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A simple and biologically plausible model is proposed to simulate the 
optic flow computation taking place in the dorsal part of medial supe- 
rior temporal (MSTd) area of the visual cortex in the primates' brain. 
The model is a neural network composed of competitive learning lay- 
ers. The input layer of the network simulates the neurons in the mid- 
dle temporal (MT) area that selectively respond to the visual stimuli 
of the input motion patterns with different local velocities. The out- 
put layer of the network simulates the MSTd neurons that selectively 
respond to different types of optic flow motion patterns including pla- 
nar, circular, radial, and spiral motions. Simulation results obtained 
from this model show that the behaviors of the output nodes of the 
network resemble very closely the known responsive properties of the 
MSTd neurons found neurophysiologically, such as the existence of 
three types of MSTd neurons that respond, respectively, to one, two, 
or three types of the input motion patterns with different position de- 
pendences, and the continuum of response selectivity formed by the 
three types of neurons. 

1 Introduction 

Optic flow plays an important role in the perception of three-dimensional 
(3D) motion. When there exists a relative motion between an observer 
and the surrounding world, either some objects moving relative to the 
static observer, or, in the case of ego-motion, the observer moving in a 
stationary world, information about this overall motion can be extracted 
from the optic flow by the brain allowing for proper reaction. 

Neurophysiological studies have found (Saito et al. 1986; Tanaka and 
Saito 1989a,b; Graziano et al. 1990; Duffy and Wurtz 1991a,b; Graziano 
et al. 1994) that most of the neurons in the dorsal part of the medial su- 
perior temporal (MSTd) area of the visual cortex in the primates' brain 
are responsive to several types of optic flow stimuli, called motion com- 
ponents, including radial, circular, and circuloradial (spiral) motions cen- 
tered at different locations, and translational motions of different direc- 
tions on the frontoparallel plane. Also, there exist three types of MSTd 
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cells that respond to one, two, or three of the motion components. They 
are referred to as single-, double-, and triple-component cells, respec- 
tively. The selective responses of some MSTd cells are position depen- 
dent, while those of others are position independent. 

It has also been found that MST receives strong fiber projection from 
the middle temporal (MT) area (Maunsell and Van Essen 1983a,b; Unger- 
leider 1986) where the neurons are selectively responsive to the orien- 
tation and velocity of the visual stimuli (Albright 1984; Rodman and 
Albright 1987). Some of the MT neurons show a marked anisotropy in 
motion responses favoring directions oriented away from the center of 
gaze (Albright 1989). It is therefore natural to assume the MT area to 
be the preprocessing stage of the optic flow processing taking place in 
MSTd area. 

To understand the mechanism of the MSTd neurons and to explain 
how the motion information is extracted from the optic flow along the vi- 
sual processing pathway in the primates’ brain, various hypotheses have 
been proposed, all based on the availability of the velocity selectivity 
from the MT cells as the input to the MST cells. A simple hypothesis 
was proposed by Tanaka and Saito (1989b, Fig. 12) where an MST cell 
responsive to one of the motion components receives the synaptic in- 
puts from a set of directionally selective MT cells arranged in accordance 
with the pattern of that motion component. The input MT cells would 
be arranged radially in the case of an expansion/contraction MST cell, 
or arranged circularly in the case of a rotation MST cell. A similar hy- 
pothesis proposed by Saito et al. (1986, Fig. 14) further assumes that the 
receptive field of an MST cell responsive to circular or radial motions 
is composed of a set of overlapping compartments, each of which is in 
turn composed of a set of MT cells arranged in accordance with the pre- 
ferred motion component of the MST cell. This assumption can explain 
the positional independence demonstrated by some of the MST cells. A 
neural network model based on Hebbian learning proposed by Zhang 
et al. (1993) can account for the position-independent responses of some 
of the MST cells. 

Two different hypotheses called the direction mosaic hypothesis and the 
vector field hypothesis are proposed by Duffy and Wurtz (1991b, Fig. 1A 
and B). The direction mosaic hypothesis is essentially the same as the 
hypotheses discussed above, i.e., a set of directionally selective MT cells 
is arranged in a certain pattern to fit the particular motion component 
to which the MST cell responds; whereas the vector field hypothesis as- 
sumes that an MST cell is composed of many units that are distributed 
throughout the receptive field and are responsive to the same type of 
motion (but on a smaller scale) as the MST cell. Contradictory pre- 
dictions may be made based on the two different hypotheses. The di- 
rection mosaic hypothesis is more consistent with position-dependent 
responses, and, therefore, can better explain the triple-component MST 
cells, whereas the vector field hypothesis is more consistent with position- 
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independent responses and can better explain the single-component 
MSTd cells. However, neither hypothesis is adequate to explain the 
mechanism of all MSTd cells. 

While each of the above hypotheses can explain some of the observed 
properties of the MSTd neurons, they all have the weakness that other 
important properties are not accounted for. Most obviously, it is very dif- 
ficult to explain why a multiple-component MSTd neuron can respond to 
different types of motion components, and why some MSTd cells have 
position-dependent responses and some have position-independent re- 
sponses. 

In this paper we propose a new model for the MSTd neurons. This 
model is biologically plausible, as it is based on a simple competitive 
learning network with unsupervised learning capability, and it can ex- 
plain all of the major properties of the MSTd neurons found neurophysi- 
ologically. In the next section, we give detailed discussion of this model. 
In Section 3, we show the simulation results and compare the perfor- 
mances of the model with the biological properties of the MSTd neurons. 

2 Competitive Learning Model for MSTd 

The main structure of the model is a two-layer neural network composed 
of input layer simulating the MT neurons, and output layer simulating 
the MSTd neurons. The basic operation between the layers of the network 
is competitive learning (Rumelhart and Zipser 1985), through which the 
network can discover the salient features and use them to classify the 
input patterns. 

2.1 Balancing the Competitive Learning. A competitive learning net- 
work can be trained by repeatedly presenting a set of patterns to the input 
units of network, and iteratively modifying the weights of the winning 
nodes. The trained network is able to recognize the structure of the in- 
put patterns in the sense that each cluster of similar patterns will always 
excite one particular output unit, and inhibit the others. There may also 
exist some output units that never win a competition and therefore never 
learn. These units are called dead units since they are never turned on to 
respond to any input. In some situations it may be the case that the input 
patterns do not form a set of nicely separable clusters. For example, the 
input patterns may form a continuum such that no obvious boundaries 
can be found to partition the continuum into clusters. This situation will 
be encountered later in the discussion of our MSTd model. In this case, 
the results of competitive learning may be very different, anywhere be- 
tween two extremes: (1) the continuum of input patterns may be divided 
relatively evenly, but randomly, into several clusters, each represented by 
an output unit, or (2) the entire continuum is represented by one output 
unit and all other units become dead units and never turned on. 
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To achieve the preferred result of (l), the competitive learning can be 
modified to ensure some winning chance for all units. By including a 
bias term in computing the output of each node during competition, we 
can make winning harder for frequent winners and easier for frequent 
losers (Grossberg 1976,1987). We can also adjust the learning rate so that 
the frequent winners learn more slowly than the frequent losers. As an- 
other way to ensure equal winning opportunity, DeSieno (1988) proposed 
a method that adds ”conscience” to the competitive learning to reduce 
frequent winners’ winning rate. Specifically, a bias term proportional to 
the difference between the equal winning probability and the actual win- 
ning frequency is used to enforce the equal winning opportunity among 
all output nodes. By adjusting the proportional factor, we can control 
the balance of the competitive learning. All of these methods are used 
in our model. By adjusting the relevant parameters the performance of 
the competitive learning can be controlled. 

2.2 Detecting the Optic Flow Components. The input layer, as 
shown in Figure 1, is composed of MT nodes, each responding preferen- 
tially to a local translational motion of a particular direction. The visual 
area under consideration can be considered as being composed of k x k 
small patches of the same size as the receptive field of the MT cells. Each 
patch is represented by eight MT cells of eight different preferred motion 
directions (E, NE, N, NW, W, SW, S, SE). If a motion is detected, one of 
the eight nodes whose preferred direction is closest to the motion direc- 
tion will be turned on. Otherwise, all nodes are off. The output layer 
is composed of a set of groups each containing n MSTd nodes, which 
are fully connected to all of the MT nodes in the input layer. In other 
words, the receptive field of an MSTd node is as large as the entire visual 
area represented by the input layer of the network. The number k can 
be chosen so that it properly relates the size of the receptive field of MT 
cells (input nodes) and that of the MSTd cells (output nodes). To simplify 
the model, only the directional flow field is used to represent the current 
scene. The speed tuning characteristic of MT cells is not modeled here. 

Through competitive learning, each node in a group of the output 
layer learns to respond to one of the different motion patterns presented 
in the input layer of the network. Among all possible patterns, we are 
interested only in those patterns that represent local optic flow patterns 
such as those shown in Figure 2. After training, each of the motion 
patterns will be responded to by a unique node in each group of the 
output layer. 

The discussion above is based on the ideal situation where the motion 
stimuli of the optic flow are presented accurately at every point in the 
visual field. This assumption is not realistic because there exists noise 
of various types in a real image. First, due to the aperture problem, the 
apparent velocity an MT cell sees may not represent the true motion. In 
addition, MT cells are not sharply tuned in motion direction (even though 
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Figure 1: Configeration of the network. The input layer is composed of k by k 
patches ( k  = 5 in this figure), each represented by eight MT nodes. The output 
layer is composed of a set of groups (five groups in this figure) each containing 
n MSTd nodes ( n  = 7 in this figure), which are fully connected to all of the MT 
nodes in the input layer. (Only the connections of one MSTd node are shown.) 

most of them show some speed preference). According to Rodman and 
Albright (19871, the width of the direction tuning curve could be as wide 
as 90". To account for this type of noise, we randomly choose some input 
nodes and change their direction by a random value in the range of -90" 
to 90". Moreover, noise is also introduced when there exist homogeneous 
areas in the scene. The MT cells in these areas will not turn on because 
no gradient of brightness can be detected. This situation is simulated by 
setting some randomly chosen input nodes to zero. 

The performance of the competitive learning will get worse as a higher 
percentage of input MT nodes is contaminated by the two types of noise 
introduced. However, when the percentage of these nodes is lower than 
50%, and with a longer training time, the learning can still reach a stable 
state where each input motion pattern is represented by basically the 
same output nodes. 

By repeatedly presenting different input motion patterns to the input 
layer, the MSTd nodes in the output layer learn to respond to the optic 
flow motion patterns. It is important to note here that the motion pat- 
terns presented to the input layer do not form a set of separable clusters 
in the feature space. For example, two circular motion patterns may be 
very similar to each other, if their center locations are close to each other. 
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Figure 2: Optic flow patterns. The eight patterns in the first row are translational 
motions of eight different directions. The eight patterns in the second row are 
rotations (clockwise and counterclockwise), extractions, contractions, and spiral 
motions of different circuIar and radial directions. The orders of the patterns 
in both rows are arranged so that they form a periodic spectrum in the sense 
that each pattern can be obtained by counterclockwise rotating 45" the arrows 
in the pattern to its left, and the first patterns (0 and 8) can also be obtained the 
same way from the last patterns (7 and 15). Each of the patterns in the second 
row may have different center locations in the visual field. (This figure shows 
only those patterns whose center locations are in the center of the field.) 

The central areas of these two patterns are represented by different nodes 
in the input layer, but the peripheral areas of the patterns may be rep- 
resented by the same input nodes. Also we note that the neighboring 
patterns in the second row of Figure 2 may share some input nodes if 
their center locations do not coincide. Moreover, the boundaries between 
different types of motion patterns will be further blurred due to the ex- 
istence of various types of noise as discussed above. In other words, 
the circular, radial, and spiral motion patterns with different center lo- 
cations form a continuum, rather than separable clusters, in the feature 
space. Since there do not exist clearcut boundaries among these pat- 
terns, the clustering as the result of the competitive learning may not 
be predictable. The continuum of patterns may be divided randomly in 
different ways into different numbers of clusters, each of a different size. 
Moreover, it is also possible that two or even three different types of mo- 
tion patterns are classified into one cluster and represented by the same 
output MSTd node because they share some nodes in the input layer. 
It is this learning mechanism that enables this model to simulate many 
important responsive features of the MSTd cells, such as the multicom- 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/7/2/290/812921/neco.1995.7.2.290.pdf by guest on 16 O
ctober 2021



296 Ruye Wang 

ponent cells and their different position-dependent responses. These will 
be further discussed in the next section. 

3 Simulation Results 

We now present the simulation results of our network model and com- 
pare them with the responsive features of the MSTd neurons found neu- 
rophysiologically. The key features of MSTd responses are (Graziano et al. 
1990; Duffy and Wurtz 1991a,b; Graziano 1994, etc.): 

1. The receptive fields (ranging from 10 to 100") of MSTd cells are 
much larger than that of the MT cells. 

2. MSTd cells respond to different types of motion stimuli: unidirec- 
tional translations (planar motion), clockwise and counterclockwise 
circular motion (rotation), outward and inward radial motions (ex- 
pansions and contractions), and various spiral motions (clockwise 
or counterclockwise, inward or outward). 

3. There exist three types of MSTd neurons that respond to one, two, 
or three motion components, respectively. The double-component 
cells can be planocircular or planoradial (Duffy and Wurtz 1991a), 
or circuloradial (spiral cells) (Graziano et al. 1990; Graziano 1994). 

4. The three types of neurons do not form three discrete classes but 
rather a continuum of response characteristics (Duffy and Wurtz 
1991a; Graziano 1994, Fig. 6). 

5. The responses of those MSTd cells that respond to circular, radial, 
and/or spiral motions can be plotted as a function, called a tun- 
ing curve, of the eight different types of motions (circular, radial, 
and spiral of different directions) that form a periodic horizontal 
axis. The tuning curve can be fitted with a gaussian curve very 
well (Graziano 1994, Fig. 7). For example, if a cell responds most 
strongly to a clockwise, contractive spiral motion (pattern 13 in 
Fig. 21, it will also respond (although less strongly) to the neigh- 
boring motion patterns, the contraction and clockwise rotation (pat- 
terns 12 and 14, respectively, in Fig. 2). (The tuning curves obtained 
from the simulation results will be shown in Fig. 6.) 

6. MSTd cells have different position-dependent responses. Position- 
independent response selectivity is most prominent in single-com- 
ponent cells, while position-dependent response selectivity is most 
prominent in triple-component cells (Duffy and Wurtz 1991b). Many 
cells show a slope response profile, indicating that the response was 
stronger at some locations than at others, but a cell will never re- 
verse its selectivity when the stimulus moves to a different position 
(Graziano 1994). 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/7/2/290/812921/neco.1995.7.2.290.pdf by guest on 16 O
ctober 2021



Visual Neurons in Area MSTd 297 

7. The selectivity of the multiple-component MSTd neurons is mostly 
position-dependent, and responses to different motion components 
change differently while the locations of the motion stimuli change. 
(Duffy and Wurtz 1991a, Fig. 8). These different position-dependent 
responses indicate that responses of different motion components 
of a multiple-component MSTd cell have different preferred regions 
of response in the receptive field, which usually do not coincide. 

8. There are neurons that do not respond selectively to any of the 
motion components (Duffy and Wurtz 1991a; Graziano 1994); 

To compare the performance of our model with the biological features 
listed above, we trained the network by repeatedly presenting to its input 
layer a set of 8 + 8 x k2 different flow motion patterns containing eight 
planar motion patterns in eight different directions (first row of Fig. 2), 
and eight types of circular, radial, and spiral motion patterns (second row 
of Fig. 2) each with k x k = k2 different locations in the visual field. Here 
we chose k = 7 to cover a visual area of 7 x 7 patches, each represented 
by eight MT nodes. The total number of optic flow patterns is therefore 
8 + 8 x 72 = 400. We also chose to have n = 30 MSTd nodes in each 
group of the output layer. Since the learning taking place in different 
groups is independent of each other (units in different groups do not 
compete with each other), there can be as many groups in the output 
layer as desired without affecting the results. Due to the random nature 
of the learning process (random initial values for the weights, etc.), the 
responses of these groups to the input patterns are statistically similar but 
not identical. This means that we can simulate a large number of MSTd 
cells with more statistically meaningful results. We may also choose to 
use slightly different learning parameters in different groups to model a 
variety of MSTd cells. Here we used 10 clusters in the output layer. 

After the learning phase of about 3000 iterations, the network became 
stable and had learned all the input motion patterns. In the testing phase, 
the 400 input patterns were presented again to the network sequentially, 
each time with the winning node recorded. The results showed that each 
of the 400 motion patterns was responded to uniquely by one of the 30 
nodes in each group of the output layer. However, as explained before, 
a node may respond to more than one input pattern. The responses of 
two of the groups in the output layer are shown in Figure 3. Here the 30 
numbers (from 0 to 29) represent the 30 MST nodes in each group. The 
eight winners that responded most strongly to the eight planar motions 
of eight different directions are listed first, followed by eight arrays con- 
taining winning nodes that responded most strongly to circular, radial, 
and spiral motions of five by five different center locations in the central 
area of the visual field. 

Moreover, to see the analog responses of the output nodes to mo- 
tion stimuli with different center locations, we also computed the ana- 
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Output Group 1 

Translation (0--7): 25 8 19 7 5 16 13 1 

(8) Expansion (9) Spiral-exp-cc (10) Rotation-cc 
24 24 22 22 22 25 25 25 17 17 12 2 2 2 25 
24 24 22 22 22 25 25 10 10 10 12 2 2 2 25 
24 24 22 21 21 12 12 10 10 10 6 6 2 17 17 
8 8 21 21 21 12 12 10 10 10 6 6 27 17 17 . -  - - 
8 8 21 21 21 12 12 6 6 6 6 6 27 17 17 

(12) Contraction (13) Spiral-con-c (14) Rotation-c 
20 20 20 14 14 0 0 23 23 23 29 29 0 0 0 
20 20 20 11 11 0 0 23 23 23 29 29 18 18 18 
15 15 11 11 11 0 0 26 26 23 29 29 18 18 18 
15 16 16 11 11 29 26 26 26 26 4 4 18 18 18 
16 16 16 1 1 29 29 26 26 26 4 4 4 18 18 

Output Group 2 

Translation (0--7): 11 17 13 19 8 29 5 15 

(8) Expansion 
6 29 29 29 29 
6 6 2 9  1 1  
6 1 7  1 1  1 

17 17 1 1 1 
17 17 17 13 13 

(12) Contraction 
10 10 2 2 2 
10 10 2 2 2 
10 10 2 2 2 
27 27 27 15 15 
27 27 27 15 15 

( 9 )  Spiral-exp-cc 
14 14 14 25 25 
14 14 14 25 25 
14 14 14 8 25 
13 13 8 8 8 
13 13 8 8 8 

(13) Spiral-con-c 
18 18 10 10 10 
18 18 12 12 12 
18 18 12 12 12 
16 16 12 12 11 
16 16 16 11 11 

(10) Rotation-cc 
0 0 0 22 22 
0 0 0 22 22 
0 0 21 21 22 

20 20 21 21 25 
20 20 21 25 25 

(14) Rotation-c 
16 26 18 18 18 
16 16 18 18 18 
16 16 7 7 7 
24 24 7 7 7 
24 24 7 7 7 

(11) Spiral-con-cc 
14 14 3 3 1 
14 14 3 3 1 
14 14 3 3 1 
20 20 13 13 13 
20 20 13 13 13 

(15) Spiral-exp-c 
4 4 5 5 5  
4 4 5 5 5  
4 28 28 5 5 

24 28 28 28 8 
24 28 28 8 8 

(11) Spiral - con- cc 
20 9 28 28 28 
20 9 28 28 15 
20 9 9 28 15 
23 23 23 22 22 
23 23 23 22 22 

(15) Spiral -exp-c 
24 24 26 26 26 
24 24 26 26 26 
24 4 4 26 26 
6 4 4 4 1 7  
6 6 4 17 17 

Figure 3: Responses of the output nodes. The 16 different types of input patterns 
[represented by (0) to (151, in the same order as in Fig. 21 are responded by the 
30 output nodes (represented by 0 to 29) in each group. The first eight are 
translational motions of different directions, and the second eight are circular, 
radial and spiral motions of different directions and center locations in the visual 
field. The winner of each input pattern is listed. 

log output (instead of the binary output generated by the winner-takes- 
all computation in competitive learning) of the output nodes. In the 
above example, five output nodes (14, 3, 1, 20, and 13) in group 1 all re- 
sponded favorably to counterclockwise, contractive spiral motions with 
different center locations in the visual field. For each node, we obtained 
its responses to the spiral motion patterns of different center locations 
over the receptive field. From the results shown in Figure 4, we see 
that a node has the strongest response and becomes the winner when 
the center of the stimulus is located within a small area favored by 
that node, while it still responds (with smaller output and therefore no 
longer the winner) to the stimuli whose centers are located elsewhere. 
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Figure 4: Analog responses of some output nodes to spiral motions. The analog 
responses of five output nodes to the counterclockwise contractive motions of 
different center locations are plotted. The vertical axis is the intensity of the 
responses, and the horizontal plane represents the visual area in the receptive 
field. The contour lines of the responses are also shown on this plane. 

From the responses of the MSTd nodes in the above two groups, the 
following features of the network can be observed: 

1. The nodes in the output layer of the network (simulating MSTd 
neurons) have much larger receptive fields than the nodes in the 
input layer (simulating MT neurons) because each of the output 
nodes is connected to all input nodes and therefore receives com- 
plete information present in the visual area. 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/7/2/290/812921/neco.1995.7.2.290.pdf by guest on 16 O
ctober 2021



300 Ruye Wang 

2. The output nodes of the network respond to different types of mo- 
tion stimuli, including planar translational motion, circular motion 
of clockwise and counterclockwise rotation, radial motion of expan- 
sion and contraction, and various spiral motions. 

3. There exist three types of output nodes: single-component nodes 
(nodes 7, 19, 10, 18, 21, 22, etc. in group 1, nodes 5, 19, 2, 7, 
14, etc. in group 2), double-component nodes (nodes 5, 13, 16, 
20, 24, etc. in group 1, nodes 8, 11, 15, 20, 29, etc. in group 2), 
and triple-component nodes (nodes 1, 8, 25 in group 1, nodes 13, 
15, 17 in group 2). It may appear that there are too few triple- 
component nodes compared to the biological findings (29% triple- 
component cells according to Duffy and Wurtz 1991a). However, 
note that here we count a node as a triple-component node only 
when it is the winner for all three motion patterns, while actually 
other nodes may also respond to three motion patterns (although 
not necessarily always the winner), as indicated by their responses 
shown in Figure 4 (also see discussion below). 

4. There is no underlying mechanism to separate the three types of 
nodes and therefore they form a continuum of response selectiv- 
ity. This is best illustrated by the triangular diagram in Figure 5, 
which closely resembles the result found biologically by Graziano 
(1994, Fig. 6). The diagram shows the responses of each MSTd 
cell, represented by a dot in the diagram, to three types of mo- 
tion stimuli (translational, circular and radial) represented by the 
three vertices of the diagram. The closer a dot is to a vertex, the 
stronger the cell responds to the corresponding motion than to the 
others. In other words, the nodes located close to the vertices 
are single-component nodes, those located close to the edges are 
double-component nodes, and those located in the central area are 
triple-component nodes. As these dots have random but relatively 
even distribution, they do form a continuum in the space. 

5. The responses to various motion stimuli are obtained for some out- 
put nodes in group 1, as listed in Table 1. The numbers in the first 
column represent eight output nodes, and the numbers in the first 
row represent eight different motion patterns in the same order as 
in the second row of Figure 2. Since a node’s response to a motion 
pattern varies, depending on where the center of the motion is in 
the field, listed in Table 1 are the maximum responses for each type 
of motion pattern. From these data, the tuning curves of four of the 
nodes (20, 0, 24, 17) are plotted, as shown in Figure 6. For conve- 
nience, the data points are properly shifted horizontally (based on 
the fact that the eight motion patterns are periodic, i.e., pattern 15 is 
also a neighbor of pattern 8) so that the peak is always in the mid- 
dle of the curve, although actually these nodes favor different types 
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Figure 5: Relative response strength to different types of motions. The distance 
DX from a dot to a vertex X is computed as 1/(1 + kRx), where Rx is the 
maximum response to the motion stimuli represented by X ,  and k can be found 
numerically for each node so that the three distances so computed indeed define 
a unique point in the diagram. 

Table 1: Maximum Responses to Various Motion Stimuli. 

8 7.4 4.2 1.7 1.0 1.1 1.5 3.5 7.2 
24 7.9 4.6 2.0 1.0 1.0 1.5 3.5 6.8 
6 3.2 7.4 7.1 4.0 1.3 0.3 0.4 1.1 

17 3.3 6.2 7.9 5.0 2.0 1.1 0.9 1.3 
14 0.9 2.2 4.9 7.9 6.4 3.0 1.3 0.8 
20 0.7 1.2 3.5 6.6 7.2 4.2 1.5 0.6 
0 0.7 0.1 0.1 1.3 3.9 6.9 5.9 2.5 
4 3.4 0.9 0.2 0.3 1.2 3.8 6.9 6.7 
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Figure 6: The tuning curves of some output nodes. The eight response in- 
tensities (the piecewise-linear line) of each node can be closely fitted with a 
gaussian function (the smooth curve). Each gaussian curve is slightly shifted in 
both vertical and horizontal directions (as indicated by its expression) to best 
fit the tuning curve of the node. 

of motion patterns as shown in the table. It can be seen that each 
of these curves can be very closely fitted with a gaussian function, 
just like the result found biologically by Graziano (1994, Fig. 78). 

6. The single-component nodes tend to have larger responsive areas 
and therefore are more position independent (e.g., nodes 10, 18, 
21, 22 in group 1, and nodes 2, 7, 14 in group 2 in Fig. 3), while 
the multicomponent nodes (double and triple-component) tend to 
have smaller responsive areas and are more position dependent 
(e.g., nodes 1, 8, 25 in group 1, and nodes 13, 15, 17 in group 2). 
This feature is consistently observed in more examples. Moreover, 
Figure 4 shows that the responses do have sloping profile as found 
biologically in (1994). 
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7. Multicomponent nodes have different responsive areas for differ- 
ent motion patterns (i.e., the responsive areas for different input 
patterns do not coincide). For example, as shown in Figure 3, the 
triple-component node 1 in group 1 responds strongly to counter- 
clockwise, contractive spiral motions located close to the upper- 
right corner and a contraction located at the lower-right corner; 
and the triple-component node 13 in group 2 responds strongly to 
expansion motions located at the lower-right corner and counter- 
clockwise, expansive spiral motion located at the lower-left corner 
of the field. This feature is consistently observed in more examples. 

8. There exist dead nodes (node 9 in group 1 and node 3 in group 2)  
that never win and therefore never respond to any input motion 
stimuli. 

All of these features match well with the properties of MSTd neurons 
found neurophysiologically, as listed at the beginning of this section. 

4 Discussion 

The main advantage of this model is that a set of important responsive 
properties of the MSTd neurons can all be accounted for by a network 
with simple competitive learning mechanism. As found in the recent 
study by Graziano (19941, there exist MSTd cells that respond to spiral 
motions of different directions much more strongly than to other expan- 
sion, rotation, or translational motion. This finding indicates that the 
three-channel decomposition hypothesis for visual perception of motion 
(optical flow is decomposed into three separate and discrete channels of 
translational, radial, and rotational motion components) does not appear 
to be correct. Instead, there is a continuum of patterns to which MSTd 
cells are selective. These responsive properties are well matched by the 
behaviors of the model presented here. As assumed in this model, all 
global motion patterns of different center locations are composed of a set 
of k by k small patches each represented by an MT node whose preferred 
direction best fits the local motion direction in the patch. Since differ- 
ent motion patterns may share some MT nodes, there do not exist clear 
boundaries in the feature space to separate different motion patterns, 
i.e., the motion patterns form a continuum rather than separate clusters. 
Consequently, the output nodes responding to these motion patterns also 
form a continuum composed of single-, double-, and triple-component 
nodes. 

Further work in the future includes the following two aspects. First, 
the model has been tested only on simplified and idealized inputs. We 
will further test the model to assess its ability to respond to optic flow 
extracted from real images. The main difficulty that we have to overcome 
is the huge amount of data to process when real images are used. As 
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discussed above, the number of motion patterns (of different types and 
different center locations) is proportional to the size of the image squared. 
And the more motion patterns the network needs to recognize, the longer 
time (more iterations) it requires for training. The high computation 
demands required for simulating the responsive properties of the MSTd 
neurons using real images may be overwhelming. 

Second, we can expand the model so that more responsive properties 
of the MSTd cells can be accounted for. According to Duffy and Wurtz’s 
(1993) recent finding, there exist MSTd cells that are responsive to center 
of motion (COM) of both circular and radial motions (including focus 
of expansion, FOE). We want to show that this responsive property can 
be achieved from a hierarchical structure obtained by adding to the cur- 
rent network one or more layers. The nodes in the added layers should 
develop sharper tuning for the center positions of motions and there- 
fore respond to the COMs. This is based on the feature of competitive 
learning that a learned node will represent the common features of the 
patterns represented by a set of nodes in the previous layer. In our case, a 
node may become responsive to a motion pattern whose COM is located 
in the intersection of the patterns represented by a set of nodes in the 
previous layer. In other words, the responses of the nodes in an added 
layer become more position-sensitive than those in the current output 
layer. 

Finally we would like to compare the architecture of this model to 
that of the multilayer Hebbian learning network proposed by Linsker 
(1986a,b). Both models are based on a simple hierarchical architecture 
with increasing receptive field and use unsupervised learning algorithm. 
Linsker’s model used white noise as the input data and successfully 
simulated enter-surround cells and orientation-selective cells found in 
V1 area, while the model presented here uses the data simulating the 
velocity selectivity found in the MT neurons as the input, and simulates 
the selective responses to various optic-flow motion components found 
in the MSTd area. These models show that important neuronal properties 
found in the biological visual system can be successfully accounted for 
by some simple network models. 
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