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This article investigates the bias and variance of mixtures-of-experts (ME)
architectures. The variance of an ME architecture can be expressed as the
sum of two terms: the first term is related to the variances of the expert
networks that comprise the architecture and the second term is related to
the expert networks’ covariances. One goal of this article is to study and
quantify a number of properties of ME architectures via the metrics of bias
and variance. A second goal is to clarify the relationships between this
class of systems and other systems that have recently been proposed. It is
shown that in contrast to systems that produce unbiased experts whose
estimation errors are uncorrelated, ME architectures produce biased ex-
perts whose estimates are negatively correlated.

1 Introduction

Many researchers recently have studied statistical models that estimate the
value of a random variable by combining the estimates of other models,
henceforth referred to as experts. Theoretical and experimental results have
established that when the experts are unbiased estimators, combination
procedures are most effective when the experts’ estimates are negatively
correlated; they are moderately effective when the experts are uncorrelated
and only mildly effective when the experts are positively correlated.

As an example of an analysis of combinations that use unbiased experts,
Clemen and Winkler (1985) quantified the utility of positively correlated,
uncorrelated, and negatively correlated experts when the experts’ estimates
are combined via Bayes’ rule. These investigators represented the statistical
dependence among the experts by the dependence among their estimation
errors and then considered the number of independent experts that carry
the same amount of information as a given number of dependent experts.
Given certain assumptions, Clemen and Winkler showed that the number
of independent experts that are worth the same as an infinite number of pos-
itively correlated experts is equal to the inverse of the correlation among the
experts. This limit is surprisingly low. If, for instance, the correlation among
the experts is 0.5, then an infinite number of such experts carry as much in-
formation as only two independent experts. After the first expert, which is
worth one independent expert, all other experts combined are worth only
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370 Robert A. Jacobs

one additional independent expert. The opposite situation is found when
negative dependence among the experts is considered. That is, whereas
positive dependence among the experts diminishes the effectiveness of a
combination procedure, negative dependence increases it.

As a consequence of these types of theoretical results, as well as of em-
pirical studies that show that these general findings also hold in practice
(Perrone 1993; Hashem 1993), several researchers have investigated archi-
tectures and training procedures for obtaining unbiased experts whose es-
timation errors are uncorrelated (Meir 1994; Raviv and Intrator, in press;
Tresp and Taniguchi 1995). In contrast, this article studies a class of architec-
tures, known as mixtures-of-experts (ME) architectures, that adopt a very
different strategy. The analyses are conducted by estimating the bias and
variance of these models under a variety of conditions. Based on a result due
to Meir (1994), it is shown that the architecture’s variance can be expressed
as the sum of two terms: the first related to the variances of the experts that
comprise the architecture and the second related to the experts’ covariances.
One goal of this article is to study and quantify a number of properties of
ME architectures via the metrics of bias and variance. Because these systems
consist of several interacting components, their performance properties can
be difficult to understand in a rigorous way. The analyses presented here are
useful in this regard. A second goal is to clarify the relationships between
this class of architectures and other architectures that have recently been
proposed. Instead of producing unbiased experts whose estimation errors
are uncorrelated, ME architectures produce biased experts whose estimates
are negatively correlated.

The article is organized as follows. Section 2 briefly overviews the ME
architecture and its associated learning procedure. Section 3 presents the
equations for computing the bias and variance of these architectures. Sec-
tion 4 presents the results of estimating the biases and variances of ME
architectures operating with different numbers of components, operating
with different parameter settings, and operating in different noise environ-
ments.

2 Mixtures-of-Experts Architectures

The architectures studied in this article are members of the ME family of
architectures. This family is of interest on both theoretical and empirical
grounds. From a theoretical viewpoint, the architectures combine aspects
of finite mixture models and generalized linear models, two well-studied
statistical frameworks (Jordan and Jacobs 1994; McCullagh and Nelder 1989;
McLachlan and Basford 1988). From an empirical viewpoint, they have been
shown to be capable of comparatively fast learning and good generaliza-
tion on a wide variety of regression and classification tasks (Jacobs et al.
1991; Jordan and Jacobs 1994; Nowlan and Hinton 1991; Waterhouse and
Robinson 1994).
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Bias/Variance Analyses of Mixtures-of-Experts Architectures 371

ME architectures are multinetwork, or modular, architectures that com-
bine aspects of competitive and associative learning. Different architectures
within this framework may be formed by placing the networks in different
structural arrangements. A probabilistic interpretation exists such that for
each arrangement of networks, there is a corresponding likelihood func-
tion that characterizes an architecture’s performance. Learning occurs by
maximizing the likelihood function.

ME architectures attempt to solve problems using a “divide-and-conquer”
strategy; that is, complex problems are decomposed into a set of simpler
subproblems. It is assumed that the data can be adequately summarized
by a collection of functions, each defined over a local region of the input
space. ME architectures adaptively partition the input space into possibly
overlapping regions and allocate different networks to summarize the data
located in different regions. This section briefly overviews the ME architec-
tures used in this article. More extensive discussions of ME architectures
can be found in Jacobs et al. (1991), Jacobs and Jordan (1991, 1993), Jordan
and Jacobs (1994), Jordan and Xu (1993), Nowlan and Hinton (1991), and
Peng et al. (1996).

For the purposes of this article, it is assumed that the data are generated
by a number of different probabilistic rules. Let D = {(x(t), y(t))} denote the
collection of training data, where x is an input vector, y is a target output,
and t is a time index. At each time step, a rule is selected from a condi-
tional multinomial distribution with probability g(t)i = p(i|x(t),V), where i
indexes a rule and V = [v1, . . . ,vI] is the matrix of parameters underlying
the distribution. The selected rule generates an output y with probability
p(y(t)|x(t),Ui,8i), where Ui is a parameter matrix and 8i represents other
(possibly nuisance) parameters. In the case of regression, each rule is char-
acterized by a statistical model of the form y = fi(x) + εi, where fi(x) is a
fixed linear function of the input vector, and εi is a random variable. If it is
assumed that εi is gaussian with a mean of zero and a variance of σ 2

i , and if it
is assumed that the data are independent and identically distributed, then
the likelihood of generating the data is proportional to the finite mixture
density

L(Θ|D) ∝
∏

t

∑
i

p(i|x(t),V)p(y(t)|x(t),Ui,8i) (2.1)

∝
∏

t

∑
i

g(t)i
1
σi

e
− 1

2σ2
i
(y(t)−µ(t)i )

2

(2.2)

where µ(t)i = fi(x(t)), and Θ = [v1, . . . ,vI,U1, . . . ,UI,81, . . . , 8I]T is the
matrix of all parameters.

The ME architectures studied here consist of two types of networks: a
gating network and a number of expert networks. The gating network mod-
els the input-dependent multinomial distribution used to select a rule. The
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372 Robert A. Jacobs

expert networks model the input-dependent statistical models associated
with the different rules. At each time step, all networks receive the vector x
as input. The output of expert network i, denoted µi, is a linear function of
its input. The outputs of the gating network are computed using the “soft-
max” function (Bridle 1989); specifically, the activation of the ith output unit
of the gating network, denoted gi, is

gi = esi/τ

I∑
j=1

esj/τ

, (2.3)

where τ is a temperature parameter, si denotes the weighted sum of unit
i’s inputs, and I denotes the number of expert networks. The output of the
architecture as a whole, given by

µ =
I∑

i=1

gi µi , (2.4)

is a convex combination of the experts’ outputs. The parameters of the
gating and experts networks are adapted so as to maximize the likelihood
function given in equation 2.2. This maximization is performed using the
expectation-maximization (EM) algorithm (see Jordan and Jacobs 1994 for
the EM equations).

3 Bias/Variance Measures

The expected squared error of an estimator on a particular data item may
be expressed as the sum of two terms,

E[(y− µ)2|x,D] = E[(y− E[y|x])2 | x,D]+ (µ− E[y | x]|x,D)2, (3.1)

where x is the input vector, y is the target output, µ is the estimator’s ap-
proximation, D is the set of training data used to train the estimator, and
E is the expectation operator taken with respect to the probability distri-
bution p(y|x). Because the first term does not depend on the data, only the
second term is considered below. The expected value of the second term
with respect to the data can also be written as the sum of two terms,

ED[(µ− E[y|x])2] = (ED[µ]− E[y|x])2 + ED[(µ− ED[µ])2] , (3.2)

where ED is the expectation operator taken with respect to the data. The
first term is the square of the bias of an estimator, and the second term is
the estimator’s variance.
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Bias/Variance Analyses of Mixtures-of-Experts Architectures 373

ME architectures produce an estimate of a target output by linearly com-
bining the estimates of several experts. Consequently, the bias and variance
of an ME architecture can be written in terms of the gating network outputs
(the linear coefficients) and the expert network outputs. This leads to an
interesting decomposition in the case of the variance of an ME architecture.
Based on a result due to Meir (1994), the variance may be expressed as the
sum of two terms,

ED[(µ− ED[µ])2] = ED

[∑
i
(gi µi − ED[gi µi])2

]
(3.3)

+ ED

∑
i

∑
i6=j

(gi µi − ED[gi µi]) (gj µj − ED[gj µj])

 ,
where the first term is the variance of the weighted outputs of the individual
experts, and the second term is the covariance of the experts’ weighted
outputs.

Combining equations 3.2 and 3.3, the expected squared difference be-
tween the estimate of an ME architecture and the expected value of a regres-
sion function is the sum of the architecture’s squared bias and the variance
and covariance of the experts’ weighted outputs. It is possible to gain in-
sight into the performance characteristics of ME architectures by analyzing
these systems in terms of these quantities.

4 Simulation Results

This section reports the results of estimating the bias of ME architectures and
the variance and covariance of experts’ weighted outputs on a regression
task. The regression function is

f (x) = 1
13

[
10 sin(πx1x2)+ 20

(
x3 − 1

2

)2

+ 10 x4 + 5 x5

]
− 1 , (4.1)

where x = [x1, . . . , x5] is an input vector whose components lie between
zero and one. The value of f (x) lies in the interval [−1, 1]. Target outputs
are created by adding noise sampled from a gaussian distribution with a
mean of zero and a variance of σ 2 to the function f . This regression task is
a linearly scaled version of a task that has been used by other investigators
to evaluate statistical estimators (e.g., Friedman 1991; Friedman et al. 1983).

Twenty-five training sets were created. Each set consisted of 500 input-
output patterns in which the components of the input vectors were indepen-
dently sampled from a uniform distribution over the interval (0, 1). A test set
of 1024 input-output patterns was also created. For this set, the input vectors
were uniformly spaced in the five-dimensional input space, and the target
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374 Robert A. Jacobs

outputs were not corrupted by noise. Twenty-five simulations of each archi-
tecture were conducted. In each simulation, the architecture was trained on
a different training set. Simulations lasted for 60 epochs, and architectures
were evaluated on the test set at every fifth epoch. The variance parame-
ter associated with each expert network was set to the variance of the noise
added to the training data. An architecture was initialized with the same set
of small, random weights at the start of each simulation. Consequently, dif-
ferent simulations of an architecture yielded different performances solely
due to the use of different training sets.

The equations for estimating the quantities of interest are closely related
to the equations for estimating the bias and variance of neural networks
presented by Geman et al. (1992). The average output of an architecture on
pattern t from the test set, denoted µ(t), is given by

µ(t) = 1
N

N∑
n=1

µ(t,n), (4.2)

where µ(t,n) is the output on the nth simulation and N is the number of
simulations. Similarly, the average weighted output of expert network i on

pattern t, denoted g(t)i µ
(t)
i , is given by

g(t)i µ
(t)
i =

1
N

N∑
n=1

g(t,n)i µ(t,n)i , (4.3)

where g(t,n)i is the activation of the ith unit of the gating network on simula-
tion n, andµ(t,n)i is the output of expert network i on simulation n. Define the
integrated bias, meaning the squared bias averaged over the set of input-
output patterns in the test set, to be

Integrated bias ≡ 1
T

T∑
t=1

|µ(t) − y(t)|2, (4.4)

where y(t) is the target output on pattern t and T is the total number of
patterns. The integrated variance and integrated covariance of the experts’
weighted outputs are defined in analogous ways:

Integrated variance ≡
∑

i

1
T

T∑
t=1

1
N

N∑
n=1

(g(t,n)i µ(t,n)i − g(t)i µ
(t)
i )

2 (4.5)

Integrated covariance ≡∑
i

∑
j6=i

1
T

T∑
t=1

1
N

N∑
n=1

(g(t,n)i µ(t,n)i − g(t)i µ
(t)
i ) (g

(t,n)
j µ

(t,n)
j − g(t)j µ

(t)
j ) . (4.6)
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Bias/Variance Analyses of Mixtures-of-Experts Architectures 375

Figure 1: Integrated bias, variance, covariance, and mean-squared error of ar-
chitectures with 4, 8, or 12 expert networks.

It is also useful to define the integrated mean-squared error (MSE):

Integrated MSE ≡ 1
T

T∑
t=1

1
N

N∑
n=1

|µ(t,n) − y(t)|2. (4.7)

Equivalently, the integrated MSE can be expressed as the sum of the inte-
grated bias, variance, and covariance.

The first experiment that we conducted evaluated ME architectures with
different numbers of expert networks. Systems with 4, 8, and 12 experts were
used. The temperature parameter in the softmax activation function used
by the gating network (see equation 2.3) was set to 1, and the variance of the
noise added to the target function was set to 0.1. The results are presented
in Figure 1. The training time is given by the horizontal axis of each graph in
this figure. The integrated bias is given by the vertical axis of the upper-left
graph; the integrated variance is given by the vertical axis of the upper-right
graph; the lower-left graph gives the integrated covariance; and the lower-
right graph gives the integrated MSE. In all four graphs, the solid line gives
the results for the architecture with 12 experts; the dense dashed line and
the sparse dashed line give the results for the architectures with 8 and 4
experts, respectively (a legend is shown in the upper-left graph).

As expected, the integrated bias declined with training time for all ar-
chitectures. The 12-expert and 8-expert systems have more computational
resources than the 4-expert system and thus achieved smaller bias. The in-
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376 Robert A. Jacobs

Figure 2: Correlations among the expert networks’ outputs for architectures
with 4, 8, and 12 experts at epochs 20 and 60.

tegrated variance for all architectures increased with training time. This is
particularly true for the system with 12 experts. In contrast, the covariance
for all architectures decreased as training progressed. Because the variance
increased significantly faster than the covariance decreased, the systems
eventually overfit the training data as evidenced by the integrated MSE.
Overfitting was most severe for the 12-expert system.

For our purposes, it is important to note that the integrated covariance
became negative during the course of training. Although this covariance is
based on the expert networks’ weighted outputs (as weighted by the gat-
ing network), its negative value suggests that it is likely that the experts’
unweighted outputs also became negatively correlated. In order to eval-
uate this hypothesis, we measured the correlations among these outputs
(averaged over the 25 simulations of each architecture) at epoch 20 (prior
to overfitting) and at epoch 60 (overfitting has occurred). The results are
shown in Figure 2. The three rows of bar graphs correspond to the systems
with 4, 8, and 12 expert networks; the two columns correspond to epochs 20
and 60. The vertical axis of each graph gives the value of a correlation. A
correlation is represented by a vertical bar with one end point at zero and
the other end point at the value of the represented correlation.
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Figure 3: Squared biases of the individual expert networks that comprise archi-
tectures with 4, 8, and 12 experts at epochs 20 and 60.

The results suggest that the ME training procedure leads to negatively
correlated experts. In addition, the correlations become more negative as
training proceeds. The negative correlations stem from the fact that each
ME system adaptively partitions the input space into regions such that the
target function has different properties in each region. Different experts
learn the data located in different regions. Because the correlations for the
4-expert system, which has relatively few computational resources, were all
negative, it may be said that the ME architecture was efficient in the sense
that it adapted the experts so that different experts provided informationally
different “basis” functions. Although some of the correlations of the 8- and
12-expert systems were positive in value, the majority of the correlations
were negative.

The ME architecture tends to produce negatively correlated experts and
thus should be preferable to systems that produce uncorrelated and unbi-
ased experts only if its experts are also unbiased. To evaluate this possi-
bility, we estimated the squared bias of the individual experts. The results
are shown in Figure 3. The bar graphs in this figure correspond to the sys-
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tems with 4, 8, and 12 expert networks evaluated at epochs 20 and 60. The
vertical axis of each graph gives the estimated bias of an individual expert,
and different bars correspond to different experts. Despite the fact that the
bias of an ME architecture was nearly zero, the squared biases of the in-
dividual experts comprising the architecture were positive. The biases of
experts in larger architectures were generally greater than those of experts
in smaller architectures. Furthermore, the expert biases increased with ad-
ditional training.

The experiments reported here help clarify the relationships between
the performance characteristics of ME architectures and those of some sys-
tems studied by other researchers. As noted above, several investigators are
seeking training methods for achieving unbiased experts whose estimation
errors are uncorrelated (Meir 1994; Raviv and Intrator, in press; Tresp and
Taniguchi 1995). As just one example, Raviv and Intrator (in press) use a
noisy sampling technique (bootstrapping) in order to create sets of inde-
pendent training samples. Uncorrelated experts are produced by training
different experts on different training sets. In contrast, ME architectures and
their associated training procedures adopt a very different strategy. They
tend to produce experts that are biased and negatively correlated.

The next experiment studied the effects of varying the temperature pa-
rameter in the softmax function used by the gating network. Jordan and
Jacobs (1994) claimed that an advantage of ME architectures over other tree-
structured statistical estimators, such as CART (Breiman el al. 1984) or C4.5
(Quinlan 1993), is that they use soft splits of the input space instead of hard
splits, meaning that regions of the input space defined by the architecture
can overlap and that data items can lie simultaneously in multiple regions.
Estimators that use hard splits are likely to have a larger variance than es-
timators that use soft splits. In order to verify and quantify this claim, we
compared the performances of an ME architecture when the temperature
was small (τ = 0.025) to that when the temperature was large (τ = 1.0).
The splits of an architecture with a near-zero temperature are more like
hard splits, especially during the early stages of training when the gating
network’s weights are small. The architecture that was used had 8 expert
networks. The variance of the noise added to the target function was 0.1.

The results are presented in Figure 4 (this figure has the same format
as Fig. 1). The solid line gives the performance of the architecture with a
large temperature; the dashed line is for the case of a small temperature.
The integrated bias of the large-temperature architecture decreased more
slowly than that of the small-temperature architecture during the early
stages of training but eventually reached a lower value. Its integrated vari-
ance was significantly lower, and its integrated covariance was only mod-
erately higher. Thus, these outcomes are consistent with the claim of Jordan
and Jacobs (1994). The MSE of the large-temperature system was smaller.
Overall, the results suggest that the system with a low temperature tended
to commit early in the training process to a particular partition of the input
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Figure 4: The integrated bias, variance, covariance, and mean-squared error for
architectures when the temperature parameter τ was set to 1.0 or 0.025.

space. Because the architecture at this stage of training is highly sensitive
to the idiosyncrasies of both its training data and its initial weight settings,
the selected partitions frequently lead to poor generalization performance.

We have also analyzed architectures when the variance of the noise added
to the target function was varied. Large noise (σ 2 = 0.2), moderate noise
(σ 2 = 0.1), and small noise (σ 2 = 0.05) conditions were studied. The ME
architecture had 8 expert networks. The temperature τ was set to 1. The
results are shown in Figure 5. The solid line is for the large noise condition;
the dense and sparse dashed lines correspond to the moderate noise and
small noise conditions, respectively. As expected, the integrated bias of the
architecture decreased more slowly when the noise was relatively large. The
architecture’s integrated variance grew slowly during early stages of train-
ing and more rapidly during later stages under this condition. Similarly, its
covariance decreased slowly initially but then eventually decreased rapidly
in the large noise case. The integrated MSE is smallest for the low noise case.
In sum, performance was best when the signal-to-noise ratio of the training
data was high and degraded gracefully with decreasing values of this ratio.

5 Conclusions

This article has investigated the bias and variance of several ME architec-
tures. It was shown that the variance of an ME architecture can be expressed
as the sum of two terms: the first is related to the variances of the experts that
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Figure 5: The integrated bias, variance, covariance, and mean-squared error
for architectures when the variance of the noise added to the target function
was 0.2, 0.1, or 0.05.

comprise the architecture, the second is related to the experts’ covariances.
One goal of this article was to study and quantify a number of properties
of ME architectures. A second goal was to clarify the relationships between
this class of systems and other systems that have recently been proposed. In
contrast to systems that produce unbiased experts whose estimation errors
are uncorrelated, ME architectures produce biased experts whose estimates
are negatively correlated.

The fact that ME architectures produce biased experts may be seen as a
disadvantage by some readers. My view is that this property is of no con-
sequence so long as the overall ME architecture is unbiased at the end of
training. This appears to be the case, as is evidenced in Figures 1, 4, and 5.
Nonetheless, it may be tempting to seek ways to modify the architecture
or training procedure so as to produce individual experts with less bias.
The most obvious possibility is to add hidden units to the expert networks
so that these networks could perform nonlinear regressions. Although this
practice would reduce the bias of the individual experts, I do not necessar-
ily recommend it. One drawback of adding hidden units to the experts is
that the EM algorithm, extremely efficient for optimizing likelihood func-
tions, could no longer be easily used during training. A second drawback
of adding hidden units is that this would result in increases in the variances
of the individual experts. The statistical community has generally regarded
nonzero variance as a more serious problem than nonzero bias as evidenced
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by the community’s focus on the overfitting problem. It is often found that
the addition of a small amount of bias to an estimator can result in a larger
decrease in an estimator’s variance.

The analyses presented here help in understanding a number of regu-
larization procedures that have recently been applied to ME architectures
in order to ameliorate the problem of overfitting. One way that overfitting
can be lessened is through the use of methods that decrease the variances
of the experts. Waterhouse et al. (1996) pursued this approach in a Bayesian
framework by assigning prior distributions to the weights of each expert.
The parameter values for each prior distribution were estimated from the
data. This strategy aims to decrease the experts’ variances without overly
increasing the architecture’s bias. Simulation results on two artificial data
sets and on a sunspot prediction task showed that the method can be effec-
tive in eliminating overfitting. The experts’ variances can also be decreased
by methods that reduce the number of free parameters in an ME archi-
tecture. Jacobs et al. (1996) used Bayesian sampling techniques in order to
detect and eliminate unnecessary expert networks. Simulation results on a
speech recognition task and a breast cancer classification task showed that
the method led to improved generalization performances. Waterhouse and
Robinson (1996) proposed an algorithm that both adds and deletes networks
from an ME architecture during the course of training. A different approach
to ameliorating overfitting is to increase the degree to which experts are
negatively correlated. Although we are not aware of any studies that have
pursued this approach, simulation results of Jacobs and Kosslyn (1994) sug-
gest that it might be achieved through the use of expert networks that each
have a different topology or each receive a different set of input variables.
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