in the form of clear criteria for patient selection, key go-to people to advise, and group decision-making were also enablers. Mainstreaming was seen as difficult because it will require a break from traditional practice, rather than just an add-on to business-as-usual.

Conclusion: The next phase of this study will focus on developing a suite of interventions to guide future genomic implementation. Learning from the emerging behaviours of these early adopters can help identify what works and where evidence-based interventions can be beneficial.

ISQUA18-2469

Assessing Sustainability Throughout Improvement Initiatives: Exploring the Application and Impact of a Prospective Sustainability Tool Across 3 QI Programmes

L. LENNOX*, and J. REED

Primary Care and Public Health, IMPERIAL COLLEGE LONDON, London, United Kingdom

Objectives: While many studies on the sustainability of improvement initiatives have been conducted, the majority investigate initiative sustainability retrospectively (only after the end of the initial funding period). This linear perspective on sustainability fails to account for the learning and the continuous adjustments that shape the sustainability process. To fully grasp the process of influencing sustainability, a prospective approach which combines multiple sources of data throughout implementation is needed. The Long Term Success Tool (LTST) aims to support those implementing improvements reflect on 12 key factors to identify risks and prompt actions to increase chances of sustainability over time. This study explores the application and impact of the LTST by three Quality Improvement (QI) programmes in the UK. This work will describe how the LTST is applied and used across diverse projects as well as analyse LTST scores to explore generalised findings on sustainability challenges and facilitators across settings.

Methods: A longitudinal mixed methods study was conducted from January 2015 to July 2017. Data was collected from 56 improvement teams across 3 QI programmes. The LTST was used across programmes at varying intervals during initiatives with 655 individual LTST responses collected throughout the data collection period. Observation (37 hours) was conducted at meetings and workshops to identify how teams discuss sustainability within their projects and how the tool was used in practice. 34 semi-structured interviews were conducted to gain in-depth understanding of sustainability processes and actions taken.

Results: LTST scores revealed different journeys and sustainability challenges were encountered by the initiative teams throughout the study period. Aggregated scores across programmes demonstrate possible trends among factors. The highest scoring factors among initiatives were: Involvement of the individual (87.6%), and Commitment to the Improvement (87.0%). The lowest scoring factors were: Involvement of stakeholders, patients, carers and the public (68.4%), Having the right resources in place (69.2%) and Demonstrating evidence of benefits (74.5%). The use of the LTST throughout initiatives aided teams to enhance knowledge of sustainability risks, highlighted diverse perspectives held within teams and directed attention to areas for improvement. The prospective use of the tool supported 3 high-level processes: collaboration, decision making and action planning. These processes were underpinned by 8 mechanisms: identifying and engaging stakeholders, gathering team perspectives, giving people the space to express opinions, raising awareness, identifying risks and needs, providing direction or focus, suggesting actions, and taking action.

Conclusion: Sustainability is a challenging concept for improvement initiatives to explore but the use of a prospective tool may aid teams to identify risks and allow for active planning to enhance chances of embedding change. This study has demonstrated that sustainability planning can be conducted prospectively to maintain focus and mitigate risks throughout initiatives. While differences were seen in the application and use of the tool within this study, aggregate LTST scores have shown that regardless of project type, setting or project maturity certain factors were perceived as risks across all three programmes. Future work will explore the potential rationale for these findings and investigate associated initiative actions which may support sustainability in future QI programmes.

ISQUA18-2423

Willingness to Pay for Government-Approved Mobile Health Applications and mHealth Social Acceptability In Spain

M. HERRERA-USAGRE1*, B. BUZÁ2, V. REYES-ALCÁZAR3, and Á. ESCOBAR4

1ANDALUSIAN AGENCY FOR HEALTHCARE QUALITY, ANDALUSIAN AGENCY FOR HEALTHCARE QUALITY, UNIVERSITY PABLO DE OLAVIDE, 2ANDALUSIAN AGENCY FOR HEALTHCARE QUALITY, 3Strategic Planning, and 4Digital Environments, Andalusian Agency for Healthcare Quality, Sevilla, Spain

Objectives: (1) Analysing the willingness of the citizens to pay for mobile health applications and the socio-demographic characteristics that best predict such willingness. (2) Developing an index of acceptance of the mHealth for the overall population and its relation with the willingness to pay for a mHealth app.

Methods: A representative survey of the Andalusian population between 18 and 95 years old was used. Name of the Survey: “Barometer about mobile health apps” (March 2016, ACSA, Andalusian Agency for Healthcare Quality, N= 1069; the level of trust is 97% y P = 0.5. Maximum sampling error for global data ± 3%)

Technique: Exploratory Factor Analysis and Boosted Regression Trees.

Results: In Andalusia (A region with 8,5M inhabitants), 70.9% of the population has a device (tablet, mobile phone and/or wearable) with an internet connection. This is nearly 4.8 millions of inhabitants. The mHealth Acceptance Index (mHAI) was designed in order to gather the citizen’s perception about the different dimensions to which the mHealth apps could positively impact, both individually and