Subdiffusive Dynamics of Bump Attractors: Mechanisms and Functional Roles

Yang Qi  
yaqi4276@usyd.edu.au  
School of Physics, University of Sydney, Sydney, NSW, 2006, Australia

Michael Breakspear  
mjbreaks@gmail.com  
Queensland Institute of Medical Research Berghofer, Royal Brisbane Hospital  
Herston, Brisbane, QLD, 4029 Australia

Pulin Gong  
gong@physics.usyd.edu.au  
School of Physics, University of Sydney, Sydney, NSW, 2006, Australia

Bump attractors are localized activity patterns that can self-sustain after stimulus presentation, and they are regarded as the neural substrate for a host of perceptual and cognitive processes. One of the characteristic features of bump attractors is that they are neutrally stable, so that noisy inputs cause them to drift away from their initial locations, severely impairing the accuracy of bump location-dependent neural coding. Previous modeling studies of such noise-induced drifting activity of bump attractors have focused on normal diffusive dynamics, often with an assumption that noisy inputs are uncorrelated. Here we show that long-range temporal correlations and spatial correlations in neural inputs generated by multiple interacting bumps cause them to drift in an anomalous subdiffusive way. This mechanism for generating subdiffusive dynamics of bump attractors is further analyzed based on a generalized Langevin equation. We demonstrate that subdiffusive dynamics can significantly improve the coding accuracy of bump attractors, since the variance of the bump displacement increases sublinearly over time and is much smaller than that of normal diffusion. Furthermore, we reanalyze existing psychophysical data concerning the spread of recalled cue position in spatial working memory tasks and show that its variance increases sublinearly with time, consistent with subdiffusive dynamics of bump attractors. Based on the probability density function of bump position, we also show that the subdiffusive dynamics result in a long-tailed decay of firing rate, greatly extending the duration of persistent activity.
1 Introduction

Localized, self-sustained activity patterns often arise in neural network models with local excitation and lateral inhibition when responding to transient stimuli. Such persistent activity patterns can be described by bell-shaped tuning curves with respect to the positions of the stimuli, so they are often referred to as bump states or bump attractors. Bump attractors have been widely studied in both firing rate and spiking neural network models (Amari, 1977; Ben-Yishai, Bar-Or, & Sompolinsky, 1995; Pouget, Zhang, Deneve, & Latham, 1998; Compte, Brunel, Goldman-Rakic, & Wang, 2000; Wu, Hamaguchi, & Amari, 2008). These self-sustained bumps can be centered at any continuously varying locations; therefore, they can be used to encode continuous analog quantities. Due to this property, bump attractors have been proposed to be the neural mechanism underlying a host of perceptual and cognitive processes, including stabilization of eye gaze (Seung, Lee, Reis, & Tank, 2000), orientation tuning in visual systems (Ben-Yishai, Bar-Or, & Sompolinsky, 1995), direction selection in head direction cells (Zhang, 1996), path integration in hippocampus (McNaughton, Battaglia, Jensen, Moser, & Moser, 2006), and spatial working memory (Wang, 2001; Compte et al., 2000). Notably, a recent experimental study has found physiological evidence supporting the hypothesis that spatial working memory is represented by bump attractors in the prefrontal cortex (Wimmer, Nykamp, Constantinidis, & Compte, 2014).

Bump attractors are neutrally stable, so they drift away from their initial locations in the presence of stochastic effects. Noise-induced drifting behavior of bump attractors exhibits normal diffusive dynamics when noise is white; such normal diffusive dynamics of bump attractors have been studied in several different frameworks (Compte et al., 2000; Miller, 2006; Wu et al., 2008; Polk, Litwin-Kumar, & Doiron, 2012; Kilpatrick, Ermentrout, & Doiron, 2013). Since the location of a bump can be used to encode information, diffusion of the bump results in errors in such bump location-dependent coding; for instance, in the context of spatial working memory, diffusion of a bump degrades the memory stored at its initial location, resulting in inaccuracies in the behavioral report of remembered locations (White, Sparks, & Stanford, 1994; Ploner, Gaymard, Rivaud, Agid, & Pierrot-Deseilligny, 1998; Wimmer et al., 2014).

To reduce such diffusion-induced coding errors of bump attractors, it is important to make the diffusion coefficient of the corresponding diffusive process as small as possible. Recently Kilpatrick et al. (2013) showed that the diffusion coefficient can be reduced by incorporating spatial heterogeneity to the network connectivity. The diffusion of bump attractors in this setting is described by a random walk in a periodic potential well, resulting in an effective diffusion coefficient smaller than a free random walk. In another study, Polk et al. (2012) show that noisy inputs with correlations distributed globally across populations are able to reduce the
diffusion coefficient. Nevertheless, in these modeling studies, bump attractors still move in a normal diffusive way, since noisy input fluctuations considered in these models are assumed to be white noise without temporal correlations. However, neural fluctuations exhibit temporal and spatial correlations; particularly, long-range temporal correlations have been found in recordings of nearly all levels of neural systems, ranging from spike trains of individual neurons (Bhattacharya, Edwards, Mamelak, & Schuman, 2005; Teich, Johnson, Kumar, & Turcott, 1990), local field potentials (Destexhe, Contreras, & Steriade, 1999), to EEG and MEG recordings (Linkenkaer-Hansen, Nikouline, Palva, & Ilmoniemi, 2001; Freeman, Holmes, Burke, & Vanhatalo, 2003; Gong, Nikolaev, & van Leeuwen, 2003) and fMRI data (Leopold, Murayama, & Logothetis, 2003). Spatial correlations of neural fluctuations have been found to be distance dependent, that is, nearby neurons tend to be correlated much more than distant neurons (Smith & Sommer, 2013; Ecker et al., 2014). Despite the ubiquity of temporal and spatial correlations in neural activities, their effects on the dynamics of bump attractors remain unknown.

In this study, we investigate the effect of long-range temporal correlations in combination with spatial correlations in neural input fluctuations generated by multiple interacting bumps in a simple spiking neural circuit and find that such correlations cause the bumps to undergo anomalous subdiffusion. This mechanism is further validated in a biologically more plausible conductance-based spiking neural circuit model. For a bump undergoing subdiffusion, the variance of its displacement relative to its initial position, hence the variance of its errors, increases sublinearly with time instead of increasing linearly as in normal diffusion. Such a sublinear increase is characterized by a diffusion exponent less than one. Due to this property, the subdiffusive dynamics of bump attractors provide a more effective way for improving the coding accuracy than previous methods by reducing the diffusion coefficient of normal diffusion.

To provide further theoretical insight into the origin of the anomalous subdiffusion of bump attractors, we regard individual bumps as point particles and apply a generalized Langevin equation (GLE) with a long-range temporally correlated force to describe the motion of the bumps. This approach is particularly suited for describing anomalous diffusion involving multiparticle interactions (Sokolov, 2012), analogous to our case of multiple bumps. By solving the GLE analytically, we find that the mean-squared displacement of bump position increases sublinearly with time, consistent with numerical simulations of the spiking neural circuit models. Based on the corresponding probability density function of bump position derived from the GLE and that obtained from the spiking neural network, we find two additional characteristic features of bump attractors with subdiffusive dynamics: a slow decay in the firing rate of persistent activity and a slow decay in the rate of correct recall of the stimulus cue based on a simple threshold read-out criterion.
2 A Simple Spatially Extended Spiking Neural Circuit Model

In this study, we consider a simple spatially extended spiking neural circuit model in which the essential dynamics of individual neurons is described by three states: the spiking, the resting, and the refractory states (Gong & Robinson, 2012). The numerical and the analytical tractability of this type of model facilitates an understanding of the mechanisms of spatiotemporal dynamics in neural systems. In a similar spirit, even two-state network models have been widely used to illustrate principles of emergent neural computation by attractors (Hopfield, 1982), up and down states in studies of repeating patterns of cortical activity (Roxin, Hakim, & Brunel, 2008), statistical properties of populations of neurons (Buice & Cowan, 2007), and avalanches and noisy limit cycles or quasi-cycles in neural systems (Wallace, Benayoun, van Drongelen, & Cowan, 2011; Benayoun, Cowan, van Drongelen, & Wallace, 2010).

We consider a two-dimensional lattice of $n \times n$ neurons, each labeled by integer coordinates $(i, j)$. The state of a neuron located at $(i, j)$ at time $t$ is denoted by $u_{ij}(t)$, which can be one of the firing, resting, or refractory states. The neurons are coupled to each other with local excitation and lateral inhibition, a commonly used coupling structure in neural modeling. The coupling strength $W_{ij,kl}$ between two neurons located at $(i, j)$ and $(k, l)$ is constructed from a distance-dependent Mexican hat function:

$$W_{ij,kl} = C_E \exp\left(-\frac{d_{ij,kl}^2}{d_E^2}\right) - C_I \exp\left(-\frac{d_{ij,kl}^2}{d_I^2}\right),$$

(2.1)

where $C_E = 0.4, C_I = 0.1, d_E = 3.74, d_I = 6.55$, and $d_{ij,kl} = |(i, j) - (k, l)|$ is the Euclidean distance between the neurons located at $(i, j)$ and $(k, l)$. The interactions between neurons are excitatory, with $W_{ij,kl} \geq 0$ when $d_{ij,kl} \leq d_0$, and inhibitory with $W_{ij,kl} < 0$ when $d_{ij,kl} > d_0$, where $d_0 = 5.1$. Since the interactions between neurons in the brain are finite ranged, the connections between neurons are constrained within $d_{ij,kl} \leq d_m$ by setting $W_{ij,kl} = 0$ for $d_{ij,kl} > d_m$, where we set $d_m = 15$. To enable the excitatory and the inhibitory coupling strengths to be changed without affecting their spatial ranges, we scale the excitatory and the inhibitory parts separately. The final coupling strength $W_{ij,kl}$ is $W_{ij,kl} = W_E W_{ij,kl}'$ for $d_{ij,kl} \leq d_0$ and $W_{ij,kl} = W_I W_{ij,kl}'$ for $d_{ij,kl} > d_0$, where $W_E = 8.82$ and $W_I = 69.8$ are the excitatory and the inhibitory weights, respectively. There is no coupling to a neuron itself, which means $W_{ij,ij} = 0$. Note that the results presented in this study are not sensitive to changes in these parameter values. Periodic boundary conditions are applied to the two-dimensional lattice.
The state of each neuron changes at discrete time steps according to the following rules:

1. A neuron in the firing state sends outputs to other connected neurons and then transitions to the refractory state at the next time step.
2. A neuron in the resting state transitions to the firing state at the next time step if the total input it receives from other neurons is greater than a threshold value; otherwise it remains at rest.
3. A neuron in the refractory state returns to the resting state with a probability $p$, otherwise remaining unchanged.

The randomness of the transition is consistent with the fact that noise is common in neural systems; for instance, neural firing activity depends on ionic channels whose activity is stochastic in nature (Faisal, Selen, & Wolpert, 2008). Assigning the firing, the resting, and the refractory states with values of 1, 0, and $-1$, respectively, the full dynamics of the neural network can be described as

$$u_{ij}(t + 1) = \begin{cases} 
H[I_{ij}(t) - 1], & \text{if } u_{ij}(t) = 0, \\
-1, & \text{if } u_{ij}(t) = 1, \\
0 \text{ with probability } p, & \text{otherwise } -1, \text{ if } u_{ij}(t) = -1,
\end{cases} \quad (2.2)$$

where $H(x)$ is the Heaviside step function with $H(x) = 1$ if $x \geq 0$ and $H(x) = 0$ otherwise. The total synaptic input $I_{ij}(t)$ received by a neuron located at $(i, j)$ is

$$I_{ij}(t) = \sum_{k,l} W_{ij,kl} \delta[u_{kl}(t) - 1]. \quad (2.3)$$

where $W_{ij,kl}$ is the coupling strength and $\delta(x)$ is the delta function with $\delta(0) = 1$ and $\delta(x) = 0$ for all $x \neq 0$.

3 Subdiffusive Dynamics of Localized Bumps

Spatially localized persistent activities, also known as bump states, can emerge from the network in response to transient external stimuli. Depending on the value of the parameter $p$, either bumps ($p > 0.5$) or crescent-shaped propagating waves ($p < 0.5$) can emerge from the network (Gong & Robinson, 2012). In this study, we focus on the dynamics of bumps, so we set $p = 0.7$ for all subsequent studies in this letter (similar results can be obtained for any $0.5 < p < 1$). A bump state can be induced by injecting spikes to a small patch (3-by-3) of neurons at arbitrary locations, which
persists over time after the stimulus is removed. We evoke $N = 8$ such bumps in the network; a snapshot of the network activity is shown in Figure 1A. Due to the random nature of the model, that is, the random transition from the refractory state to the resting state, the bumps diffuse away from their initial positions along the network.

To investigate the diffusive dynamics of the bumps, we calculate the position of each bump and then trace its trajectory over time. The bump position is estimated using the population vector, $r(t) = \sum_{ij} S_{ij}(t) r_{ij}$, where $r_{ij} = (i, j)$ is a location on the network and $S_{ij}(t)$ is the spike count of an $ij$th neuron within the bump over a time window of $[t, t + 1]$ (Takeda & Funahashi, 2004; Georgopoulos, Schwartz, & Kettner, 1986; Compte et al., 2000). Figure 1B shows the trajectory of a bump undergoing random motion. This seemingly random motion of the bump can be characterized by its mean-squared displacement (MSD),

$$\sigma^2(t) = \langle |r(t) - r(0)|^2 \rangle,$$

where $r(t)$ is the bump position at time $t$ and $r(0)$ is the initial position. The firing rate of the bump is 0.29 spikes per time step in our model, whereas it is around 30 Hz for persistent activity in working memory (Wimmer et al., 2014). The unit time step of our model therefore corresponds to $t_0 = 0.01$ s, which allows us to present our results in the unit of second. In this study, we focus on a timescale less than 10 s, over which working memory typically operates (Funahashi, Bruce, & Goldman-Rakic, 1989; Wimmer et al., 2014). We compare the MSD for two cases: one case in which there is only one bump moving freely on the network ($N = 1$) and the other case where the network is saturated with $N = 8$ bumps (see Figure 1C). By fitting the slopes of the MSD on a log-log scale, we find distinctive results: when $N = 1$, the MSD increases linearly with time $\sigma^2(t) \sim t^{\beta}$ with a diffusion exponent of $\beta \approx 1.03$, indicating the bump moves in a normal diffusive way. However, when $N = 8$, the MSD of each bump scales sublinearly over time with a diffusion exponent of $\beta \approx 0.75 < 1$, indicating the bump has anomalous subdiffusive dynamics (Metzler & Klafter, 2000). As described in equation 3.1, the MSD quantifies the mean-squared difference between the current bump position $r(t)$ and the initial bump position $r(0)$. Because bump positions are often used to encode continuous variables such as spatial locations in working memory, the MSD is also equal to the variance of the coding error (Compte et al., 2000). The subdiffusive dynamics thus indicate that the variance of the coding error increases with time in a sublinear way.

We now show that subdiffusive dynamics of a bump attractor provide an effective way for improving its coding accuracy. Consider a bump undergoing normal diffusion with its MSD, or coding variance, described by $\sigma^2(t) = Dt/t_0$, where $D$ is the diffusion coefficient and $t_0 = 0.01$ s is the time step in our model. Existing theoretical studies achieve a smaller variance by...
Figure 1: The MSD of bump positions. (A) A snapshot of the network activity showing a total number of $N = 8$ localized bumps undergoing random motion. Each pixel in white, gray, or black represents a neuron in the spiking, the resting, or the refractory state, respectively. (B) The trajectory of a bump over time resembling that of a random walk. (C) Mean-squared displacement (MSD) of bump position. The solid curve is the MSD for a single bump ($N = 1$) with normal diffusive dynamics, and the dashed curve is the MSD for multiple bumps ($N = 8$) with subdiffusive dynamics. The short lines show the fitted slopes of the MSDs on a log-log scale, with $\beta \approx 1.03$ and $\beta \approx 0.75$ for the respective fittings. The crosses and the circles indicate the MSD of a single bump when temporally shuffled (crosses) or spatially shuffled (circles) external inputs are applied (see section 4). (D) Improvements in the coding accuracy of bump attractors by reducing diffusion exponent and diffusion coefficient. The curves represent when both methods achieve the same improvements in coding accuracy at $t = 1$ s (solid) and $t = 10$ s (dashed), respectively. The square and the circle indicate the diffusion exponent $\beta = 0.75$ as obtained in our model. The dotted line represents when both $\beta$ and $\eta$ are reduced by the same amount.
reducing the diffusion coefficient (Kilpatrick et al., 2013; Polk et al., 2012), that is, \( \sigma^2(t) = \eta D t / t_0 \), with \( 0 < \eta < 1 \). In contrast, we do so by reducing the diffusion exponent, that is, \( \sigma^2(t) = D (t / t_0)^\beta \), with \( 0 < \beta < 1 \). The ratio between the two coding variances is

\[
h(\beta, \eta) = \eta (t / t_0)^{1 - \beta}.
\]

For subdiffusion to be more effective than normal diffusion at improving the coding accuracy of bump attractors, it requires \( h(\beta, \eta) > 1 \). In particular, we are interested in whether this can be satisfied for the neurophysiological timescale for working memory, which is typically below 10 s. Figure 1D shows the curves corresponding to \( h(\beta, \eta) = 1 \) when \( t = 1 \) s and \( t = 10 \) s, respectively, where the region above each of the curves corresponds to \( h(\beta, \eta) > 1 \). This condition is almost always satisfied if both \( \beta \) and \( \eta \) are reduced by the same amount, as indicated by the dotted line in Figure 1D above the curves. To further illustrate this, consider the MSD in our model with \( \beta = 0.75 \), which is less than normal diffusion for all \( t > 1 \) s even if \( \eta \) is reduced to a value as low as 0.32. This result therefore shows that subdiffusive dynamics is very effective for improving the coding accuracy of bump attractors.

### 4 The Origin of Subdiffusive Dynamics from Correlated Inputs

Given that bump attractors with subdiffusive dynamics can significantly improve coding accuracy, it is important to understand the mechanism underlying this subdiffusive dynamics. We begin with investigating the temporal properties of the inputs received by the individual bumps shown in Figure 1A. Since the influence of other bumps on a given bump depends on their distances and these bumps wander persistently in space, we introduce a comoving frame for each bump to construct input sequences it receives. A position \( \bar{r} \) in such a comoving frame is given by \( \bar{r} = r_{ij} - [r(t)] \), where \( r_{ij} = (i, j) \) is a point in the original coordinates of the lattice and \( r(t) \) is the bump position as calculated based on the population vector. The coordinates of the comoving frame are rounded to the nearest integer as the inputs are defined only at discrete lattice points. The input to a position \( \bar{r} \) and at a time \( t \) is therefore defined in a similar manner as equation 1.3,

\[
I(\bar{r}, t) = \sum_{\bar{r}' \in \mathbb{Z}^2} W(\bar{r}, \bar{r}') \delta[u(\bar{r}', t) - 1],
\]

where \( W(\bar{r}, \bar{r}') \) is the synaptic coupling between two positions located at \( \bar{r} \) and \( \bar{r}' \) and \( \delta(x) \) is the delta function. For convenience, we will drop the bar for the rest of this section and simply write \( I(r, t) \) to mean inputs in the comoving frame.
In order to reveal the effect of inputs from surrounding bumps, we consider separately the internal input and the external input to each bump: the internal input $I_{\text{int}}(r,t)$ to a location $r$ refers to the total input from the spikes of the same bump, and the external input $I_{\text{ext}}(r,t)$ refers to the total input from spikes belonging to the surrounding bumps. For the case with only one bump ($N = 1$), all inputs are purely internal. As shown in Figure 2A, the time series of the internal input appears to be unstructured fluctuations similar to white noise. In contrast, the time series of the external input shows some self-similar temporal structures (see Figure 2B). To quantify the temporal property of these inputs, we calculate their autocorrelation functions (ACFs) as defined below. First, we calculate the unnormalized ACF,

$$C'(\tau; r) = \frac{1}{T} \sum_t [I(r,t) - \langle I \rangle][I(r,t+\tau) - \langle I \rangle], \quad (4.2)$$

where $\langle I \rangle = \frac{1}{T} \sum_t I(r,t)$ is the input mean over the full length $T$ of the input time series. We then normalize the above expression to obtain the ACF,

$$C(\tau; r) = \langle I(r,t), I(r,t+\tau) \rangle = \frac{C'(\tau; r)}{C'(0; r)}. \quad (4.3)$$

where $C'(0; r)$ is the temporal variance of $I(r,t)$.

Figure 2C shows that the internal and the external inputs display very different temporal properties. The internal inputs $I_{\text{int}}$ have an ACF that rapidly decays to zero, consistent with white noise whose ACF is a delta function. The ACF of the external input, however, exhibits a long tail that can be described using a power law function, $I_{\text{ext}} \sim t^{-\alpha}$. The example here is for the input at $|r| = 5$, whose ACF has a power law exponent of $\alpha \approx 0.76$. This power law function of the ACF indicates that the external inputs to each bump have long-range temporal correlations. This is in contrast to previous theoretical studies of bump attractors, which consider only temporally uncorrelated noise whose ACF is a delta function. The distinction between the internal and the external inputs is further confirmed by their power spectrum, shown in Figure 2D. We also find that when there is only one bump in the network ($N = 1$), the internal inputs received by the bump have identical ACFs and power spectra as the internal inputs of the subdiffusive case ($N = 8$). In other words, bumps undergoing normal diffusion and subdiffusion both receive temporally uncorrelated internal inputs, but only the latter receive long-range temporally correlated external inputs, suggesting that such correlated inputs could be responsible for generating subdiffusive dynamics.

What about the spatial correlation property of the external input, aside from its long-range temporal correlations? Figure 2E shows the spatial
profile of the external input at a fixed time instant, which is locally peaked at the origin and decreases smoothly outward. We calculate spatial correlation as a function of displacement $\rho$, defined in the same way as equation 4.3, that is, $C(\rho; t) = \langle I(r, t), I(r + \rho, t) \rangle$, where $I(r, t)$ is given in equation 4.1 and the brackets denote averaging over space with $r \in$
$[-\frac{L}{2}, \frac{L}{2}]^2$ and $L = 20$, the typical distance between two bumps when $N = 8$. Figure 2F shows the cross-section of the spatial correlation $C(\rho, t)$ of the external inputs along the x-axis, decreasing monotonically as distance increases. Unlike the long-range temporal correlation, the spatial correlation is short-ranged, reaching the half maximum at $x \approx 4$ and zero at $x \approx 10$.

To test if both the temporal and the spatial correlations are required for generating subdiffusion, we apply modified versions of the external inputs to a single bump with $N = 1$. In one case, a random shuffling is applied to the temporal sequences of the external inputs, resulting in a delta-shaped temporal ACF (see the solid gray line in Figure 2C) without changing the spatial correlations. In another case, we randomly shuffle the spatial locations of the external inputs, thereby destroying the spatial correlations (see the dashed line in Figure 2F) while preserving the temporal correlations. In both cases, the bump remains normally diffusive (see the crosses and circles in Figure 1C), indicating the combination of the temporal and the spatial correlations, as originated from multiple bumps and their interactions, is required for generating the subdiffusive dynamics of bump attractors.

5 Subdiffusion in a Conductance-Based Spiking Neural Circuit

Based on the simple spiking neural network model, we have shown that noisy inputs with long-range temporal correlations and spatial correlations underlie the subdiffusion of bump attractors. To further confirm this mechanism, we investigate the bump attractor dynamics in a conductance-based,
spiking neural circuit model (see appendix A). In the conductance-based model, we use a transient stimulus to evoke a localized bump. As in our simple model, the bump persists over time after the stimulus is removed. We compare the diffusive dynamics of the bumps in two cases: one with uncorrelated noisy inputs and another with correlated inputs. Various numerical methods have been proposed for generating noise with long-range correlations (Hamzehpour & Sahimi, 2006; Makse, Havlin, Schwartz, & Stanley, 1996; Garcia-Ojalvo & Sancho, 1999), but they could not reliably generate noise with the desired correlations. For our purpose, however, we mainly require a proof of principle for subdiffusive bump dynamics based on correlated inputs. Therefore, we apply directly the external inputs from the three-state model (see Figure 2B) to a single bump in the conductance-based model as an external additive current (see the appendix). When the bump receives uncorrelated gaussian white noise, the MSD of the bump grows linearly with time, corresponding to normal diffusion as found in previous studies of bump attractors. However, when we add external inputs with long-range temporal correlations and spatial correlations, the MSD scales sublinearly in the form of a power law function, $\sigma^2(t) \sim t^\beta$, with $\beta \approx 0.78 < 1$ (see Figure 3). Similar to the simple model, random shuffling of either the temporal sequences or the spatial positions of the external inputs destroys the subdiffusion. These results therefore confirm the importance of correlated inputs for generating subdiffusive dynamics in bump attractors.

Figure 3: Mean-squared displacement (MSD) of a bump attractor in a conductance-based spiking neural network. White noise and spatiotemporally correlated noise show distinct effects on the diffusive motion of a bump. The former shows an MSD growing linearly with time (dots), consistent with normal diffusive dynamics, whereas the latter shows an MSD that increases sublinearly over time, indicating subdiffusive dynamics (squares). The solid and the dashed lines show the corresponding fittings to the power law function of the form $\sigma^2(t) \sim t^\beta$, with the exponents found to be $\beta \approx 1.05$ and $\beta \approx 0.78$, respectively.
6 The Langevin Theory of Subdiffusive Dynamics

Having shown that noisy inputs with long-range temporal correlations and spatial correlations are essential for subdiffusive bump dynamics in spiking neural circuits, we now analyze a simplified model in order to gain further theoretical insights into the origin of subdiffusive dynamics of bump attractors. We consider each bump as a point particle, a simplification that has been used previously (Kilpatrick et al., 2013; Renart, Song, & Wang, 2003), and regard the collective influence of the inputs as a random force acting on the particle. Such a collective force is called a Langevin force in the Langevin description of particle motion. Due to spatial isotropy, it is sufficient to consider one spatial component of the force. Suppose the external input fluctuations are small; the Langevin force $F(t)$ exerting on a bump can be approximated by their linear combination,

$$F(t) = \sum_r f(r) \delta I(r, t),$$

where $f(r)$ is some undetermined coefficient depending on spatial location. The ACF of the force is a bilinear form of the input cross-correlations,

$$C(\tau) = \langle F(t), F(t + \tau) \rangle = \sum_{r, r'} f(r) f(r') \langle I(r, t), I(r', t + \tau) \rangle.$$  \hspace{1cm} (6.1)

As verified numerically, the ACFs ($r = r'$) are the dominant terms on the right-hand side of equation 6.1, whereas the cross-correlation terms ($r \neq r'$) follow power law functions with smaller amplitudes. Since the external inputs have long-range temporal correlations, the Langevin force should also inherit this temporal structure. Moreover, the spatial correlation ensures that the sum of the cross-correlations (including the ACFs) is enhanced instead of being canceled out.

Based on this argument, the bump can be abstracted as a particle driven by a long-range temporally correlated force, and its motion can thus be formulated with a generalized Langevin equation (GLE) (Porrà, Wang, & Masoliver, 1996; Wang & Tokuyama, 1999; Viñales & Despósito, 2007):

$$\ddot{X}(t) + \int_0^t \kappa(t - t') \dot{X}(t') dt' = F(t),$$

where $X(t)$ is the bump position and $\kappa(t)$ is a memory kernel. The quantity $F(t)$ is a Langevin force with zero mean and an ACF,

$$C(\tau) = \langle F(t), F(t + \tau) \rangle \sim \tau^{-\alpha},$$

where $\tau$ is the time lag and $0 < \alpha < 1$ is the same exponent as for the noisy external inputs received by the bump, that is, $\alpha \approx 0.76$ as in equation 4.3. Under the condition of thermal equilibrium, the GLE satisfies the
fluctuation-dissipation theorem that relates the force ACF to the memory kernel (Henery, 1971),

$$C(\tau) = k_B T \kappa(\tau),$$  \hspace{1cm} (6.4)

where $k_B$ is Boltzmann’s constant and $T$ is the absolute temperature.

A standard way to formally solve the GLE is via the method of Laplace transform (Viñales & Despósito, 2007). The Laplace transform of a function $x(t)$ is defined as

$$\mathcal{L}x(t) = \hat{x}(s) = \int_0^\infty x(t)e^{-st}dt.$$  \hspace{1cm} (6.5)

By applying Laplace transform to the GLE (see equation 6.2), along with the relation $\mathcal{L}\dot{X} = s\hat{X} - X(0)$ and the convolution theorem $\mathcal{L}(\kappa * x) = \hat{\kappa}\hat{x}$, we get

$$\hat{X}(t) = \frac{1}{s}X(0) + \hat{G}(s)\dot{X}(0) + \hat{G}(s)\hat{F}(s),$$  \hspace{1cm} (6.6)

where

$$\hat{G}(s) = \frac{1}{s^2 + \hat{\kappa}(s)s}.$$  \hspace{1cm} (6.7)

Laplace inversion of equation 6.6 then gives the formal solution of the GLE of equation 6.2,

$$X(t) = \langle X(t) \rangle + \int_0^t G(t - t')F(t')dt',$$  \hspace{1cm} (6.8)

where $\langle X(t) \rangle = X(0) + \dot{X}(0)G(t)$. The variance in position can be calculated directly from equation 6.8 (Porrà et al., 1996):

$$\sigma_{xx}^2 = \langle [X(t) - \langle X(t) \rangle]^2 \rangle$$  \hspace{1cm} (6.9)

$$= 2 \int_0^t G(t')dt' \int_0^{t'} G(t'')C(t'' - t'')dt''.$$  \hspace{1cm} (6.10)

Note that the variance has the same expression as the MSD defined in equation 3.1. Based on the fluctuation-dissipation theorem (see equation 6.4), the variance is simplified into

$$\sigma_{xx}^2 = k_B T \left[ 2 \int_0^t G(t')dt' - G(t)^2 \right].$$  \hspace{1cm} (6.11)
In the case that \( F(t) \) is a gaussian white noise whose ACF is a delta function, \( C(\tau) = \delta(\tau) \), the GLE is reduced to an ordinary Langevin equation that describes normal diffusion, with a variance equal to \( \sigma_{xx}^2 = 2k_BTt \). However, anomalous diffusion arises when the random force has a long-range temporal correlation: \( C(\tau) \sim \tau^{-\alpha} \). From equation 6.4, we also obtain the memory kernel \( \kappa(\tau) \sim \tau^{-\alpha} \). We can then derive the asymptotic behavior of the MSD as \( t \to \infty \) by considering the corresponding asymptote in the Laplace space as \( s \to 0 \) (Wong, 1975). The memory kernel in the Laplace space is
\[
\hat{\kappa} \sim s^{\alpha-1}.
\] (6.12)

Therefore, \( \hat{G}(s) \) of equation 6.7 becomes
\[
\hat{G}(s) \sim \frac{1}{s^2 + s^\alpha}.
\] (6.13)

Since \( 0 < \alpha < 1 \), the square term vanishes as \( s \to 0 \). Therefore,
\[
\hat{G}(s) \sim s^{-\alpha}.
\] (6.14)

Laplace inversion of the above expression gives
\[
G(t) \sim t^{\alpha-1}.
\] (6.15)

Substituting \( G(t) \) to equation 6.11, we obtain the final asymptotic expression for the variance of the bump position (in one dimension):
\[
\sigma_{xx}^2 \sim k_BT \left[ 2 \int_0^t t^{\alpha-1} dt' - (t^{\alpha-1})^2 \right] \sim t^\alpha.
\] (6.16)

The MSD of the bump position in two spatial dimensions is simply \( \sigma^2 = \sigma_{xx}^2 + \sigma_{yy}^2 \sim t^\alpha \). Matching this expression of MSD derived from the GLE to the definition of MSD in equation 3.1, we find that the power law exponent of the ACF, \( \alpha \), is equal to the diffusion exponent, \( \beta \). This implies the bump dynamics is subdiffusive as \( \alpha = \beta < 1 \), qualitatively in agreement the subdiffusive bump dynamics obtained from the simulation. Quantitatively, this is also consistent with the simulation result as the exponent \( \alpha \approx 0.76 \) of the ACF of the inputs (see Figure 2C) is approximately equal to the diffusion exponent with \( \beta \approx 0.75 \) (see Figure 1C). These results therefore indicate that the GLE with a long-range temporally correlated force is able to account for the subdiffusive bump dynamics.

To further show how the bump dynamics can be captured by the GLE, we consider the probability density function (PDF) of bump position. The
Figure 4: Probability density function of bump position. (A) The amplitude of the PDF $P(0, t)$ decays as a power law function of time $\frac{1}{4\pi Dt^\alpha}$. The dotted plot shows the numerically calculated PDF at $|r| = 0$; the solid line is the fitted curve with $D \approx 9.66 \text{ s}^{-\alpha}$ and $\alpha \approx 0.74$. The exponent $\alpha$ is consistent with those of the input ACF and the MSD. Inset: Log-log plot of the PDF. (B) Radial profile of the PDF for the bump position follows a gaussian distribution. The dotted lines are the simulated data at $t = 1 \text{ s}$ and $t = 2.5 \text{ s}$, respectively; the solid lines are the theoretical prediction using the same values of $D$ and $\alpha$ as in panel A.

Fokker-Planck equation (FPE) associated with the GLE with two spatial dimensions $r = (x, y) \in \mathbb{R}^2$ is (Wang & Tokuyama, 1999)

$$
\frac{\partial P(r, t)}{\partial t} = -g(t)\dot{r}(0) \cdot \nabla P(r, t) + k_B T G(t)[1 - g(t)]\nabla^2 P(r, t),
$$

(6.17)

where $P(r, t)$ is the PDF for the bump position, $G(t)$ is given by equation 6.15, and $g(t)$ is the Laplace inversion of $\hat{g}(s) = \frac{1}{\pi k(s)}$. Using the similar argument as before, the asymptotic form of $g(t)$ as $t \to \infty$ is found to be $g(t) \sim (\alpha - 1)t^{\alpha - 2}$. For a pulse initial condition $P(r, 0) = \delta(r)$, the solution for equation 6.17 is

$$
P(r, t) = \frac{1}{4\pi Dt^\alpha} \exp \left( -\frac{|r - \langle r \rangle|^2}{4Dt^\alpha} \right),
$$

(6.18)

where $D$ is a generalized diffusion coefficient proportional to $k_B T/\alpha \Gamma(1 - \alpha)\Gamma(2 - \alpha)$, $\alpha$ is the exponent of the ACF of the force (as in equation 6.3), and $\langle r \rangle = 0$ is the mean position. This PDF of equation 6.18 gives the probability density of the bump position $r$ at time $t$.

We compare this theoretical PDF to that obtained from numerical simulations of the three-state neural circuit model. We track the trajectory $r(t)$ of a bump over $m = 1000$ trials, and calculate the histogram $H(|r|, t)$ of the bump’s radial distance $|r(t)|$ with a bin size of one. The radial profile of the PDF is therefore calculated as $P(|r|, t) = H(|r|, t)/(m2\pi|r|)$. The time evolution of the peak of the PDF, $P(0, t)$, is shown in Figure 4A, which,
according to equation 6.18, should decay over time in the form of a power law, \( \frac{1}{4\pi D t^\alpha} \). As shown by the solid line, the theoretical curve according to this expression fits well to the numerical data, with parameters \( D \approx 9.66 \text{ s}^{-\alpha} \) and \( \alpha \approx 0.74 \). Note that this exponent \( \alpha \) is consistent with the exponent used to describe the ACF of the input (see Figure 2C) and the exponent of the bump MSD (see Figure 1C) from the simulation. As in equation 6.18, the corresponding radial profiles of the PDF follow gaussian distributions; Figure 4B shows two examples at \( t = 1 \text{ s} \) and \( t = 2.5 \text{ s} \), respectively, both with agreement between the numerical (dotted) and the theoretical (solid) curves. These results further demonstrate that GLE with a long-range temporally correlated force is able to describe the subdiffusive dynamics of bump attractors.

7 Power Law Decay of Firing Rate and Working Memory Performance

As introduced above, one of the characteristic features of the subdiffusive dynamics of bump attractors is that the variance of coding errors increases sublinearly with time. In this section, we present two other features of bump attractors with subdiffusive dynamics: approximate power law decay of the firing rate of persistent activity and approximate power law decay of working memory performance. These two properties are derived from the PDF in equation 6.18, and are also calculated numerically from the three-state neural network model.

First, we derive the firing rate \( f(r,t) \) from the PDF (see equation 6.18) through a spatial convolution:

\[
f(r,t) = \int_{\mathbb{R}^2} \phi(r') P(r - r', t) dr',
\]

where \( \phi(r) \) is the firing rate profile of a bump. At \( t = 0 \), the PDF is a delta function \( P(r,0) = \delta(r) \), and the firing rate is simply \( f(r,0) = \phi(r) \). For \( t > 1 \text{ s} \) such that the width of the PDF \( P(r,t) \) is larger than the diameter of the bump \( \phi(r) \), the firing rate converges to

\[
f(r,t) \sim \tilde{\phi} P(r,t),
\]

where \( \tilde{\phi} = \int_{\mathbb{R}^2} \phi(r) dr \). Equation 7.1 states that the firing rate is proportional to the PDF (see equation 6.18) for large \( t \); therefore, it decays asymptotically to a power law function, \( f(r,t) \sim t^{-\alpha} \) with \( 0 < \alpha < 1 \), where \( \alpha \) is the same as the exponent of the force ACF in equation 6.3. We compare this theoretical result with the trial-averaged firing rates obtained from the simulation using the formula

\[
f_{ij}(t) = \frac{1}{m} \sum_{k=1}^{m} \delta[u_{ij}^k(t) - 1],
\]

where \( f_{ij}(t) \) is the firing rate of an \( ij \)th neuron, \( m = 1000 \) is the total number of trials, and \( k \) is the trial index. The firing rate calculated here excludes the spike counts due to surrounding bumps. Similarly, the bump profile \( \phi(r) \) can be calculated numerically as \( \phi(r) = \frac{1}{m} \sum_{k=1}^{m} \delta[u_{ij}^k(\tilde{r},t) - 1] \), where \( \tilde{r} \) denotes the comoving frame. Figure 5A shows the simulation result of the firing rate (solid line) for two neurons located at \( |r| = 0 \) and \( |r| = 5 \), respectively, in agreement with the corresponding theoretical asymptotes (dashed line) as predicted.
Figure 5: Power law decay of firing rate and performance. (A) The firing rates of neurons decay in the form of power law as predicted by the PDF. The solid lines show the firing rates of neurons at fixed locations with $|r| = 0$ (black) and $|r| = 5$ (gray) from the initial stimulus. The dashed lines show the theoretical asymptotes for the firing rates as predicted by the PDF, with excellent convergence for $t > 2$ s. Frequency in units of 100 Hz. (B) Performance of working memory is measured using the correct rate of recall with a simple threshold criterion. The simulation results (dotted line) are in agreement with the theoretical asymptote (solid line) as predicted by the PDF.

The second prediction is the power law decay of working memory performance over time. A common way for quantifying working memory performance in behavioral studies, especially those involving verbal recall of words, is to measure the rate of correct recall after a delay period $t$ (Wixted & Ebbesen, 1991; Donkin & Nosofsky, 2012). In the framework of using the bump attractor to store working memory, the initial bump position $X(0)$ encodes the memorized item, and the bump location $X(t)$ after a delay period $t$ corresponds to the recalled item. Therefore, a recall is considered correct if the final bump position is within a radius of the initial bump position: $|r(t) - r(0)| < r_0$. Here we set $r_0 = 5$, roughly the same as the diameter of the bump, but note that choices with different threshold values would not significantly affect our results. The probability for a correct recall can therefore be calculated from the PDF $P(r, t)$ of equation 6.18 as

$$P_c(t) = \int_{|r| < r_0} P(r, t) dr = 1 - \exp \left( -\frac{r_0^2}{4Dt^{\alpha}} \right).$$  

(7.2)

For $t \gg \left( \frac{r_0^2}{4D} \right)^{1/\alpha} \approx 0.6$ s, we can expand the exponential function to the first order and find that the correct recall rate converges rapidly to an asymptote.
$P_c(t) \sim \frac{r^2}{\Delta r^2}$. In other words, the rate of correct recall approximately follows a power law decay for large $t$ with $\alpha < 1$, where $\alpha$ is equal to the exponent of the force ACF. The numerical result of the correct rate of recall as a function of time is shown in Figure 5B (dotted line), which is in agreement to the theoretical prediction (solid line).

8 Existing Experimental Evidence for Subdiffusive Bump Dynamics

One of the consequences of subdiffusive dynamics of bump attractors is that the variance of coding errors increases sublinearly with time. To test this, we reexamine existing psychophysical data about spatial working memory. White et al. (1994) studied the saccadic eye movements of monkeys during a delayed spatial working memory task in which the monkeys were trained to track the location of an initial stimulus after a delay period. The monkeys’ eye movements showed random error from the target location that on average increased with time. The qualitative increase of the error with time has been considered as evidence for normal diffusion of bump attractors (Compte et al., 2000; Kilpatrick et al., 2013). We reanalyze their data of the error (White et al., 1994) and demonstrate quantitatively that the variance grows sublinearly with time, which can be accounted for by anomalous subdiffusion instead of normal diffusion. There are two points we need to highlight for interpreting the data: (1) the original paper (White et al., 1994) presents the standard deviation $\sigma(t)$ of the targeting error instead of the variance $\sigma^2(t)$, and (2) the total variance $\sigma^2(t) = \sigma^2_1(t) + \sigma^2_0$ has two components—$\sigma^2_1(t)$ the variance of the genuine coding error that grows with time, and $\sigma^2_0 = \sigma^2(0)$ a constant intrinsic variance of the eye movement. It is the former $\sigma^2_1(t)$ we are interested in as shown in the scatter plot of Figure 6A (redrawn from Figure 5B of White et al., 1994). There are two series of data, both clearly showing that the variance increases sublinearly over time. The data also show a clear trend of a straight line in the corresponding log-log plot, as in Figures 6B and 6C, suggesting that the variance increases with time as a power law function—$\sigma^2_1(t) = At^\beta$. The exponents are found to be $\beta = 0.72$, with a 95% confidence interval of [0.52,0.92], and $\beta = 0.37$, with a 95% confidence interval of [0.13,0.60], respectively. Both exponents are significantly less than one, indicating that the eye movement during delayed spatial working memory tasks involves subdiffusive dynamics.

We further show that the power law model is a better fit than a linear model of the form $\sigma^2_1(t) = At$. We first compare the residual standard deviations of each fit: the power law fit yields 0.75 and 0.57, whereas the linear fit yields 1.07 and 1.27 for the two data series, respectively. The power law function produces less error in the fit than the linear function for both data series. Since the power law model has one additional parameter than the linear model, it is necessary to conduct a suitable model comparison that
Figure 6: Targeting error of saccadic eye movement during delayed spatial working memory tasks. (A) The variances of the eye position (degree) of two subjects (dots and crosses) show a sublinear increase over time during the delay period. The data are fitted to power laws of the form $At^\beta$ with exponents found to be $\beta = 0.72$, 95% CI [0.52,0.92], and $\beta = 0.37$, 95% CI [0.13,0.60], respectively. The data points are replotted from Figure 5B of White et al. (1994). Note that the original paper reported the standard deviation instead of the variance. (B, C) Each of the data series of variance as in panel A plotted on a log-log scale.

takes this into account. For this purpose, we calculate the Bayes factor (Kass & Raftery, 1995), $B = \frac{P(D|M_1)}{P(D|M_0)}$, where $P(D|M)$ is the marginal likelihood for data $D$ under model $M$ (see appendix B for details). The Bayes factors are found to be $B = 40$ and $B = 4.6 \times 10^5$ for the two data series, respectively. In both cases, the Bayes factors are significantly greater than one, suggesting that the power law function is a better model than the linear function (Kass & Raftery, 1995). Our reexamination of these existing data therefore shows that the variance of the recalled position of the stimulus cue increases sublinearly with time, largely consistent with subdiffusive dynamics of a bump attractor.

9 Discussion and Conclusion

In this study, we have investigated the anomalous subdiffusive dynamics of bump attractors in a simple spiking neural network model and have found that such dynamics are caused by fluctuating inputs with long-range temporal correlations and spatial correlations generated by multiple interacting bumps. The importance of correlated inputs for anomalous diffusion of bump attractor is further verified in a biologically more plausible conductance-based spiking network. To demonstrate that long-range temporally correlated inputs are essential for the subdiffusive dynamics, we have simplified a bump as a particle and then applied a generalized Langevin equation to investigate its motion. Based on our analysis of the GLE, we have obtained several analytical results, including the diffusion...
exponent $\beta$ that is determined by the exponent $\alpha$ of the power law function describing the autocorrelation function of the input, the probability density function of bump position, the long-tailed firing rate decay for persistent activity, and the decay of correct rate of recall. These analytical results are in good agreement with those obtained by simulating the spiking neural circuit models, suggesting that the GLE is a suitable theoretical approach for describing the dynamics of bump attractors with correlated inputs. The subdiffusive dynamics provide an efficient way for improving the coding accuracy of bump attractors by reducing the diffusion exponent instead of the diffusion coefficient of normal diffusion (Kilpatrick et al., 2013; Polk et al., 2012). Our study therefore suggests that neural fluctuations with long-range temporal correlations and spatial correlations, which have been widely observed in the brain (Teich et al., 1990; Destexhe et al., 1999; Linkenkaer-Hansen et al., 2001; Leopold et al., 2003; Werner, 2010), can have significant functional benefits for neural information processing.

However, we note that the subdiffusive dynamics of bump attractors in our model are limited to the case with multiple interacting bumps and the particular combination of spatiotemporal correlations originated from them. Despite this limitation, bump attractors with subdiffusive dynamics show several characteristic features that are fundamentally different from those with normal diffusion, which can be verified experimentally. First, the subdiffusion of a bump attractor results in a sublinear increase in the variance of bump positions with time instead of a linear increase, as in normal diffusion. Since drifts of bump positions are predictive of memory-dependent inaccuracies in the behavioral report of the remembered locations (Compte et al., 2000), the sublinear increase in the variance of bump position means that there should be a corresponding sublinear increase in the variance of recall error. Second, the trial-averaged firing rate of persistent activity generated by bump attractors with subdiffusion follows a long-tailed decay in the form of a power law function. With sufficient experimental data in the future, this prediction may be tested by fitting the firing rate decay to a power law function to show that it is statistically better than fitting to exponential functions as in Miri et al. (2011). Finally, working memory performance as measured by the rate of correct recall also decays as a power law function with an exponent smaller than one. This is supported by existing behavioral studies of working memory performance in which power law decay has been identified in a diverse range of measures on forgetting, including the proportion of correct recall of word lists, facial recognition, and savings in relearning lists of nonsense syllables (Donkin & Nosofsky, 2012; Wixted & Ebbesen, 1991).

The temporal increases in the spread of recall error in psychophysical studies of working memory have been considered qualitatively as an indication for the underlying diffusive dynamics of bump states. Based on our reanalysis of the psychophysical data from White et al. (1994), we have found that the variance of recall error increases sublinearly with time and
can be fitted with a power law function with an exponent smaller than one, consistent with the prediction from the subdiffusion of bump attractors. However, in our model, there are multiple bumps, a scenario not fully compatible with working memory experiments presented by White et al. (1994), which involve only a single memorized item. Nonetheless, existing theoretical studies simply overlook the quantitative details when citing these data, without acknowledging that normal diffusion is inadequate for explaining them. Compte et al. (2000) acknowledge that the variance of recall errors reported by White et al. (1994) cannot be fitted to a straight line over the full duration of the data, but they are unable to provide an explanation. Here we show not only that the variance grows sublinearly in the form of a power law but explain it through the subdiffusion of bump states. It is worth noting that different quantifications for errors of behavioral recall have been used by experimentalists, including the standard deviation (White et al., 1994) and the interquartile range of gain (Ploner 1998). We argue that in order to show the differences between errors of normal diffusion-based coding and subdiffusion-based coding, it is best for future studies to use variance for quantifying behavioral inaccuracy because normal diffusion and subdiffusion can be distinguished by their respective linear and sublinear increases in the variance. Recently Wimmer et al. (2014) found specific physiological evidence for diffusive bump attractor dynamics in the prefrontal cortex in explaining behavioral inaccuracies. Similar research may be conducted in the future to show that the bump dynamics is subdiffusive rather than normal diffusive.

Appendix A: A Conductance-Based Model

A two-dimensional conductance-based spiking neural circuit with external noisy input is used to demonstrate the generality of the subdiffusive dynamics. The model uses integrate-and-fire neurons whose dynamics is described as follows,

\[
\frac{dV_{ij}}{dt} = -g_L(V_{ij} - V_R) - g^{E}_{ij}(s)(V_{ij} - V_E) - g^{I}_{ij}(s)(V_{ij} - V_I) + \varepsilon_1 \xi_{ij}(t) \\
+ \varepsilon_2 I_{ext},
\]

where \( V_{ij}(t) \) is the membrane potential of an \( ij \)th neuron in a two-dimensional neural circuit and \( g^{E}_{ij} \) and \( g^{I}_{ij} \) are the excitatory and the inhibitory conductances, respectively. The unit of the voltage is normalized such that the firing threshold is \( V_{th} = 1 \) and the reset potential is \( V_{reset} = 0 \). A refractory period of \( \tau_{ref} = 2 \) ms follows immediately after the reset, that is, set \( V_{ij}(t) = 0 \) for \( t \in (T^l_{ij}, T^l_{ij} + \tau_{ref}) \), where \( T^l_{ij} \) is the time of an \( l \)th spike of a neuron satisfying \( V_{ij}(T^l_{ij}) = 1 \). The leak conductance is \( g_L = 0.05 \) ms\(^{-1}\), and the resting, the excitatory, and the inhibitory reversal potentials are
where $\lambda \in \{E, I\}$, $s_{ij}(t)$ is the synaptic activation of the $ij$th neuron and $W_{ij,kl}^\lambda$ is the excitatory or the inhibitory coupling between the $ij$th and the $kl$th neurons. The coupling strengths are $W_E = 13.85$ and $W_I = 8.46$, respectively.

Similar to the three-state model, we consider distance-dependent coupling with local excitation and lateral inhibition,

$$W_{ij,kl}^\lambda = \frac{1}{\pi \sigma_\lambda^2} \exp \left( -\frac{|r_{ij} - r_{kl}|^2}{\sigma_\lambda^2} \right),$$

where $r_{ij} = (i, j)$ is a position on the network and $\sigma_E = 1.94$ and $\sigma_I = 7.06$ are the ranges of the excitatory and the inhibitory coupling, respectively. The synaptic activation $s_{ij}(t)$ follows,

$$\tau \frac{ds_{ij}}{dt} = -s_{ij} + \sum_m \delta(t - T_{ij}^m),$$

where $\tau = 5$ ms is the timescale of the synaptic delay, $T_{ij}^m$ is the time of an $m$th spike of a neuron satisfying $V_{ij}(T_{ij}^m) = 1$, and $\delta(t)$ is the Dirac delta function. Finally, $\xi_{ij}(t)$ is a standard gaussian white noise with zero mean, and $I_{\text{ext}}(\bar{r}, t)$ is the spatiotemporally correlated external input extracted from the three-state model with $N = 8$, where $\bar{r}$ denotes comoving frames. The strengths of the noises are scaled by $\varepsilon_1 = 0.003$ and $\varepsilon_2 = 0.001$, respectively.

**Appendix B: Calculating the Bayes Factor**

The Bayes factor is defined as, $B = \frac{P(D|M_1)}{P(D|M_0)}$, where $P(D|M)$ denotes the marginal likelihood for data $D$ under model $M$. The marginal likelihood is calculated as $P(D|M) = \int P(\theta|M)P(D|\theta, M)d\theta$, where $P(\theta|M)$ is the prior distribution and $P(D|\theta, M)$ is the likelihood function. We assume that an observed data point $(t_i, d_i)$ is given by $d_i = f(t_i|M) + e_i$, where $f(t|M) = At$ and $f(t|M_1) = At^\beta$, and the error term $e_i$ follows a gaussian distribution with zero mean and a standard deviation of $\lambda$. We use the residual standard deviation of the curve fitting as estimations for the standard deviation $\lambda$, which is sufficient for the purpose of model comparison. A suitable choice of the prior distribution is Jeffrey prior, defined as $P(\theta|M) = \sqrt{\det J}$, where $J(\theta|M)$ is the Fisher information matrix, $J_{ij}(\theta|M) = E[(\partial_{\theta_j} \log f)(\partial_{\theta_i} \log f)]$. 

$V_R = 0$, $V_E = 14/3$, and $V_I = -2/3$, respectively. (For conversion to physiological units, see McLaughlin, Shapley, Shelley, & Wielaard, 2000.) The conductances are given by

$$g_{ij}^\lambda (t) = W_{ij,kl}^\lambda \sum_{kl} W_{ij,kl}^\lambda s_{kl}(t),$$

where $\lambda \in \{E, I\}$, $s_{ij}(t)$ is the synaptic activation of the $ij$th neuron and $W_{ij,kl}^\lambda$ is the excitatory or the inhibitory coupling between the $ij$th and the $kl$th neurons. The coupling strengths are $W_E = 13.85$ and $W_I = 8.46$, respectively.
For our case with $\theta = (A, \beta)$ and $f(x|\theta) = A \beta$, the prior is found to be $P(A, \beta) \sim \frac{1}{A \beta + 1}$. This is an improper distribution, which we normalize over a suitable parameter ranges $A \in [0.1, 10]$ and $\beta \in [0, 2]$. The ranges are considered suitable as the likelihood function is close to zero for parameter values outside these ranges. We also note that the result of the model comparison does not depend sensitively on the choice of the prior distribution.

References


Received April 17, 2014; accepted September 2, 2014.