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Deep belief networks (DBN) are generative neural network models
with many layers of hidden explanatory factors, recently introduced by
Hinton, Osindero, and Teh (2006) along with a greedy layer-wise unsuper-
vised learning algorithm. The building block of a DBN is a probabilistic
model called a restricted Boltzmann machine (RBM), used to represent
one layer of the model. Restricted Boltzmann machines are interesting
because inference is easy in them and because they have been success-
fully used as building blocks for training deeper models. We first prove
that adding hidden units yields strictly improved modeling power, while
a second theorem shows that RBMs are universal approximators of dis-
crete distributions. We then study the question of whether DBNs with
more layers are strictly more powerful in terms of representational power.
This suggests a new and less greedy criterion for training RBMs within
DBNs.

1 Introduction

Learning algorithms that learn to represent functions with many levels of
composition are said to have a deep architecture. Bengio and Le Cun (2007)
discuss results in computational theory of circuits that strongly suggest
that deep architectures are much more efficient in terms of representa-
tion (number of computational elements, number of parameters) than their
shallow counterparts. In spite of the fact that two-level architectures (e.g., a
one-hidden-layer neural network, a kernel machine, or a two-level digital
circuit) are able to represent any function (see, e.g., Hornik, Stinchcombe,
& White, 1989), they may need a huge number of elements and, conse-
quently, of training examples. For example, the parity function on d bits
(which associates the value 1 with a vector v if v has an odd number of bits
equal to 1 and 0 otherwise) can be implemented by a digital circuit of depth
log(d) with O(d) elements but requires O(2d ) elements to be represented
by a two-level digital circuit (Ajtai, 1983) (e.g., in conjunctive or disjunctive
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1632 N. Le Roux and Y. Bengio

normal form). We proved a similar result for gaussian kernel machines: they
require O(2d ) nonzero coefficients (i.e., support vectors in a support vector
machine) to represent such highly varying functions (Bengio, Delalleau, &
Le Roux, 2006). On the other hand, training learning algorithms with a deep
architecture (such as neural networks with many hidden layers) appears
to be a challenging optimization problem (Tesauro, 1992; Bengio, Lamblin,
Popovici, & Larochelle, 2007).

Hinton, Osindero, & Teh (2006) introduced a greedy layer-wise unsu-
pervised learning algorithm for deep belief networks (DBN). The training
strategy for such networks may hold great promise as a principle to help
address the problem of training deep networks. Upper layers of a DBN are
supposed to represent more abstract concepts that explain the input data,
whereas lower layers extract low-level features from the data. In Bengio et
al. (2007), and Ranzato, Poultney, Chopra, and LeCun (2007) this greedy
layer-wise principle is found to be applicable to models other than DBNs.
DBNs and restricted Boltzmann machines (RBMs) have already been ap-
plied successfully to a number of classification, dimensionality-reduction,
information retrieval, and modeling tasks (Welling, Rosen-Zvi, & Hinton,
2005; Hinton et al., 2006; Hinton & Salakhutdinov, 2006; Bengio et al., 2007;
Salakhutdinov & Hinton, 2007).

In this letter, we show that adding hidden units yields strictly improved
modeling power unless the RBM already perfectly models the data. Then
we prove that an RBM can model any discrete distribution, a property
similar to those of neural networks with one hidden layer. Finally, we
discuss the representational power of DBNs and find a puzzling result
about the best that could be achieved when going from one-layer to two-
layer DBNs. Note that the proofs of universal approximation by RBMs are
constructive, but these constructions are not practical as they would lead
RBMs with potentially as many hidden units as examples, and this would
defy the purpose of using RBMs as building blocks of a deep network that
efficiently represents the input distribution. Important theoretical questions
therefore remain unanswered concerning the potential for DBNs that stack
multiple RBMs to represent a distribution efficiently.

1.1 Background on RBMs

1.1.1 Definition and Properties. An RBM is a particular form of the product
of experts model (Hinton, 1999, 2002), which is also a Boltzmann machine
(Ackley, Hinton, & Sejnowski, 1985) with a bipartite connectivity graph. An
RBM with n hidden units is a parametric model of the joint distribution
between hidden variables hi (explanatory factors), collected in vector h and
observed variables v j (the example, collected in vector v), of the form

p(v, h) ∝ exp(−E(v, h)) = ehT Wv+bT v+cT h,
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Representational Power of RBMs and DBNs 1633

with parameters θ = (W, b, c) and v j , hi ∈ {0, 1}. E(v, h) is called the en-
ergy of the state (v, h). We consider here the simpler case of binary
units. It is straightforward to show that P(v|h) = ∏

j P(v j |h) and P(v j =
1|h) = sigm(b j + ∑

i Wi j hi ) (where sigm is the sigmoid function defined
as sigm(x) = 1

1+exp(−x) ), and P(h|v) has a similar form: P(h|v) = ∏
i P(hi |v)

and P(hi = 1|v) = sigm(ci + ∑
j Wi jv j ). Although the marginal distribution

p(v) is not tractable, it can be easily computed up to a normalizing constant.
Furthermore, one can also sample from the model distribution using Gibbs
sampling. Consider a Monte Carlo Markov chain (MCMC) initialized with
v sampled from the empirical data distribution (distribution denoted p0).
After sampling h from P(h|v), sample v′ from P(v′|h), which follows a
distribution denoted p1. After k such steps, we have samples from pk , and
the model’s generative distribution is p∞ (due to convergence of the Gibbs
MCMC).

1.1.2 Training and Contrastive Divergence. Carreira-Perpiñan and Hinton
(2005) showed that the derivative of the log likelihood of the data under the
RBM with respect to the parameters is

∂ log p(v, h)
∂θ

= −
〈
∂ log E(v, h)

∂θ

〉
0
+

〈
∂ log E(v, h)

∂θ

〉
∞

, (1.1)

where averaging is over both v and h, 〈·〉0 denotes an average with re-
spect to p0 (the data distribution) multiplied by P(h|v), and 〈·〉∞ de-
notes an average with respect to p∞ (the model distribution): p∞(v, h) =
p(v, h).

Since computing the average over the true model distribution is in-
tractable, Hinton et al. (2006) use an approximation of that derivative called
contrastive divergence (Hinton, 1999, 2002): one replaces the average 〈·〉∞
with 〈·〉k for relatively small values of k. For example, in Hinton et al. (2006),
Hinton and Salakhutdinov (2006), Bengio et al. (2007), and Salakhutdinov
and Hinton (2007), one uses k = 1 with great success. The average over
v’s from p0 is replaced by a sample from the empirical distribution (this
is the usual stochastic gradient sampling trick), and the average over v’s
from p1 is replaced by a single sample from the Markov chain. The re-
sulting gradient estimator involves only very simple computations, and
for the case of binary units, the gradient estimator on weight Wi j is sim-
ply P(hi = 1|v)v j − P(hi = 1|v′)v′

j , where v′ is a sample from p1 and v is
the input example that starts the chain. The procedure can easily be gen-
eralized to input or hidden units that are not binary (e.g., gaussian or
exponential, for continuous-valued units; Welling et al., 2005; Bengio et al.,
2007).
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1634 N. Le Roux and Y. Bengio

2 RBMs Are Universal Approximators

We now prove that RBMs with a data-selected number of hidden units
become nonparametric and possess universal approximation properties re-
lating them closely to classical multilayer neural networks, but in the context
of probabilistic unsupervised learning of an input distribution.

2.1 Better Model with Increasing Number of Units. We show that
when the number of hidden units of an RBM is increased, there are weight
values for the new units that guarantee improvement in the training log like-
lihood or, equivalently, in the Kullback-Leibler (KL) divergence between the
data distribution p0 and the model distribution p∞ = p. These are equiva-
lent since

KL(p0||p) =
∑

v

p0(v) log
p0(v)
p(v)

= −H(p0) − 1
N

N∑
i=1

log p
(
v(i)),

when p0 is the empirical distribution, with v(i) the ith training vector and
N the number of training vectors.

Consider the objective of approximating an arbitrary distribution p0 with
an RBM. Let p denote the distribution over visible units v obtained with
an RBM that has n hidden units and pw,c denote the input distribution
obtained when adding a hidden unit with weights w and bias c to that
RBM. The RBM with this extra unit has the same weights and biases for all
other hidden units, and the same input biases:

Lemma 1. Let Rp be the equivalence class containing the RBMs whose associated
marginal distribution over the visible units is p. The operation of adding a hidden
unit to an RBM of Rp preserves the equivalence class. Thus, the set of RBMs
composed of an RBM of Rp and an additional hidden unit is also an equivalence
class (meaning that all the RBMs of this set have the same marginal distribution
over visible units).

The proof is in the appendix.
Rp will be used here to denote any RBM in this class. We also define Rpw,c

as the set of RBMs obtained by adding a hidden unit with weight w and bias
c to an RBM from Rp and pw,c the associated marginal distribution over the
visible units. As demonstrated in lemma 1, this does not depend on which
particular RBM from Rp we choose. We then wish to prove that regardless
of p and p0, if p �= p0, there exists a pair (w, c) such that KL(p0||pw,c) <

KL(p0||p), that is, one can improve the approximation of p0 by inserting an
extra hidden unit with weight vector w and bias c.
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Representational Power of RBMs and DBNs 1635

We first state a trivial lemma needed for the rest of the proof. It says that
inserting a unit with bias c = −∞ does not change the input distribution
associated with the RBM.

Lemma 2. Let p be the distribution over binary vectors v in {0, 1}d , obtained with
an RBM Rp, and let pw,c be the distribution obtained when adding a hidden unit
with weights w and bias c to Rp. Then

∀p,∀w ∈ R
d , p = pw,−∞

Proof. Denoting

h̃ =
[

h
hn+1

]
, W̃ =

[
W
wT

]
and C̃ =

[
C
c

]
where wT denotes the transpose of w and introducing z(v, h) =
exp(hT Wv + BT v + CT h), we can express p(v, h) and pw,c(v, h̃) as follows:

p(v, h) ∝ z(v, h)

pw,c(v, h̃) ∝ exp(h̃T W̃v + BT v + C̃T h̃)

∝ z(v, h) exp
(
hn+1w

T v + chn+1
)
.

If c = −∞, pw,c(v, h̃) = 0 if hn+1 = 1. Thus, we can discard all terms where
hn+1 = 1, keeping only those where hn+1 = 0. Marginalizing over the hidden
units, we have

p(v) =
∑

h z(v, h)∑
h(0),v0 z(v0, h(0))

pw,−∞(v) =
∑̃

h z(v, h) exp
(
hn+1w

T v + chn+1
)

∑
h̃(0) ,v0 z(v0, h(0)) exp

(
h(0)

n+1w
T v + ch(0)

n+1

)
=

∑
h z(v, h) exp(0)∑

h(0),v0 z(v0, h(0)) exp(0)

= p(v).

We now state the main theorem:

Theorem 1. Let p0 be an arbitrary distribution over {0, 1}n, and let Rp be an
RBM with marginal distribution p over the visible units such that KL(p0||p) > 0.
Then there exists an RBM Rpw,c composed of Rp and an additional hidden unit with
parameters (w, c) whose marginal distribution pw,c over the visible units achieves
KL(p0||pw,c) < KL(p0||p).
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1636 N. Le Roux and Y. Bengio

The proof is in the appendix.

2.2 A Huge Model Can Represent Any Distribution. The second set of
results is for the limit case when the number of hidden units is very large,
so that we can represent any discrete distribution exactly.

Theorem 2. Any distribution over {0, 1}n can be approximated arbitrarily well
(in the sense of the KL divergence) with an RBM with k + 1 hidden units where k
is the number of input vectors whose probability is not 0.

Proof sketch (Universal approximator property). We constructively build
an RBM with as many hidden units as the number of input vectors whose
probability is strictly positive. Each hidden unit will be assigned to one
input vector. Namely, when vi is the visible units vector, all hidden units
have a probability 0 of being on except the one corresponding to vi , which
has a probability sigm(λi ) of being on. The value of λi is directly tied to
p(vi ). On the other hand, when all hidden units are off but the ith one,
p(vi |h) = 1. With probability 1 − sigm(λi ), all the hidden units are turned
off, which yields independent draws of the visible units. The proof consists
of finding the appropriate weights (and values λi ) to yield that behavior.

The proof is in the appendix.

3 Representational Power of Deep Belief Networks

3.1 Background on Deep Belief Networks. A DBN with � layers mod-
els the joint distribution between observed variables v j and � hidden layers
h(k), k = 1, . . . , � made of binary units h(k)

i (here all binary variables), as
follows:

p
(
v, h(1), h(2), . . . , h(�)) = P

(
v | h(1))P

(
h(1) | h(2))

. . . P
(
h(�−2) | h(�−1))p

(
h(�−1), h(�)).

Denoting v = h(0), b(k) the bias vector of layer k, and W(k) the weight matrix
between layer k and layer k + 1, we have

P
(
h(k) | h(k+1)) =

∏
i

P
(
h(k)

i | h(k+1)) (factorial conditional distribution)

P
(
h(k)

i = 1 | h(k+1)) = sigm

b(k)
i +

∑
j

W(k)
i j h(k+1)

j

 , (3.1)

and p(h(�−1), h(�)) is an RBM.
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Representational Power of RBMs and DBNs 1637

Figure 1: Greedy learning of an RBM. After each RBM has been trained, the
weights are frozen, and a new layer is added. The new layer is trained as an
RBM.

The original motivation found in Hinton et al. (2006) for having a deep
network versus a single hidden layer (a DBN versus an RBM) was that
the representational power of an RBM would be too limited and that more
capacity could be achieved by having more hidden layers. However, we
have found here that an RBM with enough hidden units can model any
discrete distribution. Another motivation for deep architectures is discussed
in Bengio and Le Cun (2007) and Bengio et al. (2007): deep architectures can
represent functions much more efficiently (in terms of number of required
parameters) than shallow ones. In particular, theoretical results on circuit
complexity theory prove that shallow digital circuits can be exponentially
less efficient than deeper ones (Ajtai, 1983; Hastad, 1987; Allender, 1996).
Hence the original motivation (Hinton et al., 2006) was probably right when
one considers the restriction to reasonably sized models.

3.2 Trying to Anticipate a High-Capacity Top Layer. In the greedy
training procedure of DBNs proposed in Hinton et al. (2006), one layer
is added on top of the network at each stage, and only that top layer is
trained (as an RBM, see Figure 1). In that greedy phase, one does not take
into account the fact that other layers will be added next. Indeed, while
trying to optimize the weights, we restrict the marginal distribution over its
hidden units to be the one induced by the RBM. On the contrary, when we
add a new layer, that distribution (which is the marginal distribution over
the visible units of the new RBM) does not have that restriction (but another
one that is to be representable by an RBM of a given size). Thus, we might be
able to better optimize the weights of the RBM knowing that the marginal
distribution over the hidden units will have more freedom when extra layers
are added. This would lead to an alternative training criterion for DBNs.
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1638 N. Le Roux and Y. Bengio

Consider a two-layer DBN (� = 2, that is, with three layers in total). To
train the weights between h(1) and h(2) (see Figure 1), the greedy strategy
maximizes a lower bound on the likelihood of the data (instead of the
likelihood itself), called the variational bound (Hinton et al., 2006):

log p(v) ≥
∑
h(1)

Q
(
h(1) | v

)[
log p

(
h(1)) + log P

(
v | h(1))]

−
∑
h(1)

Q
(
h(1) | v

)
log Q

(
h(1) | v

)
, (3.2)

where

� Q(h(1)|v) is the posterior on hidden units h(1) given visible vector v,
according to the first RBM model, and is determined by W(1). It is
the assumed distribution used in the variational bound on the DBN
likelihood.

� p(h(1)) is the marginal distribution over h1 in the DBN (thus induced
by the second RBM, between h(1) and h(2)).

� P(v|h(1)) is the posterior over v given h1 in the DBN and in the first
RBM and is determined by W(1).

Once the weights of the first layer (W(1)) are frozen, the only element that
can be optimized is p(h(1)). We can show that there is an analytic formulation
for the distribution p∗(h(1)) that maximizes this variational bound:

p∗(h(1)) =
∑

v

p0(v)Q
(
h(1) | v

)
, (3.3)

where p0 is the empirical distribution of input examples. One can sample
from p∗(h(1)) by first randomly sampling a v from the empirical distribution
and then propagating it stochastically through Q(h(1)|v). Using theorem 2,
there exists an RBM that can approximate this optimal distribution p∗(h(1))
arbitrarily well.

Using an RBM that achieves this “optimal” p∗(h(1)) (optimal in terms of
the variational bound, but not necessarily with respect to the likelihood),
we can determine the distribution represented by this DBN. Let p1 be the
distribution one obtains when starting from p0 clamped in the visible units
of the lower layer (v), sampling the hidden units h(1) given v and then
sampling a v given h(1).

Proposition 1. In a two-layer DBN, using a second-layer RBM achieving
p∗(h(1 )), the model distribution p is equal to p1.

This is equivalent to making one “up-down” in the first RBM trained.
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Representational Power of RBMs and DBNs 1639

Proof. We can write the marginal p∗(h(1)) by summing over hidden values
h̃0:

p∗(h(1)) =
∑
h̃0

p0(̃h0)Q
(
h(1)

∣∣ h̃0).
Thus, the probability of the data under the two-layer DBN when the top-
layer RBM achieves p∗(h(1)) is

p
(
h(0)) =

∑
h(1)

P
(
h(0)

∣∣ h(1))p∗(h(1))
=

∑
h̃0

p0(̃h0)
∑
h(1)

Q
(
h(1)

∣∣ h̃0)P
(
h(0)

∣∣ h(1)). (3.4)

p
(
h(0)) = p1

(
h(0)). (3.5)

The last line can be seen to be true by considering the stochastic process
of first picking an h̃0 from the empirical distribution p0, then sampling an
h(1) from Q(h(1) |̃h0), and finally computing the probability of h(0) under
P(h(0)|h(1)) for that h(1).

Proposition 1 tells us that even with the best possible model for
p(h(1), h(2)) according to the variational bound (i.e., the model that can
achieve p∗(h(1))), we obtain a KL divergence between the DBN and the data
equal to KL(p0||p1). Hence, if we train the second-level RBM to model the
stochastic output of the first-level RBM (as suggested in Hinton et al., 2006),
the best KL(p0||p) we can achieve with model p of the 2-level DBN cannot
be better than KL(p0||p1). Note that this result does not preclude that a
better likelihood could be achieved with p if a better criterion is used to
train the second-level RBM.

For KL(p0||p1) to be 0, one should have p0 = p1. Note that a weight
vector with this property would not only be a fixed point of KL(p0||p1) but
also of the likelihood and of contrastive divergence for the first-level RBM.
p0 = p1 could have been obtained with a one-level DBN (i.e., a single RBM)
that perfectly fits the data. This can happen when the first RBM has infinite
weights (i.e., is deterministic) and just encodes h(0) = v in h(1) perfectly. In
that case, the second layer h(2) seems useless.

Does that mean that adding layers is useless? We believe the answer is no.
First, even though having the distribution that maximizes the variational
bound yields p = p1, this does not mean that we cannot achieve KL(p0||p) <

KL(p0||p1) with a two-layer DBN (though we have no proof that it can be
achieved either). Indeed, since the variational bound is not the quantity
we truly want to optimize, another criterion might lead to a better model
(in terms of the likelihood of the data). Besides that, even if adding layers
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1640 N. Le Roux and Y. Bengio

does not allow us to perfectly fit the data (which might actually be the case
only when we optimize the variational bound rather than the likelihood),
the distribution of the two-layer DBN is closer to the empirical distribution
than is the first-layer RBM (we do only one “up-down” Gibbs step instead of
an infinite number of such steps). Furthermore, the extra layers allow us to
regularize and, we hope, obtain a representation in which even a very high-
capacity top layer (e.g., a memory-based nonparametric density estimator)
could generalize well. This approach suggests using alternative criteria to
train DBNs that approximate KL(p0||p1) and can be computed before h(2)

is added, but unlike contrastive divergence, take into account the fact that
more layers will be added later. Note that computing KL(p0||p1) exactly
is intractable in an RBM because it involves summing over all possible
values of the hidden vector h. One could use a sampling or mean field
approximation (replacing the summation over values of the hidden unit
vector by a sample or a mean field value), but even then, there would
remain a double sum over examples,

N∑
i=1

1
N

log
N∑

j=1

1
N

P̂(V1 = vi | V0 = v j ),

where vi denotes the ith example and P̂(V1 = vi | V0 = v j ) denotes an es-
timator of the probability of observing V1 = vi at iteration 1 of the Gibbs
chain (i.e., after a “up-down” pass) given that the chain is started from
V0 = v j . We write P̂ rather than P because computing P exactly might
involve an intractable summation over all possible values of h. In Bengio
et al. (2007), the reconstruction error for training an autoencoder corre-
sponding to one layer of a deep network is log P̂(V1 = vi | V0 = vi ). Hence,
log P̂(V1 = vi | V0 = v j ) is like a reconstruction error when one tries to re-
construct or predict vi according to P(vi | h) when starting from v j , sampling
h from P(h | v j ). This criterion is essentially the same as one already intro-
duced in a different context in Bengio, Larochelle, and Vincent (2006), where
P̂(V1 = vi | V0 = v j ) is computed deterministically (no hidden random
variable is involved), and the inner sum (over v j ’s) is approximated by using
only the five nearest neighbors of vi in the training set. However, the overall
computation time in Bengio, Larochelle, et al. (2006) is O(N2) because like
most other nonparametric learning algorithms, it involves comparing all
training examples with each other. In contrast, the contrastive divergence
gradient estimator can be computed in O(N) for a training set of size N.

To evaluate whether tractable approximations of KL(p0||p1) would be
worth investigating, we performed an experiment on a toy data set and toy
model where the computations are feasible. The data are 10-element bit vec-
tors with patterns of one, two, or three consecutive ones (or zeros) against a
background of zeros (or ones), demonstrating simple shift invariance. There
are 60 possible examples (p0), 40 of which are randomly chosen to train first
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Representational Power of RBMs and DBNs 1641

Figure 2: KL divergence with regard to the number of epochs after adding the
second-level RBM, between empirical distribution p0 (either training or test
set) and (top curves) DBN trained greedily with contrastive divergence at each
layer, or (bottom curves) DBN trained greedily with KL(p0||p1) on the first layer
and contrastive divergence on the second.

an RBM with five binomial hidden units, and then a two-layer DBN. The
remaining 20 are a test set. The second RBM has 10 hidden units (so that
we could guarantee improvement of the likelihood by the addition of the
second layer). The first RBM is either trained by contrastive divergence
or to minimize KL(p0||p1), using gradient descent and a learning rate of
0.1 for 500 epochs (parameters are updated after each epoch). Other learn-
ing rates and random initialization seeds gave similar results, diverged, or
converged slower. The second RBM is then trained for the same number
of epochs, by contrastive divergence with the same learning rate. Figure 2
shows the exact KL(p0||p) of the DBN p while training the second RBM.
The advantage of the KL(p0||p1) training is clear. This suggests that future
research should investigate tractable approximations of KL(p0||p1).

3.3 Open Questions on DBN Representational Power. The results de-
scribed in the previous section were motivated by the following question:
Since an RBM can represent any distribution, what can be gained by adding
layers to a DBN in terms of representational power? More formally, let Rn

�

be a DBN with � + 1 hidden layers, each composed of n units. Can we say
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1642 N. Le Roux and Y. Bengio

something about the representational power of Rn
� as � increases? Denoting

Dn
� the set of distributions one can obtain with Rn

� , it follows from the un-
folding argument in Hinton et al. (2006) that Dn

� ⊆ Dn
�+1. The unfolding

argument shows that the last layer of an �-layer DBN corresponds to an
infinite directed graphical model with tied weights. By untying the weights
in the (� + 1)th RBM of this construction from those above, we obtain an
(� + 1)-layer DBN. Hence, every element of Dn

� can be represented in Dn
�+1.

Two questions remain:
� Do we have Dn

� ⊂ Dn
�+1, at least for � = 1?

� What is Dn
∞?

4 Conclusion

We have shown that when the number of hidden units is allowed to vary,
restricted Boltzmann machines are very powerful and can approximate
any distribution, eventually representing them exactly when the number of
hidden units is allowed to become very large (possibly two to the number
of inputs). This says only that parameter values exist for doing so, but it
does not prescribe how to obtain them efficiently. In addition, the above
result is concerned only with the case of discrete inputs. It remains to be
shown how to extend that type of result to the case of continuous inputs.

Restricted Boltzmann machines are interesting chiefly because they are
the building blocks of deep belief networks, which can have many layers
and can theoretically be much more efficient at representing complicated
distributions (Bengio & Le Cun, 2007). We have introduced open questions
about the expressive power of deep belief networks. We have not answered
these questions, but in trying to do so, we obtained an apparently puz-
zling result concerning deep belief networks: the best that can be achieved
by adding a second layer (with respect to some bound) is limited by the
first layer’s ability to map the data distribution to something close to it-
self (KL(p0||p1)), and this ability is good when the first layer is large and
models well the data. So why do we need the extra layers? We believe
that the answer lies in the ability of a deep belief network to generalize
better by having a more compact representation. This analysis also sug-
gests investigating KL(p0||p1) (or an efficient approximation of it) as a less
greedy alternative to contrastive divergence for training each layer because
it would take into account that more layers will be added.

Appendix

A.1 Proof of Lemma 1. Denoting

h̃ =
[

h

hn+1

]
, W̃ =

[
W

wT

]
and C̃ =

[
C

c

]
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where wT denotes the transpose of w and introducing z(v, h) =
exp(hT Wv + BT v + CT h), we can express p(v, h) and pw,c(v, h̃) as
follows:

p(v, h) ∝ z(v, h)

pw,c(v, h̃) ∝ exp(h̃T W̃v + BT v + C̃T h̃)

∝ z(v, h) exp
(
hn+1w

T v + chn+1
)
.

Expanding the expression of pw,c(v) and regrouping the terms similar to
the expression of p(v), we get:

pw,c(v) =
∑

h̃ exp(hT Wv + hn+1w
T v + BT v + CT h + chn+1)∑

h̃(0),v0 exp
(
h(0)T Wv0 + h(0)

n+1w
T v0 + BT v0 + CT h(0) + ch(0)

n+1

)
=

∑
h z(v, h)(1 + exp(wT v + c))∑

h(0),v0 z
(
v0, h(0)

)
(1 + exp (wT v0 + c))

= (1 + exp(wT v + c))
∑

h z(v, h)∑
v0 (1 + exp(wT v0 + c))

∑
h0 z

(
v0, h(0)

) .

But
∑

h z(v, h) = p(v)K with K = ∑
v,h z(v, h). Thus,

pw,c(v) = (1 + exp(wT v + c))p(v)∑
v0 (1 + exp(wT v0 + c))p(v0)

,

which does not depend on our particular choice of Rp (since it does depend
only on p).

A.2 Proof of Theorem 1. Expanding the expression of pw,c(v) and
regrouping the terms similar to the expression of p(v), we get:

pw,c(v) =
∑

h̃ exp(hT Wv + hn+1w
T v + BT v + CT h + chn+1)∑

h̃(0),v0 exp
(
h(0)T Wv0 + h(0)

n+1w
T v0 + BT v0 + CT h(0) + ch(0)

n+1

)
=

∑
h z(v, h)(1 + exp(wT v + c))∑

h(0),v0 z
(
v0, h(0)

)
(1 + exp(wT v0 + c))

= (1 + exp(wT v + c))
∑

h z(v, h)∑
v0,h(0) (1 + exp(wT v0 + c))z

(
v0, h(0)

) .
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Therefore, we have:

KL(p0||pw,c)

=
∑

v

p0(v) log p0(v) −
∑

v

p0(v) log pw,c(v)

= −H(p0) −
∑

v

p0(v) log

(
(1 + exp(wT v + c))

∑
h z(v, h)∑

v0,h(0) (1 + exp(wT v0 + c))z
(
v0, h(0)

))

= −H(p0) −
∑

v

p0(v) log(1 + exp(wT v + c))

−
∑

v

p0(v) log

( ∑
h

z(v, h)

)

+
∑

v

p0(v) log

( ∑
v0,h(0)

(1 + exp(wT v0 + c))z
(
v0, h(0))).

Assuming wT v + c is a very large negative value for all v, we can use
the logarithmic series identity around 0 (log(1 + x) = x + ox→0(x)) for the
second and the last term. The second term becomes1

∑
v

p0(v) log(1 + exp(wT v + c))

=
∑

v

p0(v) exp(wT v + c) + oc→−∞(exp(c)),

and the last term becomes( ∑
v

p0(v)

)
log

( ∑
v0,h(0)

(1 + exp(wT v0 + c))z
(
v0, h(0)))

= log

( ∑
v0,h(0)

z
(
v0, h(0))) + log

(
1 +

∑
v0,h(0) exp(wT v0 + c)z

(
v0, h(0)

)∑
v0,h(0) z

(
v0, h(0)

) )

= log

( ∑
v0,h(0)

z
(
v0, h(0))) +

∑
v0,h(0) exp(wT v0 + c)z

(
v0, h(0)

)∑
v0,h(0) z

(
v0, h(0)

)
+ oc→−∞(exp(c)).

1ox→∞() notation: f (x) = ox→+∞ (g(x)) if limx→+∞ f (x)
g(x) exists and equals 0.
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But ∑
v0,h(0) exp(wT v0 + c)z

(
v0, h(0)

)∑
v0,h(0) z

(
v0, h(0)

)
=

∑
v

exp(wT v + c)
∑

h(0) z
(
v, h(0)

)∑
v0,h(0) z

(
v0, h(0)

)
=

∑
v

exp(wT v + c)p(v).

Putting all terms back together, we have

KL(p0||pw,c) = −H(p0) −
∑

v

p0(v) exp(wT v + c)

+
∑

v

p(v) exp(wT v + c) + oc→−∞(exp(c))

−
∑

v

p0(v) log

( ∑
h

z(v, h)

)
+ log

( ∑
v0,h(0)

z
(
v0, h(0)))

=KL(p0||p) +
∑

v

exp(wT v + c)(p(v) − p0(v))

+oc→−∞(exp(c)).

Finally, we have

KL(p0||pw,c) − KL(p0||p) = exp(c)
∑

v

exp(wT v)(p(v) − p0(v))

+oc→−∞(exp(c)). (A.1)

The question now becomes: Can we find a w such that∑
v exp(wT v)(p(v) − p0(v)) is negative? As p0 �= p, there is a v̂ such that

p(v̂) < p0(v̂). Then there exists a positive scalar a such that ŵ = a (v̂ − 1
2 e)

(with e = [1 . . . 1]T ) yields
∑

v exp(ŵT v)(p(v) − p0(v)) < 0. Indeed, for v �=
v̂, we have

exp(ŵT v)
exp(ŵT v̂)

= exp(ŵT (v − v̂))

= exp
(

a
(

v̂ − 1
2

e
)T

(v − v̂)
)

= exp

(
a

∑
i

(
v̂i − 1

2

)
(vi − v̂i )

)
.
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For i such that vi − v̂i > 0, we have vi = 1 and v̂i = 0. Thus, v̂i − 1
2 = − 1

2 ,
and the term inside the exponential is negative (since a is positive). For i
such that vi − v̂i < 0, we have vi = 0 and v̂i = 1. Thus, v̂i − 1

2 = 1
2 , and the

term inside the exponential is also negative. Furthermore, the terms come
close to 0 as a goes to infinity. Since the sum can be decomposed as

∑
v

exp(ŵT v)(p(v) − p0(v))

= exp(ŵT v̂)

(∑
v

exp(ŵT v)
exp(ŵT v̂)

(p(v) − p0(v))

)

= exp(ŵT v̂)

p(v̂) − p0(v̂) +
∑
v�=v̂

exp(ŵT v)
exp(ŵT v̂)

(p(v) − p0(v))

 ,

we have2

∑
v

exp(ŵT v) (p(v) − p0(v)) ∼a→+∞ exp(ŵT v̂)(p(v̂) − p0(v̂)) < 0.

Therefore, there is a value â such that if a > â ,
∑

v exp(wT v)(p(v) − p0(v))
< 0. This concludes the proof.

A.3 Proof of Theorem 2. In the proof of theorem 1, we had

pw,c(v) = (1 + exp(wT v + c))
∑

h z(v, h)∑
v0,h(0) (1 + exp(wT v0 + c))z

(
v0, h(0)

) .

Let ṽ be an arbitrary input vector and ŵ be defined in the same way as
before: ŵ = a (̃v − 1

2 ). Now define ĉ = −ŵT ṽ + λ with λ ∈ R. We have:

lim
a→∞ 1 + exp(ŵT v + ĉ) = 1 for v �= ṽ

1 + exp(ŵT ṽ + ĉ) = 1 + exp(λ).

Thus, we can see that for v �= ṽ:

lim
a→∞ pŵ,ĉ(v) =

∑
h z(v, h)∑

v0 �=ṽ,h(0) z
(
v0, h(0)

) + ∑
h(0) (1 + exp(ŵT ṽ + ĉ))z

(̃
v, h(0)

)

2∼x→∞ notation: f (x) ∼x→+∞ g(x) if limx→+∞ f (x)
g(x) exists and equals 1.
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=
∑

h z(v, h)∑
v0,h(0) z

(
v0, h(0)

) + ∑
h(0) exp(λ)z

(̃
v, h(0)

)
=

∑
h z(v, h)∑

v0,h(0) z
(
v0, h(0)

) 1

1 + exp(λ)
∑

h(0) z(̃v,h(0))∑
v0 ,h(0) z(v0,h(0))

.

Remembering p(v) =
∑

h z(v, h)∑
v0,h(0) z

(
v0, h(0)

) , we have for v �= ṽ:

lim
a→∞ pŵ,ĉ(v) = p(v)

1 + exp(λ)p(̃v)
. (A.2)

Similarly, we can see that

lim
a→∞ pŵ,ĉ (̃v) = [1 + exp(λ)]p(̃v)

1 + exp(λ)p(̃v)
. (A.3)

Depending on the value of λ, one can see that adding a hidden unit allows
one to increase the probability of an arbitrary ṽ and uniformly decrease the
probability of every other v by a multiplicative factor. However, if p(̃v) = 0,
then pŵ,ĉ (̃v) = 0 for all λ.

We can therefore build the desired RBM as follows. Let us index the v’s
over the integers from 1 to 2n and sort them such that

p0(vk+1) = · · · = p0(v2n ) = 0 < p0(v1) ≤ p0(v2) ≤ · · · ≤ p0(vk).

Let us denote pi the distribution of an RBM with i hidden units. We start
with an RBM whose weights and biases are all equal to 0. The marginal
distribution over the visible units induced by that RBM is the uniform
distribution. Thus,

p0(v1) = · · · = p0(v2n ) = 2−n.

We define w1 = a1(v1 − 1
2 ) and c1 = −wT

1 v1 + λ1.
As shown before, we now have:

lim
a1→+∞ p1(v1) = [1 + exp(λ1)]2−n

1 + exp(λ1)2−n

lim
a1→+∞ p1(vi ) = 2−n

1 + exp(λ1)2−n
∀i ≥ 2.

As we can see, we can set p1(v1) to a value arbitrarily close to 1, with
a uniform distribution over v2, . . . , v2n . Then we can choose λ2 such that
p2(v2)
p2(v1) = p(v2)

p(v1) . This is possible since we can arbitrarily increase p2(v2) while

multiplying the other probabilities by a constant factor and since p(v2)
p(v1) ≥
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1648 N. Le Roux and Y. Bengio

p1(v2)
p1(v1) . We can continue the procedure until obtaining pk(vk). The ratio pi (v j )

pi (v j−1)
does not depend on the value of i as long as i > j (because at each such step
i , the two probabilities are multiplied by the same factor). We then have

pk(vk)
pk(vk−1)

= p(vk)
p(vk−1)

, . . . ,
pk(v2)
pk(v1)

= p(v2)
p(v1)

pk(vk+1) = · · · = pk(v2n ).

From that, we can deduce that pk(v1) = νk p(v1), . . . , pk(vk) = νk p(vk) with
νk = 1 − (2n − k)pk(v2n ).

We also have pk (v1)
pk (v2n ) = p1(v1)

p1(v2n ) = 1 + exp(λ1).
Thus, pk(v1) = p(v1)[1 − (2n − k)pk(v2n )] = (1 + exp(λ1))pk(v2n ).

Solving the above equations, we have

pk(vi ) = p(v1)
1 + exp(λ1) + p(v1)(2n − k)

for i > k (A.4)

pk(vi ) = p(vi )
1 + exp(λ1)

1 + exp(λ1) + p(v1)(2n − k)
for i ≤ k. (A.5)

Using the logarithmic series identity around 0 (log(1 + x) = x + ox→0(x))
for KL(p||pk) when λ1 goes to infinity, we have

KL(p||pk) =
∑

i

p(vi )
(2n − k)p(vi )
1 + exp(λ1)

+ o(exp(−λ1)) −→
λ1→∞

0. (A.6)

This concludes the proof.
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