ with 1+ readings) correlated with digital readings. Sensitivity of LFA was 75.5% (95% CI). Applying BM-ApICU criteria, 28% (n = 14) were categorized as probable, 44% (n = 32) as possible cases of IA, and 8% (n = 4) as NO IA. A total of 12 patients had clinical host factors, 42% (n = 21) had other risk factors and we were able to identify 14% (n = 8) cases with new risk factors which were CNS involvement, brain injury/bleedage or mechanical ventilation. Clinical features were present in all these 19% (n = 29) cases whereas radiological imaging was done in only 25 cases out of which 28% (n = 14) were positive. BM-ApICU criteria require ≥2 iatrogenic criteria, but only two of the BAL samples were culture positive for Aspergillus species. These criteria could not be strictly applied to most patients in our study since invasive procedure such as BAL was not done, instead, blood was sent for galactomannan detection.

The average turn-around time was 5-7 days for ELISA since the test was run twice a week whereas it was 5-24 h for the LFA. The pre-processing of samples and time required to perform the procedure for both the assays are similar. The cost per test for ELISA was Rs. 1675/- against LFA for Rs. 750/-.

Conclusion: LFA for galactomannan detection is an easier to perform, cost-effective method for diagnosis of IA as compared with ELISA. LFA overcomes the difficulty of insufficient volume of calibrators and controls provided with the ELISA kit. Useful especially for patients admitted in ICU where results can be issued on the same day instead of batch testing. Identification of new risk factors and inclusion of the same under guidelines is essential to select and send samples for testing for early initiation of treatment.