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Time-to-contact (TTC) estimation is beneficial for visual navigation. It
can be estimated from an image projection, either in a camera or on the
retina, by looking at the rate of expansion of an object. When expansion
rate (E) is properly defined, TTC = 1/E. Primate dorsal MST cells have
receptive field structures suited to the estimation of expansion and TTC.
However, the role of MST cells in TTC estimation has been discounted
because of large receptive fields, the fact that neither they nor preceding
brain areas appear to decompose the motion field to estimate divergence,
and a lack of experimental data. This letter demonstrates mathematically
that template models of dorsal MST cells can be constructed such that
the output of the template match provides an accurate and robust esti-
mate of TTC. The template match extracts the relevant components of the
motion field and scales them such that the output of each component of
the template match is an estimate of expansion. It then combines these
component estimates to provide a mean estimate of expansion across
the object. The output of model MST provides a direct measure of TTC.
The ViSTARS model of primate visual navigation was updated to in-
corporate the modified templates. In ViSTARS and in primates, speed
is represented as a population code in V1 and MT. A population code
for speed complicates TTC estimation from a template match. Results
presented in this letter demonstrate that the updated template model of
MST accurately codes TTC across a population of model MST cells. We
conclude that the updated template model of dorsal MST simultaneously
and accurately codes TTC and heading regardless of receptive field size,
object size, or motion representation. It is possible that a subpopulation
of MST cells in primates represents expansion in this way.

1 Introduction

Time-to-contact (TTC) estimation is potentially important for animals when
planning obstacle avoidance. TTC is defined mathematically as the time
until an object crosses an infinite plane parallel to the image plane at the
position of the focal point (see Figure 1). Mathematically it does not imply
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Neural Circuit for Robust TTC Estimation 2947

Figure 1: Schematic diagram showing the projection of a moving planar object
in space (right) on to an image plane (far left). The object plane is parallel to the
image plane and starts at distance Z from the focal plane. It moves with velocity
V along the Z direction. TTC is the time until the object crosses the focal plane.
In this diagram, TTC is also the time to collision, but the object could be shifted
vertically such that TTC remains the same but no collision occurs. The size of the
object, X, does not change during its approach, but the projection of X on to the
image plane, x, expands from the FoE as the object gets closer. Expansion rate,
E, can be defined independent of object size and camera properties such as focal
length, resolution, and pixel pitch, as shown. All planes in the figure have the
same surface normal (are parallel) but are drawn with perspective for clarity.

a collision between the observer and the object. TTC can be calculated from
visual information by looking at the expansion of an object in the visual
field. If expansion (E) is defined as the rate of growth of the object (e.g., 20%
growth = 0.2) per unit time then the TTC (T) can be derived from expansion
(see appendix A):

T ≡ 1
E

. (1.1)

Equation 1.1 is usually represented as x/ẋ, where x is the size of the object
on the image plane (Horn, Fang, & Masaki, 2007; Lee, 1976), or by using the
ratio of the distance from the focus of expansion (FoE) with motion vectors
in the image, in which case x is the distance from the FoE (Byrne & Taylor,
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2948 N. Browning

2009; Longuet-Higgins & Prazdny, 1980). Tau, and more recent variants, is
the dominant model used for TTC estimation in neurophysiological and
psychophysical experiments and is defined in terms of visual angle, θ ,
τ = θ/θ̇ (Hoyle, 1957; Lee, 1976). Tau is not equal to TTC, although it is a
reasonable approximation for small angles when tan θ ∼= θ . TTC can also be
measured from a decomposition of the optic flow field via the divergence
component (Koenderink & van Doorn, 1976).

TTC estimation is not strictly necessary for obstacle avoidance. Several
species have been shown to perform avoidance maneuvers when a stimulus
reaches a certain angular size (Nakagawa & Hongjian, 2010). However, Lee
(1976) demonstrated that humans use a measure similar to TTC for playing
ball games and driving a car. In the psychophysics literature, the term loom-
ing is often used to describe an object that expands on the image plane. Cells
that respond to looming have been found in a variety of animals (Hayes &
Saiff, 1967; Judge & Rind, 1997; Schiff, Caviness, & Gibson, 1962; Wang &
Frost, 1992). Looming responses may be more behaviorally relevant than
literal TTC responses since an expansion-sensitive cell will become more
active as the threat becomes greater rather than decreasing as a function of
threat. Note that a theoretical TTC proportional response cell would have a
high tonic activation and become less active as the object approaches. Cells
may also be considered TTC responsive if activation rises to a peak and
then decreases proportionally to TTC. In both cases, for the range of TTC
that is being accurately encoded, activation decreases as TTC gets shorter.
However, in the latter case, it has also been shown that peak timing can
signify important behavioral information. For example, bullfrogs appear
to have cells tuned for a peak response at a particular TTC and initiate
avoidance maneuvers when those cells fire (Nakagawa & Hongjian, 2010).
Pigeons have been shown to have cells that respond to both expansion and
TTC (Wang & Frost, 1992).

In primates, there is no strong evidence for a TTC response in cellular
data; however, in dorsal MST (MSTd), some cells respond to global pat-
terns of expansion motion (Duffy & Wurtz, 1991a, 1991b; Tanaka, Fukada,
& Saito, 1989). These cells generally have large receptive fields, on average
over 1000 deg2 (Raiguel et al., 1997). These MST cell responses are consistent
with inputs from a large number of smaller receptive field MT cells, and
the organization of the cells’ selectivity for the MT inputs seems to define
the pattern preference of the cells. If preferred directions of MT cells are ar-
ranged radially, then the resulting MST cell prefers expansion or contraction
(Tanaka et al., 1989). MST cells that respond to expansive motion patterns
can determine the focus of expansion (FoE) of the motion pattern, which
often coincides with the observer’s heading (Gibson, 1955). As a result,
expansion-sensitive MSTd cells are often characterized as coding heading.

Perrone (1992) and Perrone and Stone (1994) demonstrated that MSTd
could be modeled by a number of templates describing behaviorally impor-
tant patterns of motion, primarily coding different headings. Each template
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Neural Circuit for Robust TTC Estimation 2949

defines the organization of inputs from MT that the MST cell responds op-
timally to. Template models of MSTd are able to explain human heading
perception data in static environments (Browning, Grossberg, & Mingolla,
2009a; Perrone & Stone, 1994, 1998) and in the presence of independently
moving objects (Layton, Mingolla, & Browning, 2012). Template models of
MSTd can explain rotation data through the use of extraretinal signals to
remove the effects of rotation before the template is applied (Beintema &
van den Berg, 1998; Elder, Grossberg, & Mingolla, 2009). Template models
thereby provide a functionally accurate model of primate MSTd expan-
sion cells. Template models have been demonstrated to code relative depth,
which is proportional to TTC in a static world (Browning et al., 2009a;
Grossberg, Mingolla, & Pack, 1999; Perrone, 1992; Perrone & Stone, 1994).
However, the output of these models is independent of neither the receptive
field size of the cell nor the size of the object. For the purposes of produc-
ing depth maps of the environment, where the receptive field sizes of the
cells are either known or constant, this may be sufficient. However, these
template definitions are insufficient for the estimation TTC for approach-
ing objects that do not fill the receptive field of the cell, in environments
where the receptive field size is unknown, or for the precise estimation of
TTC. Lappe (2004) further argues that the large receptive field sizes of MST
cells are inconsistent with TTC estimation. However, if we assume that in
general, TTC cells are not object specific, then to obtain an object-size inde-
pendent TTC response, a cell will require a large receptive field to account
for a range of objects throughout their approach trajectories.

The work described in this letter analyzes a general template model
of MSTd to determine how TTC can be coded in MSTd regardless of the
receptive field size of the cell, independent of the size of the object. This
analysis is used to update the ViSTARS model (Browning, Grossberg, &
Mingolla, 2009a, 2009b) to demonstrate how V1 and MT encode the required
information to enable TTC estimation in MSTd.

2 Time-to-Contact Estimation in a Template Model of MSTd

A template model of MSTd consists of a number of templates, each corre-
sponding to a particular motion pattern. In general, each motion pattern
characterizes the expected motion for a particular heading direction (see
Figure 2). In the model, a template is represented as a multidimensional
array across space and motion. When using a standard 2D motion repre-
sentation, there is a 2D vector (u, v) representing the expected motion at
each spatial position across the input space. For a model consisting of an
N-D representation of direction of motion, there is an N-D motion vector at
each spatial location. Motion vectors, estimated from the image measure-
ments, are compared against the template via the inner product between
the template and the estimated motion. In its simplest form, the template
with the highest inner product is considered the best match, and the motion
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2950 N. Browning

Figure 2: Pictorial representation of templates corresponding to a heading to-
ward the center of a frontal plane. (A) Unit vector template. The direction of
motion is assessed with respect to FoE. (B) Veridical vector template. The mag-
nitude of each vector is scaled with distance from the FoE. This is the same
as a motion pattern that occurs when approaching a frontal plane normal to
the approach vector. (C) TTC template. The direction of the motion vector is
not preserved, but there is still a singularity at the FoE. Note that the direction
of motion within each dimension is preserved: all horizontal vectors point to
the midline, all vertical vectors point to the midline, and the midlines cross at
the FoE. When panel C is multiplied by a motion estimate toward a frontal
plane (e.g., panel B) using an inner product, the result is the expansion rate of
the plane.

pattern corresponding to the template is considered to be veridical. For ex-
ample, the heading corresponding to the template with the best match is
considered to be the current heading.

If we consider a planar object moving in a straight line at constant velocity
toward an observer with the same surface normal as the image plane but
at a distance Z from the observer, the motion pattern on the image plane
will be a pure expansion pattern from the FoE (see Figure 1). The image
motion vectors will have a smaller magnitude near to the FoE than they
have farther from the FoE. More specifically,

v ≡ ẏ ≡ y
T

≡ Ey, (2.1)

where v is the image motion vector at a particular location, and y is a
motion vector defined by the N-D distance of that location from the FoE.
For example, to obtain a 2D motion vector v, y is a 2D vector defined
independently by the distance to the FoE in the two spatial dimensions. T
is time to contact, and E is expansion rate. Since T and E are constant at
any point in time, v scales linearly with distance from the FoE, as defined
by the vectors in y. In all equations, we use bold notation to define vectors,
lowercase represents a single vector, and bold uppercase represents a set of
vectors across spatial location.
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Neural Circuit for Robust TTC Estimation 2951

We define Y and V to contain one vector, y and v, for every spatial
location represented by the cell (see Figure 2).

If templates are constructed to incorporate speed, that is, the vector
magnitudes (see Figure 2B) and there is no noise in the motion vector
estimates, then the motion estimate and the template are the same; both are
equal to EY, and the template match, defined by the inner product (M), will
be

M = E2(Y TY ), (2.2)

which is dependent on both the number of elements in Y (the number of
spatial locations represented in Y ) and the maximum value of Y defined
by the template (i.e., the maximum distance from the origin represented in
Y , which defines the receptive field size of the template). Cells with inputs
from more spatial locations (more vectors represented in Y ) have a larger
response. Cells with larger receptive field sizes have a larger response.

If the templates are constructed such that the vectors in Y are represented
with unit magnitude, preserving the angle but not the magnitude of the
distance from the FoE (see Figure 2A), then the same properties are evident,
but the inner product scales linearly rather than as a square of receptive
field size, making the response more robust to noise. This was the template
definition used in the ViSTARS model (Browning et al., 2009a, 2009b).

Since construction of the template is somewhat arbitrary, we can update
the template so that rather than being defined as EY , it is defined as

L = 1
NY

, (2.3)

where L is the template and N is the number of elements in Y (see Fig-
ure 2C). The singularity defined by the list of vectors in L still corresponds
to the heading, but now the magnitude of vectors in the template decreases,
independently in each dimension, as a function of distance from the FoE
and is normalized by the number of elements in the template. We verified
that a template model defined in this way has a maximum activation in re-
sponse to the heading coincident with the singularity of the template in the
same way as a unit or veridical template. The inner product (M) between
the template in equation 2.3 and a noiseless motion pattern (EY ) toward a
planar surface is

M = LEY = E
N

(
1
Y

)T

Y = E. (2.4)

In this case, the template match, M, is exactly equal to the expansion rate
of the planar surface and, by extension, provides a direct measure of TTC
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2952 N. Browning

(see equation 1.1). Note that the inner product of 1/Y and Y is equal to
N. The template match calculates the mean of the component values (one
component for each spatial location), each of which provides an estimate of
the expansion of the surface. The analysis thereby generalizes to angled and
nonplanar surfaces, which do not have constant TTC, by providing a mean
estimate of the expansion of the object. The number of elements, N, defines
how robust the expansion estimate is to noise. Equation 2.4 demonstrates
that a template model can be arbitrarily robust to any randomly distributed
noise in the motion estimates by manipulating the number of motion vectors
included in the template match.

This analysis demonstrates that large receptive field template models
of MSTd can be constructed to provide accurate expansion/TTC estimates
without decomposing the optic flow field into component parts. The re-
sponse of such model cells is independent of receptive field size and the
number of elements in the template.

However, equation 2.5 requires that there be a motion estimate at every
spatial location represented by the template. In practice, when processing
natural (and even most unnatural) stimuli, image-based motion estimates
will be sparse across the input space. In order to make equation 2.4 inde-
pendent of the distribution of motion estimates, N must be redefined as the
number of nonzero components in the motion estimate,

N =
∑

(V �= 0), (2.5)

where V is the motion estimate across the visual field. With this definition
we define a template model MSTd cell as

M = LV (2.6)

where L is the template defined in equation 2.3 using the definition of N
given in equation 2.5 and V is the list of N-D motion vectors derived from
visual input that can be either dense or sparse in space. The activation
of M is exactly equal to the expansion rate (E) in noiseless environments
and provides a mean estimate across all component estimates in V . From
inspection, assuming noise is zero mean and N is large, M is highly robust
to noise and provides a veridical TTC estimate regardless of receptive field
size or the distribution of image motion vectors.

3 Integration of Time-to-Contact into the ViSTARS Model

We integrated the updated template into a difference-equation version of
the ViSTARS model (dViSTARS) to demonstrate that a distributed rep-
resentation of motion, such as that found in primate V1 and MT, could
support the estimation TTC in MSTd. The dViSTARS model is based on the
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Neural Circuit for Robust TTC Estimation 2953

dynamical systems models described in Browning et al. (2009a, 2009b) and
Layton et al. (2012).

3.1 The dViSTARS Model. Input to dViSTARS comes from a 2D array
describing grayscale values in the scene; values in the array are normalized
between 0 and 1. All dViSTARS variables are defined across the 2D spatial
locations represented in the input. For notational clarity, we do not include
indices for spatial location except where it affects the computation. Model
retina converts the input into an on and an off channel and assesses the
change since the last array was presented:

pon(t)= I(t), po f f (t) = 1 − I(t), (3.1)

z(t)= p(t) − y(t − 1), (3.2)

y(t)= (1 − α)p(t) + αy(t − 1), (3.3)

where I is the input array to the system, p represents the array for the on
and off channels, z is a model transient response cell, and y accumulates
the input signal at any given position (initialized at 0). α is a parameter
defining the rate of accumulation. Variables z and y are calculated for both
on and off channels. Figure 3(top) shows the temporal response curve of
model retina cells.

Directionally selective cells in model V1 are defined using the same
mechanisms in ViSTARS and as described in Chey, Grossberg, and Mingolla
(1998). Note that indices are dropped for clarity when all variables share
the same values:

cd
xy = ([zxy − βzXY]+)2, (3.4)

ed = ([cd − cD]+)2, (3.5)

f =
eon + eo f f

2
, (3.6)

where c is a directionally selective interneuron with direction preference
d, z is defined in equation 3.2, β is a parameter defining the magnitude of
difference required to signal motion, xy indicates the spatial position in the
array, XY indicates the spatial position offset by 1 in the direction d, and
[]+ denotes half-wave rectification (max(x, 0)). Variable e is a directionally
selective cell, D denotes the opposite direction preference, and f is the com-
bined directional response of the on and off channels. Note that directional
selectivity is computed using a spatial comparison of the variable z. Variable
z accumulates over time and decays according to equations 3.2 and 3.3.
Motion in direction D at position xy is detected if there is no activation in z
at position XY. Since z accumulates over time and decays slowly, it retains
memory of the stimulus position in the recent past; this is a form of nulling

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/11/2946/870076/neco_a_00347.pdf by guest on 27 Septem
ber 2021



2954 N. Browning

Figure 3: (Top) Model transient cells output a peak response immediately fol-
lowing stimulus onset that decays back to baseline after around 150 ms using
the parameters described in section 3.2. (Middle) Model V1 cells are sharply
tuned for motion direction. (Bottom) Model V1 cell speed tuning is a function
of scale; larger scales prefer faster speeds and have a broader speed tuning.
From left to right, the lines correspond to scales 1, 2, and 3, respectively. Note
that model MT cells inherit their direction and speed tuning from V1.

inhibition. Figure 3 (middle and bottom) illustrates the direction and speed
tuning curves obtained from these model V1 cells.

Model MT takes the motion vector estimation in equation 3.6 as input,
and at each spatial location, the direction with maximum activation stays
active and all other directions are suppressed:

hd =
{

f d for d = argmax f d

0 all other d
. (3.7)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/24/11/2946/870076/neco_a_00347.pdf by guest on 27 Septem
ber 2021
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A bilinear resizing operation on the array reduces the size of the array
(increases the receptive field size of each location) by a factor of 4 in both
x and y dimensions, reducing the area (increasing the receptive field) by a
factor of 16. This array reduction is a simplification of a large spatial filter
that pools motion information across space. A temporal filter is applied to
smooth the activations,

kd(t) = (1 − γMT )hd(t) + γMTkd(t − 1), (3.8)

where γMT is a temporal smoothing parameter. Finally, a spatial nearest-
neighbor non-max suppression is applied to find the dominant direction
activation at each spatial location:

Vd =
{

kd for d = argmax kd

0 all other d
(3.9)

Model MSTd templates (L) are constructed by equations 2.3 and 2.5, and
the template match (M) is defined by equation 3.1, where V is defined by
equation 3.9. MSTd activation is temporally filtered by

R(t) = (1 − γMST )M(t) + γMSTR(t − 1), (3.10)

where γ MST is a temporal smoothing parameter. Finally, the output of model
MSTd is multiplied by a scale factor σ to bring the cell activation into an
absolute value range consistent with the estimation of expansion.

3.2 Simulation Performance. A 256 × 256 pixel random dot input was
generated simulating an approach to a frontal plane from 10 s time to
contact to 1 s time to contact with a frame rate of 100 fps. Random dots were
generated using the Matlab rand() function with 1% of the pixels given a
value of 1. All other pixels had a value of zero. To ensure sufficient dots in
the image projection toward the end of the simulation, the center 65 × 65
pixels were replaced with a random dot array where 10% of the pixels had
a value of 1. To provide a realistic image projection, we conceptualized the
distance of the frontal plane at the start of the simulation as 10 m, the velocity
of the camera at 1 m/s, and the focal length of the camera to 0.1 m. These
units and values are arbitrary, provided they maintain the same ratios.

The model was configured with α = 0.775, β = 1.5, γMT = 0.9, γMST =
0.99. Three scales were implemented: scale 1 processed the stimulus at its
native resolution, scale 2 processed the stimulus with x and y dimensions
reduced to 0.75 that of the original stimulus, and scale 3 processed the stim-
ulus with x and y dimensions reduced to 0.5 that of the original stimulus,
with σ1 = 3000, σ2 = 5000, σ3 = 14000. Larger scales correspond to larger
cell receptive field sizes in model V1 and MT. The receptive field sizes of
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2956 N. Browning

Figure 4: (A) Model MSTd outputs are shown for each of the three implemented
scales for a single full field random dot sequence. The stimulus started with a
TTC of 10 s and moved at constant speed toward the camera until it had 1 s
TTC. MSTd outputs approximate the expansion associated with each TTC; the
true expansion is shown by the dashed line. Scale 1, which has a preference
for the slowest speed, has better approximations for low expansion rates, Scale
2 has better approximations for medium expansion rates, and scale 3 codes
better approximations for high expansion rates. (B) Model MSTd outputs can
be converted into TTC through a 1/E operation. Results are shown for all
three scales. The true TTC is shown by the dashed line. As with the expansion
estimates, each scale has a domain in which it produces a better approximation
than the other scales.

model MSTd cells were the same for all scales and covered the whole input
space.

Figure 4A shows MSTd outputs for each scale in response to the stimulus.
No single scale has an output that accurately codes the expansion rate of the
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Neural Circuit for Robust TTC Estimation 2957

Figure 5: Population of MSTd cells codes expansion/TTC accurately across
the full range of TTCs tested. Horizontal lines show the regions in which each
scale was dominant. Scale 1 was dominant below expansion rates of 0.2, scale
2 was dominant between 0.2 and 0.7, and scale 3 was dominant above 0.7. True
expansion and TTC are shown by dashed lines.

stimulus. However, each scale appears to provide a good approximation of
expansion for some range of values. Figure 4B shows how MSTd outputs
relate to an estimate of TTC.

In order to demonstrate that the population of MSTd cells represents
expansion/TTC accurately, we replaced the scale-independent temporal
accumulation in model MSTd with a temporal filter that combined the
outputs of each scale. If the output from scale 3 was above 0.7, scale 3 was
input to the temporal filter; if scale 3 was below 0.7 and scale 2 was above
0.2, scale 2 was input to the temporal filter; otherwise scale 1 was input to
the temporal filter. These cut-off values were chosen empirically to provide
a reasonable TTC estimate. The motivation here is to demonstrate that
the population accurately codes TTC. It is not intended to reflect how the
population response is decoded in the primate brain. Figure 5 shows how
this combined estimate produces an accurate expansion/TTC estimate.

Simulations were repeated multiple times with different random dot
stimuli, and results were qualitatively the same in each case. To simulate
different-sized objects, we repeated the analysis but removed stimulus com-
ponents toward the periphery of the input space; only the center 65 × 65
pixels contained dots at the start of the stimulus stream. Smaller cell recep-
tive fields were simulated by zeroing out 20 pixels from each edge of the
stimulus. For both smaller objects and smaller receptive fields, results were
qualitatively the same as are shown above but generally displayed more
noise in the MSTd outputs at small expansion rates (higher TTCs). We also
tested the model using stimuli based on geometric shapes and on one video
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2958 N. Browning

Figure 6: The model was tested with (B) 1000 large, random dot sequences—
bottom row: left, first frame; right, last frame; 1000 small, random dot
sequences—top row: left, first frame; right, last frame; 2000 geometric shape
sequences—second row: left, example of square; right: example of circle. Shapes
were random orientations, and sizes of squares, circles, and compound shapes
made up of two triangles and a video sequence. Third row: frames 1, 200, 400,
and 600 are shown. Model parameters were held the same for all simulations
except for the video sequence where σ1 = 2000, σ2 = 5000, σ3 = 5500 to account
for differences in the frame rate and average pixel intensity of the natural versus
generated sequences. Mean results for all four sets of data are shown in panel
A. Expansion is shown in the main figure, and TTC is shown in the inset. Model
performance was robust to all of the tested stimuli.

of an approach to a human; our results in all cases were qualitatively the
same. The geometric shapes were chosen to produce different variations
of the aperture problem in V1: circles do not produce an aperture prob-
lem; squares and compound triangle shapes had oriented edges that were
not orthogonal to the direction of motion and so introduced an aperture
problem. Shapes were generated in Matlab to contain no texture in their
interior so that the model motion estimates were forced to be sparse around
the boundaries of the object. With the exception of the video, which had a
different frame rate and pixel intensity distribution, the model parameters
were exactly the same for all stimuli. The video was recorded at 60 fps
using a ContourHD camera mounted on a John Deere Gator and manually
driven away from a human (we then process the video backward). Accurate
speed and position information were unavailable. True TTC was defined
as the actual time between the current image frame and the camera touch-
ing the human. Results for all stimuli and the modified parameters used
for the video are shown in Figure 6.
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4 Discussion

The mathematical analysis and insights described in this letter come di-
rectly from the representation of time-to-contact as a function of expansion
rate, equation 1.1. This representation clearly describes how expansion
(looming/eta) relates to TTC (tau). Equation 2.3 demonstrates a template
model of a heading-sensitive cell that responds proportionally to the ex-
pansion rate of the input stimulus. This elegant solution to the estimation
of TTC indicates that a simple neural circuit, as documented in primate
dorsal MST, is capable of accurately estimating TTC directly from an op-
tic flow field while concurrently estimating heading. Provided that motion
estimates are accurate, this method provides a robust way of incorporat-
ing multiple motion vectors into a single object-based measure of time to
contact. The technique could be expanded further to differentially weight
motion vectors through manipulation of the parameter N. For example, if N
were constructed to incorporate a normalized confidence metric for each of
the motion estimates, then the template match equation, 2.6, could perform
a weighted mean of all of the component TTC estimates. This could help
remove outliers and reduce the reliance on a large value of N to provide
accurate results in noisy data. Temporal filtering of equation 2.6, as we did
in dViSTARS, further reduces the effect of noise and relaxes the constraint
on a large N for any given image frame provided N is large over some
subset of image frames.

The primary limitation of our model is that it requires that objects be
segmented from each other and the background. If they are not, then the
resulting TTC estimate will be a mixture of the TTCs for all objects within
the receptive field. Furthermore, the model assumes that objects are roughly
planar. Any object that has a large, protruding element or highly irregular
surface will produce a biased TTC estimate. These limitations are shared
by any method that attempts to estimate a single TTC value for an object
of arbitrary 3D shape. Note that in our video example, we did not explic-
itly segment the object, but the background was sufficiently far away to
introduce few, if any, motion signals.

Section 3 shows that when motion direction and speed are represented
across a population of units, as it is in primate V1 and MT, the template
model accurately represents TTC across the population of templates. Based
on these results, we claim that our proposed template definition is sufficient
for accurate TTC estimation from a distributed representation of motion,
such as that found in primate V1 and MT.

In our analysis, we combined the outputs of different scales after the
template match. This is not the optimal method of scale integration and
is not sufficient for the robust estimation of TTC across large slanted pla-
nar surfaces or highly nonplanar objects. In general, this method will tend
toward the smallest TTC (largest expansion rate) component of a given
object. In any expanding object, the motion vectors closer to the FoE are
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smaller than the motion vectors far from the FoE. Scale integration before the
template match would allow for this distribution of speeds, all correspond-
ing to the same TTC, to be captured by a single template match. This should
improve reliability by increasing the number of valid motion estimates in
the template match. Whether or how this may be implemented in the brain
is unknown. For computational applications, this is irrelevant since speed
is represented by the magnitude of a vector rather than by a population
code, and as a result, no combination of scales is required.

Neurophysiological data from MST cells in response to stimuli designed
to elicit a TTC response are inconclusive. The analysis shown here may
provide insights into how to process the neural data to find TTC responses
across a population of cells. In primates, speed is represented across a pop-
ulation of neurons. We show that TTC could be coded across a population
of neurons. The experimenter should therefore look for cells that respond
proportionally to a small range of TTC values and demonstrate that the
population codes a behaviorally beneficial range of TTC values. We predict
that TTC is coded in MSTd and is represented by expansion rather than
time. However, analyzing individual neurons over small ranges of TTC
and neuronal populations over large ranges of TTC will allow for investi-
gation of TTC in any brain area. Moreover, the work described here makes
a specific prediction that TTC and heading estimation are performed by
the same circuits. Human and primate researchers could investigate this
through stimuli designed to show that heading estimation is not affected
by TTC and, by construction of contrived inputs, that TTC estimation, or
cell activity, does not require a consistent FoE in the stimulus space.

In summary, TTC estimates from our proposed template model of MSTd
are accurate regardless of the receptive field of the cell, the object size, or
whether motion is coded as a vector or distributed across a population of
cells.

Appendix: TTC/Expansion Equivalence

Let f be the focal length of the camera, X be the width of an object, Z is the
distance between the lens (pinhole) and the object along the normal to the
focal plane, at time t1, and V is the distance traveled by the object toward
the camera between t1 and t2. Let x1 be the projected image size of the object
at time t1 and x2 be the projected image size of the object at time t2 (see
Figure 1). Let the unit of time be dt = t2 − t1. Then TTC at time t1 is

T1 = Z
V

. (A.1)

Therefore,

Z = T1V. (A.2)
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From the pinhole camera model,

x1 = f
X
Z

, x2 = f
X

Z − V
. (A.3)

Let expansion rate,

E = x2

x1
− 1. (A.4)

Substituting from equation A.3, then equation A.2, and simplifying,

E = − Z
V − Z

− 1 = 1
T1 − 1

. (A.5)

In general, E is measurable from the image plane and T (in standard units)
is what we want to know:

T1 =
(

1 + 1
E

)
dt, (A.6)

T2 = 1
E

dt, (A.7)

where T2 is the TTC at time t2. Note that if we drop the dt, time to contact is
defined in units of dt rather than in standard units. Also note that we could
incorporate the dt directly in the definition of E.
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