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We consider the learning problem under an online Markov decision pro-
cess (MDP) aimed at learning the time-dependent decision-making pol-
icy of an agent that minimizes the regret—the difference from the best
fixed policy. The difficulty of online MDP learning is that the reward
function changes over time. In this letter, we show that a simple on-
line policy gradient algorithm achieves regret O(

√
T ) for T steps under a

certain concavity assumption and O(log T ) under a strong concavity as-
sumption. To the best of our knowledge, this is the first work to present
an online MDP algorithm that can handle continuous state, action, and
parameter spaces with guarantee. We also illustrate the behavior of the
proposed online policy gradient method through experiments.

1 Introduction

The Markov decision process (MDP) is a popular framework of reinforce-
ment learning for sequential decision making (Sutton & Barto, 1998), where
an agent takes an action depending on the current state, moves to the next
state, receives a reward based on the last transition, and this process is re-
peated T times. The goal is to find an optimal decision-making policy (i.e.,

This letter is an expanded version of our earlier work presented at ECML/PKDD 2014
(Ma, Zhao, Hatano, & Sugiyama, 2014).
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a conditional probability density of action given state) that maximizes the
expected sum of rewards over T steps.

In the standard MDP formulation, the reward function is fixed over
iterations. However, this assumption is often violated in reality. In this
letter, we consider an online MDP scenario where the reward function is
allowed to change over time. Such an online MDP problem is an extension
of both online decision making and reinforcement learning (Yu, Mannor, &
Shimkin, 2009):

• In an online decision-making problem, the agent needs to make a de-
cision at each time step without knowledge of the future environment
(Kalai & Vempala, 2005). A certain cost function will be observed only
after the decision is made at each time step, and the goal is to minimize
the regret against the best single decision. There is no assumption on
the dynamics in the online decision making problem, and thus the
decision can switch from one to another abruptly.

• In reinforcement learning, the dynamics are assumed to be Marko-
vian. The reward function and transition dynamics are fixed but un-
known to the agent, and thus the estimated reward function and
transition function will converge to the true ones if sufficient samples
are observed. The goal is to find the optimal policy that maximizes the
cumulative reward without full information about the environment.

The goal of the online MDP problem is to find the best time-dependent
policy that minimizes the regret, the difference from the best fixed policy.
We expect the regret to be o(T ), by which the difference from the best fixed
policy vanishes as T goes to infinity.

The MDP expert algorithm (MDP-E), which chooses the current best
action at each state, was shown to achieve regret O(

√
T log |A|) (Even-Dar,

Kakade, & Mansour, 2004, 2009), where |A| denotes the cardinality of the ac-
tion space. Although this bound does not explicitly depend on the cardinal-
ity of the state space, the algorithm itself needs an expert algorithm for each
state, and thus large state space may not be handled in practice. Another
algorithm, called the lazy follow-the-perturbed-leader (lazy-FPL), divides
the time steps into short periods, and policies are updated only at the end
of each period using the average reward function (Yu et al., 2009). This lazy-
FPL algorithm was shown to have regret O(T3/4+ε log T(|S| + |A|)|A|2) for
ε ∈ (0, 1/3). The online MDP algorithm, called the online relative entropy
policy search, is considered in Zimin and Neu (2013), which was shown to
have regret O(L2

√
T log(|S||A|/L)) for state space with L-layered structure.

However, the regret bounds of these algorithms explicitly depend on |S|
and |A|, and the algorithms cannot be directly implemented for problems
with continuous state and action spaces. The online algorithm for Markov
decision processes (Abbasi-Yadkori, Bartlett, Kanade, Seldin, & Szepesvari,
2013) was shown to have regret O(

√
T log |�| + log |�|) with changing tran-

sition probability distributions, where |�| is the cardinality of the policy set.
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Although sublinear bounds still hold for continuous policy spaces, the al-
gorithm cannot be used with infinite policy candidates directly. The online
MDP problem is formulated as an online linear optimization problem in
Dick, György, and Szepesvári (2014). By introducing the stationary occupa-
tion measures, the mirror descent with approximate projections was shown
to have regret O(

√
T ). However, the algorithm assumes that both the state

and action spaces are finite. Yu et al. (2009), Abbasi-Yadkori et al. (2013),
and Neu, György, and Szepesvári (2012) considered even more challenging
online MDP problems under unknown or changing transition dynamics.

In practice, full information of the reward function may be hard to ac-
quire, but only the value of the reward function for the current state and
action is available. Such a setup, called the bandit feedback scenario, has
attracted a great deal of attention recently. An extension of the lazy-FPL
method to the bandit feedback scenario, called the exploratory-FPL al-
gorithm (Yu et al., 2009), was shown to have regret o(T ). Neu, György,
Szepesvári, and Antos (2010) proposed a method based on MDP-E that uses
an unbiased estimator of the reward function and showed that its regret is
O(T2/3(ln T )1/3 ln |A|). Neu, György, Szepesvári, and Antos (2014) further
improved the regret bound to O(

√
T ln T ln |A|). However, this algorithm

cannot be used in continuous state and action problems.
In this letter, we propose a simple online policy gradient (OPG) algorithm

that can be implemented in a straightforward manner for problems with
continuous state and action spaces, which could be seen as an extension of
Dick et al. (2014).1 Under the assumption that the expected average reward
function is concave, we prove that the regret of our OPG algorithm with
respect to a compact and convex parametric policies set is O(

√
T(F2 + N)),

which is independent of the cardinality of the state and action spaces but
is dependent on the diameter F and dimension N of the parameter space.
Furthermore, regret O(N2 log T ) is also proved under a strong concavity
assumption on the expected average reward function. We also extend the
proposed algorithm to a bandit feedback scenario and theoretically prove
that the regret bound of the proposed algorithm is O(

√
T ) with the con-

cavity assumption. We numerically illustrate the superior behavior of the
proposed OPG algorithm in continuous problems over MDP-E with differ-
ent discretization schemes.

The remainder of this letter is organized as follows. In section 2, we
give a formal definition of the online MDP problem. Our proposed algo-
rithm is given in section 3, and regret analyses in full information and the
bandit scenario are given in sections 4 and 5, with proofs presented in the
appendix.

1Our OPG algorithm can also be seen as an extension of the online gradient descent
algorithm (Zinkevich, 2003) to online MDP problems.
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2 Online Markov Decision Process

In this section, we formulate the problem of online MDP learning. An online
MDP is specified by:

• State space S ⊆ R
Ds , which could be either continuous or discrete.

• Action space A ⊆ R
Da , which contains all possible actions a. A could

be either continuous or discrete.
• Transition density p(s′|s, a), which represents the conditional proba-

bility density of next state s′ given current state s and action a to be
taken. We assume that the transition density is fully available to the
agent.

• Reward function sequence r1, r2, . . . , rT , which is a pre fixed real-
valued function sequence and will not change no matter what action
is taken.

An online MDP algorithm produces a stochastic time-dependent policy,
a conditional probability density of action a to be taken given current state
s at each time step. In this letter, we suppose that the online MDP algorithm
A outputs parameter θt = [θ (1)

t , . . . , θ
(N)
t ]� ∈ � ⊂ R

N of stochastic policy
π(a|s; θt ) at each time step t, where � is a convex and compact parameter
set. Thus, algorithm A gives a sequence of policies:

π(a|s; θ1), π(a|s; θ2), . . . , π (a|s; θT ).

Ideally the objective is to maximize the expected cumulative reward over
T time steps of algorithm A, which can be denoted as

RA(T ) = E

[
T∑

t=1

rt (st, at )|A
]

. (2.1)

In the above definition, E[·|A] denotes the expectation over the joint state-
action distribution pt (s, a|A) given the algorithm A has been followed at
each time step. The state-action distribution induced byA and the transition
density at time step t can be expressed as

pt (s, a|A) = dA,t (s) · π(a|s; θt ),

where the state distribution induced by A at time step t is defined as

dA,t(s) = p(st = s|A).

However, maximizing the objective defined in equation 2.1 is not possible,
since we cannot observe all T reward functions during the process of an
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online decision-making problem. Here, we instead design algorithm A that
minimizes the regret against the baseline, which is the best parametric
offline policy defined by

LA(T ) = Rθ∗ (T ) − RA(T ).

In this definition of the regret, we suppose that there exists θ∗ such that
policy π(a|s; θ∗) maximizes the expected cumulative rewards:

Rθ∗ (T ) = E

[
T∑

t=1

rt (st, at )|θ∗
]

.

The best offline parameter θ∗ is given by

θ∗ = argmax
θ∈�

E

[
T∑

t=1

rt (st, at )|θ
]

, (2.2)

where E[·|θ] denotes the expectation over the state-action distribution given
that the policy π(a|s; θ) has been followed at each time step.

We assume here that all candidate policies are parameterized by the
parameter θ, which is different from related works with finite states and
actions (Even-Dar et al., 2004, 2009; Neu, György, Szepesvári, et al., 2010;
Yu et al., 2009; Dick et al., 2014). For continuous problems, it is a common
choice to use a parametric policy (e.g., the gaussian policy), which was
demonstrated to work well (Sutton & Barto, 1998; Peters & Schaal, 2006).
For this reason, the best offline policy defined in equation 2.2 is a suitable
baseline given that the best policy with respect to the class of all Markovian
policies is not a suitable baseline for continuous problems. If the regret is
bounded by a sublinear function with respect to T, the algorithmA is shown
to be asymptotically as powerful as the best offline policy.

3 Online Policy Gradient Algorithm

In this section, we introduce an online policy gradient algorithm for solving
the online MDP problem.

3.1 Algorithm. Unlike previous work (Even-Dar et al., 2004, 2009; Neu,
György, Szepesvári, et al., 2010), we do not use the expert algorithm in our
method because it is not suitable for handling continuous state and action
problems. Instead, we consider a gradient-based algorithm that updates the
parameter of policy θ along the gradient direction of the expected average
reward function at each time step t.
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More specifically, we assume that all the MDPs are ergodic whose state
transitions are induced by the transition density p(s′|s, a) and the para-
metric policy π(a|s; θ),∀θ ∈ �. Then every policy π(a|s; θ) has a unique
stationary state distribution dθ(s):

dθ(s) = lim
t→∞

p(st = s|θ).

Note that the stationary state distribution satisfies

dθ(s
′) =

∫
s∈S

dθ(s)

∫
a∈A

π(a|s; θ)p(s′|s, a)dads.

Let ρt (θ) be the expected average reward function of policy π(a|s; θ) at time
step t:

ρt (θ)= Es∼d
θ
(s),a∼π(a|s;θ)[rt (s, a)]

=
∫

s∈S
dθ(s)

∫
a∈A

rt (s, a)π(a|s; θ)dads, (3.1)

where the expectation is taken over the stationary state-action distribution
of policy π(a|s; θ).

Then our online policy gradient (OPG) algorithm is given as follows:

• Initialize policy parameter θ1.
• for t = 1 to ∞

1. Observe current state st = s.
2. Take action at = a according to current policy π(a|s; θt ).
3. Observe reward rt from the environment.
4. Move to next state st+1.
5. Update the policy parameter as

θt+1 = P(θt + ηt∇θρt (θt )), (3.2)

where P(ϑ) = arg minθ∈� ‖ϑ − θ‖ is the projection function on pa-
rameter space, ‖ · ‖ denotes the Euclidean norm. ηt = 1√

t
is the step

size, and ∇θρt (θ) is the gradient of ρt (θ):

∇θρt (θ)≡
[

∂ρt (θ)

∂θ (1)
, . . . ,

∂ρt (θ)

∂θ (N)

]�

=
∫

s∈S

∫
a∈A

dθ(s)π(a|s; θ)(∇θ ln dθ(s) + ∇θ ln π(a|s; θ))

× rt (s, a)dads. (3.3)

In equation 3.3, the facts ∇θ ln dθ(s)= ∇
θ
d

θ
(s)

d
θ
(s)

and ∇θ ln π(a|s; θ)= ∇
θ
π(a|s;θ)

π(a|s;θ )

are used. Here we assume that ∇θdθ(s) and ∇θπ(a|s; θ) are differentiable
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with respect to the policy parameter θ. If it is time-consuming to obtain the
exact stationary state distribution, gradients estimated by a reinforcement
learning algorithm may be used instead in practice. Since the transition and
reward functions are known to the agent, it is straightforward to estimate
the gradient efficiently by using a reinforcement learning technique (e.g.,
REINFORCE and policy gradients with parameter-based exploration; Sut-
ton & Barto, 1998; Williams, 1992; Sehnke et al., 2010). Furthermore, some
reinforcement learning techniques provided a convergence guarantee for
the gradient estimation. Especially in the REINFORCE algorithm, the gradi-
ent is approximated by the empirical average value ∇θρ̄t (θ) after sufficient
trajectories are collected as

∇θρ̄t (θ) = 1
|H|

|H|∑
n=1

L∑
i=1

∇θ log π(ai|si; θ)R(hn),

where hn is a rollout sample denoted as hn = [s1, a1, . . . , sL, aL], H =
{h1, h2, . . . , h|H|} is the set of collected trajectories with length L, and R(hn)

is the average reward obtained by trajectory hn. With theoretical guarantee,
the REINFORCE algorithm has been shown to converge to the true gradi-
ent as |H| and L tend to infinity. In the following analysis, we ignore the
approximation error since it could be arbitrarily small by collecting a large
enough number of samples.

When the reward function does not changed over time, the OPG algo-
rithm is reduced to the ordinary policy gradient algorithm (Williams, 1992),
an efficient and natural algorithm for continuous state and action MDPs.
The OPG algorithm can also be regarded as an extension of the online gradi-
ent descent algorithm (Zinkevich, 2003), which maximizes

∑T
t=1 ρt (θt ), not

E[
∑T

t=1 rt (st, at )|A]. As we showed in the definition of ρt (θt ), the stationary
state distribution dθt

(s) of policy π(a|s; θt ) is used, which is different from
the state distribution dA,t(s) used in E[

∑T
t=1 rt (st, at )|A]. As we will prove

in section 4, the regret bound of the OPG algorithm is O(
√

T ) under a certain
concavity assumption and O(log T ) under a strong concavity assumption
on the expected average reward function. Unlike previous work (Even-Dar
et al., 2004, 2009; Yu et al., 2009; Neu, György, Szepesvári, et al., 2010),
these bounds do not depend on the cardinality of state and action spaces
since a parameterized policy space is considered. Therefore, the OPG al-
gorithm would be suitable for handling continuous state and action online
MDPs.

3.2 Bandit Feedback. Here we extend the OPG algorithm to the bandit
feedback scenario, where the entire reward function is not available; only
the value of the reward function for the current state and action is observed:

s1, a1, r1(s1, a1), . . . , st, at, rt (st, at ).
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Due to lack of the entire reward function, we replace reward function rt
in the OPG algorithm with a random reward function given by

r̂t (s, a) = rt (s, a)

dA,t(s)π(a|s; θt )
δ(st = s, at = a), (3.4)

where dA,t (s) can be calculated recursively using the following equation:

dA,t(s) =
∫

s′∈S

∫
a∈A

dA,t−1(s
′)π(a|s′; θt−1)p(s|s′, a)dads′.

Note that the above reward function is an unbiased estimator of rt (s, a) for
all t = 1, . . . , T (Yu et al., 2009):

Ept (s,a)[r̂t (s, a)|A] = rt (s, a),∀s ∈ S, a ∈ A.

In the previous equation, Ep(st ,at )
[·|A] denotes the expectation over the joint

state-action distribution pt (s, a) by the policies picked by algorithm A at
time step t, where pt (s, a) = dA,t(s)π(a|s; θt ). By the definition ρt (θ) =
Es∼d

θ
(s),a∼π(a|s;θ)[rt (s, a)], the estimated expected average reward function

satisfies

Ept (s,a)

[
ρ̂t (θ)|A] = ρt (θ),

where

ρ̂t (θ) =
∫

s∈S
dθ(s)

∫
a∈A

r̂t (s, a)π(a|s; θ)dads.

The gradient of ρ̂t (θ) with respect to the parameter θ can be obtained by
passing the derivative through the integral as

Ept (s,a)

[
∂ρ̂t (θ)

∂θ
|A

]
=

∫
s∈S

∫
a∈A

dA,t(s)π(a|s; θt )
∂ρ̂t (θ)

∂θ
dads

=
∫

s∈S

∫
a∈A

(
∂ log dθ (s)

∂θ
+ ∂ log π(a|s; θ)

∂θ

)

× dθ (s)π(a|s; θ)rt (s, a)dads

= ∂ρt (θ)

∂θ
.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/3/563/959334/neco_a_00808.pdf by guest on 23 Septem
ber 2021



An Online Policy Gradient Algorithm for MDPs 571

As the previous equation shows, we replaced the gradient of the expected
average reward function

∂ρt (θ)

∂θ
in equation 3.2 with its unbiased estimator

∂ρ̂t (θ)

∂θ
.

As will be proved in section 5, the regret bound of the OPG method with
bandit feedback is still O(

√
T ), although the bound is looser than that in

the full-feedback case. If it is not possible to calculate the state distribution
directly, its estimate obtained by reinforcement learning may be employed
in practice (Ng, Parr, & Koller, 1999).

4 Regret Analysis with Full Feedback

In this section, we provide a regret bound for the OPG algorithm in the
full-feedback case.

4.1 Assumptions. First, we introduce the assumptions required in the
proofs. Some assumptions have already been used in related works for
discrete state and action MDPs, and we extend them to continuous state
and action MDPs.

Assumption 1. There exists a positive number τ , such that for two arbitrary
distributions d and d′ over S and for every policy parameter θ ∈ �,

∫
s∈S

∫
s′∈S

|d(s) − d′(s)|p(s′|s; θ)ds′ds ≤ e−1/τ

∫
s∈S

|d(s) − d′(s)|ds,

where

p(s′|s; θ) =
∫

a∈A
π(a|s; θ)p(s′|s, a)da.

τ is called the mixing time (Even-Dar et al., 2004, 2009).

Assumption 2. There exists a positive constant C1 depending on the specific
policy model π such that for two arbitrary policy parameters θ and θ′ and
for every s ∈ S,

∫
a∈A

|π(a|s; θ) − π(a|s; θ′)|da ≤ C1‖θ − θ′‖1,

where ‖ · ‖1 denotes the L1 norm.

The gaussian policy is a common choice in continuous state and action
MDPs. Below, we consider the gaussian policy with mean μ(s) = θ�φ(s)

and standard deviation σ , where θ is the policy parameter and φ(s) : S →
R

N is the basis function. The KL divergence between these two policies is
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given by

D(p(·|s; θ)||p(·|s; θ′))

=
∫

a∈A
Nθ,σ (a)

{
logNθ,σ (a) − logNθ ′,σ (a)

}
da

=
∫

a∈A
Nθ,σ (a)

{
1

2σ 2

(−(a − θ�φ(s))2 + (a − θ′�φ(s))2)} da

≤ ‖φ(s)‖2
∞

2σ 2 ‖θ − θ′‖2
1.

By Pinsker’s inequality, the following inequality holds:

‖p(·|s, θ) − p(·|s, θ′)‖1 ≤ ‖φ(s)‖∞
σ

‖θ − θ′‖1. (4.1)

This implies that the gaussian policy model satisfies assumption 2 with
C1 = �

σ
, where ‖φ(s)‖∞ ≤ �,∀s ∈ S. Note that we do not specify any policy

model in the analysis, and therefore the following theoretical analysis is
valid for other stochastic policy models as long as the assumptions are
satisfied.

Assumption 3. All the reward functions in online MDPs are bounded. For
simplicity, we assume that the reward functions satisfy

rt (s, a) ∈ [0, 1],∀s ∈ S,∀a ∈ A,∀t = 1, . . . , T.

Assumption 4. For all t = 1, . . . , T, the second derivative of the expected
average reward function satisfies

∇2
θ ρt (θ) ≤ 0, (4.2)

where θ ∈ � and � is the parameter set, which is convex and compact.

Assumption 4 means that the expected average reward function is concave,
which is currently our sufficient condition to guarantee the O(

√
T )-regret

bound for the OPG algorithm. This assumption can be relaxed to locally
concave expected average reward functions, where all the results still hold
locally. More specifically the standard policy gradient algorithm (Sutton &
Barto, 1998; Peters & Schaal, 2006) has been shown to converge to a local
optimal solution, and we use a local optimal policy as the baseline in the
definition of the regret instead of the global optimal solution.
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An Online Policy Gradient Algorithm for MDPs 573

4.2 Regret Bound with Concavity. We have the following theorem.

Theorem 1. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T) ≤
√

T
F 2

2
+

√
TC2 N + 2

√
Tτ 2C1C2 N + 4τ,

where F is the diameter of Θ and C2 =
2C1−C1e−1/τ

1−e−1/τ .

Note that the constant C1 depends on the specific policy model involved,
which is claimed in assumption 2.

To prove theorem 1, we decompose the regret in the same way as previous
work has (Even-Dar et al., 2004, 2009; Neu, György, & Szepesvári, 2010; Neu,
György, Szepesvári, et al., 2010):

LA(T )= Rθ∗ (T ) − RA(T )

≤
(

Rθ∗ (T ) −
T∑

t=1

ρt (θ
∗)

)
+

(
T∑

t=1

ρt (θ
∗) −

T∑
t=1

ρt (θt )

)

+
(

T∑
t=1

ρt (θt ) − RA(T )

)
. (4.3)

In the OPG method, ρt (θ) is used for optimization, and the sum of the
expected average reward functions

∑T
t=1 ρt (θ

∗) is calculated based on the
stationary state distribution dθ∗ (s) of the policy parameterized by θ∗. How-
ever, the sum of the expected rewards Rθ∗ (T )is calculated by dθ,t(s), the state
distribution at time step t following policy π(a|s; θ∗). A similar argument
can be obtained for

∑T
t=1 ρt (θt ) and RA(T ). These differences affect the first

and third terms of the decomposed regret equation 4.3.
Below, we bound each of the three terms in lemmas 1, 2, and 3, which

are proved in appendixes A, B, and C, respectively.

Lemma 1. The difference between the return and the expected average reward
function of the best offline policy parameter satisfies

∣∣∣∣∣Rθ∗ (T) −
T∑

t=1

ρt(θ
∗)

∣∣∣∣∣ ≤ 2τ.
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The first term has already been analyzed for discrete state and action online
MDPs in Even-Dar et al. (2004, 2009), Neu et al. (2014), and Dick et al. (2014),
and we extended it to continuous state and action spaces in lemma 1.

Lemma 2. The expected average reward function satisfies

∣∣∣∣∣
T∑

t=1

(ρt(θ
∗) − ρt(θt))

∣∣∣∣∣ ≤
√

T
F 2

2
+

√
TC2 N.

Lemma 2 is obtained by using the result of Zinkevich (2003).

Lemma 3. The difference between the return and the expected average reward
function of π(a|s; θt),∀t = 1, . . . , T given by the OPG algorithm A satisfies

∣∣∣∣∣RA(T) −
T∑

t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ 2C1C2 N
√

T + 2τ.

Lemma 3 is similar to lemma 5.2 in Even-Dar et al. (2009), but our bound
does not depend on the cardinality of state and action spaces.

Combining lemmas 1 to 3, we can immediately obtain theorem 1.

4.3 Regret Analysis under Strong Concavity. Next we derive a sharper
regret bound for the OPG algorithm under a strong concavity assumption.

Theorem 1 shows the theoretical guarantee of the OPG algorithm with the
concave assumption. If the expected reward function is strongly concave,

∇2
θ ρt ≤ −HIN, (4.4)

where H is a positive constant and IN is the N × N identity matrix, we have
following theorem:

Theorem 2. The regret against the best offline policy of the OPG algorithm is
bounded as

LA(T) ≤ C2
2 N2

2H
(1 + log T) +

2τ 2C1C2 N
H

log T + 4τ,

with step size ηt = 1
Ht .

In theorem 2,C2 = 2C1−C1e−1/τ

1−e−1/τ , where C1 depends on the specific policy model.
We again consider the same decomposition as equation 4.3, and the first
term of the regret bound is exactly the same as lemma 1.
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The second term is bounded by the following proposition given the
strong concavity assumption, equation 4.4, and step size ηt = 1

Ht :

Proposition 1.

T∑
t=1

(ρt(θ
∗) − ρt(θt)) ≤ C2

2 N2

2H
(1 + log T).

The proof of proposition 1 is given in appendix D, which follows the same
line as Hazan, Agarwal, and Kale (2007).

From the proof of lemma 3, the bound of the third term with the strong
concavity assumption, equation 4.4, is given by proposition 2:

Proposition 2.

T∑
t=1

ρt(θt) − RA(T) ≤ 2τ 2C1C2 N
H

log T + 2τ. (4.5)

The result of proposition 2 is obtained by following the same line as the proof
of lemma 3 with a different step size. Combining lemma 1 and propositions 1
and 2, we can obtain theorem 2.

5 Regret Analysis with Bandit Feedback

In this section, we prove a regret bound for the OPG algorithm in the
bandit-feedback case.

5.1 Regret Bound with Concavity in the Bandit Scenario. Suppose that
there exist ξ > 0 and ε > 0 such that the policy and the state distribution
satisfy

π(a|s; θt )≥ ξ,∀s ∈ S,∀a ∈ A,∀t = 1, . . . , T,

dA,t (s)≥ ε,∀s ∈ S,∀t = 1, . . . , T.

Note that the above assumptions yield the state and action spaces to be
compact, where the gaussian policy cannot be used directly.

Then we have the following theorem:

Theorem 3. The regret of the OPG algorithm with bandit feedback is

LA(T) = Rθ∗ (T) − RA(T)

≤ 4τ +
F 2

2

√
T + (C3 + C4)N

√
T

+ 2τ 2(C1C3 N + C1C4 N)
√

T,
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where C3 =
C1

ε(1−e−1/τ ) , C4 =
C1
ξε

, and C1 depends on the specific policy model as
assumption 2.

Theorem 3 can be proved by extending the proof of theorem 1 as follows.
The same regret decomposition as equation 4.3 is still possible in the

bandit-feedback setting. The first term can be bounded in the same way
as the full-information case; lemma 1 still holds. However, the bounds for
the second and third terms, originally given in lemmas 2 and 3, should be
modified as follows:

Lemma 4. The expected average reward function given by the online policy gra-
dient algorithm with bandit feedback satisfies

∣∣∣∣∣
T∑

t=1

ρt(θ
∗) − ρt(θt)

∣∣∣∣∣ ≤ F 2

2

√
T + (C3 + C4)N

√
T .

The bound of the second part is still O(
√

T ), but it is looser than the bound
in the full-information scenario, which is caused by the estimated gradient
of the expected average reward function.

Lemma 5. The third term of the regret of the online policy gradient algorithm with
bandit feedback is bounded as

∣∣∣∣∣RA(T) −
T∑

t=1

ρt(θt)

∣∣∣∣∣ ≤ 2τ 2(C1C3 N + C1C4 N)
√

T + 2τ.

Proofs of lemmas 4 and 5 are given in appendix G. From these lemmas, we
can immediately obtain theorem 3.

6 Experiments

In this section, we illustrate the behavior of the OPG algorithm through
experiments.

6.1 Target Tracking. The task is to let an agent track an abruptly moving
target located in one-dimensional real space S = R. The action space is also
one-dimensional real space A = R, and we can change the position of the
agent as s′ = s + a. The reward function is given by evaluating the distance
between the agent and target as

rt (s, a) = e− 1
2 (s−tar(t))2− 1

2 a2
, (6.1)
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where tar(t) ∈ [−3, 3] denotes the position of the target at time step t. The
mechanism for moving the target is set as the uniform distribution over the
interval [−3, 3].

We use the gaussian policy with mean parameter μ = θ · s and standard
deviation parameter σ = 3 in this experiment. From the standard argument
(Peters & Schaal, 2006), the stationary state distribution is the gaussian
distribution with zero mean parameter and standard deviation parameter
σ̃ = σ√−θ2−2θ

, θ ∈ (−2, 0).2 Then for all t = 1, . . . , T, the expected average
reward functions are given by

ρt (θ )=
∫

s∈S
N0,σ̃ (s)

∫
a∈A

Nμ,σ (a)e− 1
2 (s−tar(t))2− 1

2 a2
dads

= 1
�

exp
(

− tar(t)2(� 2 − σ̃ 2 − σ 2σ̃ 2)

2� 2

)
,

where � = √
1 + σ 2 + σ̃ 2 + σ 2σ̃ 2 + σ̃ 2θ2. This implies that ρt (θ ) is concave

with respect to the parameter θ , and thus ρt (θ ) satisfies assumption 3 for
all t = 1, . . . , T.3

As a baseline method for comparison, we consider the MDP-E algorithm
(Even-Dar et al., 2004, 2009), where the exponential weighted average algo-
rithm is used as the best expert. Since MDP-E can handle only discrete states
and actions, we discretize the state and action spaces. More specifically, the
state space is discretized as

(−∞,−6], (−6,−6 + c], (−6 + c,−6 + 2c], . . . , (6,+∞),

and the action space is discretized as

−6,−6 + c,−6 + 2c, . . . , 6.

We consider the following five setups for c:

c = 6, 2, 1, 0.5, 0.1.

In the experiment, the state distribution and the gradient are estimated
by the policy gradient estimator REINFORCE introduced in Peters and

2Note that the parameter space is not closed in this experiment. When θ takes a value
less than −1.99 or more than −0.01 during gradient update iterations, we project it back
to −1.99 or −0.01, respectively.

3The analysis of concavity is presented in appendix I.
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Figure 1: Average and standard deviation of returns of the OPG algorithm and
the MDP-E algorithm with different discretization resolution c.

Schaal (2006). I = 20 independent experiments are run with T = 100 time
steps, and the average return J(T ) is used for evaluating the performance:

J(T ) = 1
I

I∑
i=1

[
T∑

t=1

rt (st, at )

]
.

The results are plotted in Figure 1, showing that the OPG algorithm works
better than the MDP-E algorithm with the best discretization resolution.
This illustrates the advantage of directly handling continuous state and
action spaces without discretization. The MDP-E algorithm performs poorly
when the discretization resolution is too small. The regret caused by the
MDP-E algorithm increases as the cardinalities of state and action spaces
increase. On the other hand, the performance of the MDP-E algorithm
is limited when the discretization resolution is too large. Moreover, it is
difficult to design the best discretization method without knowledge of the
target movement.

Figure 2 shows the average rewards and average regrets for full-
information and bandit-feedback cases, which substantiate the theoretical
results.4

6.2 Linear-Quadratic Regulator. The linear-quadratic regulator (LQR)
is a simple system, where the transition dynamics is linear and the reward

4The state and action spaces are bounded to [−2, 2] in the bandit-feedback experiment.
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Figure 2: Average rewards and average regrets of the OPG algorithm with full
information and bandit feedback

function is quadratic. This system is instructive because we can compute
the best offline parameter and the gradient directly (Peters & Schaal, 2006).
Here, an online LQR system is simulated to illustrate the parameter update
trajectory of the OPG algorithm.
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Let state and action spaces be one-dimensional real space: S = R, A = R.
The transitions are deterministically performed as

s′ = s + a.

The reward function is defined as

rt (s, a) = −1
2

Qts
2 − 1

2
Rta

2,

where Qt ∈ R and Rt ∈ R are chosen from {1, . . . , 10} uniformly at time step
t = 10, 20, 30, . . . , 10,000.5 Thus, the reward function is changing abruptly.

We use the gaussian policy with mean parameter μ = θ · s and stan-
dard deviation parameter σ = 0.1 and σ = 1 in full-information and bandit-
feedback experiments, respectively. The best offline parameter is given by
θ∗ = −0.92, and the initial parameter for the OPG algorithm is drawn uni-
formly at random.

From the standard argument (Peters & Schaal, 2006), the expected aver-
age reward function of the above LQR system is given by

ρt (θ ) = −1
2
(Rt + Pt )σ

2,

where Pt is the positive-definite solution of the modified Ricatti equation
Pt = Qt + Pt + 2θPt + θ2Pt + θ2Rt . Then the second-order derivative of ρt (θ )

is given by

∂2ρt (θ )

∂θ2 = σ 2Qt (6θ2 + 12θ + 8) − 4σ 2θ3Rt

2(2θ + θ2)3 .

Given that P is the positive-definite solution, which yields −2 < θ < 0,
we can obtain

∂2ρt (θ )

∂θ2 ≤ 0. This means that the expected average reward
function of the target LQR system is always concave with respect to the
policy parameter.

In Figure 3a, a parameter update trajectory of OPG with full information
in the online LQR problem is plotted by the solid line, and the best offline
parameter is denoted by the dashed line. This shows that the OPG solution
quickly approaches the best offline parameter.

Next, we also include the gaussian standard deviation σ in the policy
parameter: θ = (μ, σ )�. When σ takes a value less than 0.01 during gradient

5The reward function is not bounded, which violates assumption 3. However, it is
interesting to illustrate that the parameter updated by the OPG algorithm still converges
to the best offline parameter.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/3/563/959334/neco_a_00808.pdf by guest on 23 Septem
ber 2021



An Online Policy Gradient Algorithm for MDPs 581

Figure 3: Trajectory of the OPG solution with full information and the best
offline parameter.

update iterations, we project it back to 0.01. A parameter update trajectory
is plotted in Figure 3b, showing again that the OPG solution smoothly
approaches the best offline parameter.

In Figure 4a, the solid line shows the trajectory of the OPG algorithm with
bandit feedback in the online LQR system simulation. The result validates
that the OPG solution converges to the best offline parameter with a slightly
slower speed compared with the full-information result.
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Figure 4: Trajectory of the OPG solution with bandit feedback and the best
offline parameter.

The parameter trajectory is shown in Figure 4b, when the standard de-
viation σ is included in the parameter. The OPG solution still approaches
the best offline mean parameter as we expect.

7 Conclusion

In this letter, we proposed an online policy gradient method for continuous
state and action online MDPs and showed that the regret of the proposed
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method is O(
√

T ) under a certain concavity assumption on the expected
average reward function. A notable fact is that the regret bound does not
depend on the cardinality of state and action spaces, which makes the pro-
posed algorithm suitable in handling continuous states and actions. We
further extended our method to the bandit-feedback scenario and showed
that the regret of the extended method is still O(

√
T ). Furthermore, we also

established the O(log T ) regret bound under a strong concavity assump-
tion for the full information setup. Through experiments, we illustrated
that directly handling continuous state and action spaces by the proposed
method is more advantageous than discretizing them and applying an ex-
isting method.

Our future work will extend the current theoretical analysis to noncon-
cave expected average reward functions, where gradient-based algorithms
suffer from the local optimal problem. A difficulty in this situation it that
the regret bound with bandit feedback becomes trivial when the lower
bounds of policy and state distributions are too small. Thus, improving our
current result in the bandit feedback scenario is an important future work.
Another important challenge is to develop an effective method to estimate
the stationary state distribution, which is required in our algorithm.

Appendix A: Proof of Lemma 1

The following proposition holds, which can be obtained by recursively
using assumption 1:

Proposition 3. For any policy parameter θ, the state distribution dθ,t at time t
and stationary state distribution dθ satisfy

∫
s∈S

|dθ,t(s) − dθ (s)|ds ≤ 2e−t/τ .

The first part of the regret bound in theorem 1 is caused by the difference
between the state distribution at time t and the stationary state distribution
following the best offline policy parameter θ∗,

∣∣∣∣∣Rθ∗ (T ) −
T∑

t=1

ρt (θ
∗)

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

[∫
s∈S

dθ∗,t (s)

∫
a∈A

rt (s, a)π(a|s; θ∗)dsda

−
∫

s∈S
dθ∗ (s)

∫
a∈A

rt (s, a)π(a|s; θ∗)dsda
]∣∣∣∣

≤
T∑

t=1

∫
s∈S

∣∣dθ∗,t(s) − dθ∗ (s)
∣∣ ds
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≤ 2
T∑

t=1

e−t/τ

≤ 2τ,

where the second inequality can be obtained by assumption 1.

Appendix B: Proof of Lemma 2

The following proposition is a continuous extension of lemma 6.3 in Even-
Dar et al. (2009):

Proposition 4. For two policies with different parameters θ and θ′, an arbitrary
distribution d over S, and the constant C1 > 0 given in assumption 2, it holds that

∫
s∈S

d(s)
∫

s′∈S
|p(s′|s; θ) − p(s′|s; θ′)|ds′ds ≤ C1‖θ − θ′‖1,

where

p(s′|s; θ) =
∫

a∈A
π(a|s; θ)p(s′|s, a)da.

Then we have the following proposition, which is proved in appendix E:

Proposition 5. For all t = 1, . . . , T, the expected average reward function ρt(θ)
for two different parameters θ and θ′ satisfies

|ρt(θ) − ρt(θ
′)| ≤ C2‖θ − θ′‖1.

From proposition 5, we have the following proposition:

Proposition 6. Let

θ = [θ (1), . . . , θ (i), . . . , θ (N)],

θ′ = [θ (1), . . . , θ (i)′ , . . . , θ (N)],

and suppose that the expected average reward ρt(θ) for all t = 1, . . . , T is Lipschitz
continuous with respect to each dimension θ (i). Then we have

|ρt(θ) − ρt(θ
′)| ≤ C2|θ (i) − θ (i)′ |,∀i = 1, . . . , N.
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From proposition 6, we have the following proposition:

Proposition 7. For all t = 1, . . . , T, the partial derivative of expected average
reward function ρt(θ) with respect to θ (i) is bounded as

∣∣∣∣∂ρt(θ)
∂θ (i)

∣∣∣∣ ≤ C2,∀i = 1, . . . , N,

and ‖∇θρt(θ)‖1 ≤ NC2.

From proposition 7, the result of online convex optimization (Zinkevich,
2003) is applicable to the current setup. More specifically we have

T∑
t=1

(
ρt (θ

∗) − ρt (θt )
) ≤ F2

2

√
T + C2N

√
T,

which concludes the proof.

Appendix C: Proof of Lemma 3

The following proposition holds, which can be obtained from assumption 2
and

‖θt − θt+1‖1 ≤ ηt‖∇θρt (θt )‖1 ≤ C2Nηt .

Proposition 8. Consecutive policy parameters θt and θt+1 given by the OPG
algorithm satisfy

∫
a∈A

|π(a|s; θt) − π (a|s; θt+1)|da ≤ C1C2 Nηt.

From propositions 4 and 8, we have the following proposition:

Proposition 9. For consecutive policy parameters θt and θt+1 given by the OPG
algorithm and arbitrary transition probability density p(s′|s, a), it holds that

∫
s∈S

d(s)
∫

s′∈S

∫
a∈A

p(s′|s, a)

×|π(a|s; θt) − π (a|s; θt+1)|dads′ds ≤ C1C2 Nηt.
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Then the following proposition holds, which is proved in appendix F fol-
lowing the same line as lemma 5.1 in Even-Dar et al. (2009):

Proposition 10. The state distribution dA,t given by algorithm A and the sta-
tionary state distribution dθt

of policy π (a|s; θt) satisfy

∫
s∈S

|dθt
(s) − dA,t(s)|ds ≤ 2τ 2ηt−1C1C2 N + 2e−t/τ .

Although the original bound given in Even-Dar et al. (2004, 2009) depends
on the cardinality of the action space, that is not the case in the current
setup.

Then the third term of the decomposed regret, equation 4.3, is expressed
as

∣∣∣∣∣RA(T ) −
T∑

t=1

ρt (θt )

∣∣∣∣∣ =
∣∣∣∣∣

T∑
t=1

∫
s∈S

dA,t(s)

∫
a∈A

rt (s, a)π(a|s; θt )dads

−
T∑

t=1

∫
s∈S

dθt
(s)

∫
a∈A

rt (s, a)π(a|s; θt )dads

∣∣∣∣∣
≤

T∑
t=1

∫
s∈S

|dA,t(s) − dπt
(s)|ds

≤ 2τ 2C1C2N
T∑

t=1

ηt + 2
T∑

t=1

e−t/τ

≤ 2τ 2C1C2N
√

T + 2τ,

which concludes the proof.

Appendix D: Proof of Proposition 1

The proof of proposition 1 can be obtained from Hazan et al. (2007), that is,
by the Taylor approximation, the expected average reward function can be
decomposed as

ρt (θ
∗) − ρt (θt )

= ∇θρt (θt )
�(θ∗ − θt ) + 1

2
(θ∗ − θt )

�∇2
θ ρt (ξt )(θ

∗ − θt )

≤ ∇θρt (θt )
�(θ∗ − θt ) − H

2
‖θ∗ − θt‖2, (D.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/3/563/959334/neco_a_00808.pdf by guest on 23 Septem
ber 2021



An Online Policy Gradient Algorithm for MDPs 587

where ξt is some point between θ∗ and θt . The last inequality comes from the
strong concavity assumption, equation 4.4. Given the parameter updating
rule,

∇θρt (θ
∗ − θt ) = 1

2ηt
((θ∗ − θt )

2 − (θ∗ − θt+1)
2) + ηt‖∇θρt (θt )‖2,

summing up all T terms of equation D.1, and setting ηt = 1
Ht yield

T∑
t=1

(ρt (θ
∗) − ρt (θt ))

≤
T∑

t=1

(
1

ηt+1
− 1

ηt
− H

)
‖θ∗ − θt‖2 + ‖∇tρt (θt )‖2

T∑
t=1

ηt

≤ C2
2N2

2H
(1 + log T ).

Appendix E: Proof of Proposition 5

For two different parameters θ and θ′, we have

|ρt (θ) − ρt (θ
′)| =

∣∣∣∣
∫

s∈S
dθ(s)

∫
a∈A

π(a|s; θ)rt (s, a)dads

−
∫

s∈S
dθ′ (s)

∫
a∈A

π(a|s; θ′)rt (s, a)dads
∣∣∣∣

≤
∫

s∈S
|dθ(s) − dθ′ (s)|

∫
a∈A

π(a|s; θ)rt (s, a)dads

+
∫

s∈S
dθ′ (s)

∫
a∈A

∣∣π(a|s; θ) − π(a|s; θ′)
∣∣ rt (s, a)dads.

(E.1)

The first equation comes from equation 3.1, and the second inequal-
ity is obtained from the triangle inequality. Since assumptions 2 and 3
imply

∫
s∈S

dθ′ (s)

∫
a∈A

|π(a|s; θ) − π(a|s; θ′)|rt (s, a)dads ≤ C1‖θ − θ′‖1,
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and also

∫
a∈A

π(a|s; θ)rt (s, a)da ≤ 1,

equation E.1 can be written as

|ρt (θ) − ρt (θ
′)| ≤

∫
s∈S

|dθ(s) − dθ′ (s)|ds + C1‖θ − θ′‖1

=
∫

s∈S

∫
s′∈S

|dθ(s
′)p(s|s′; θ) − dθ′ (s′)p(s|s′; θ′)|ds′ds

+ C1‖θ − θ′‖1

≤
∫

s∈S

∫
s′∈S

|dθ(s
′)p(s|s′; θ) − dθ′ (s′)p(s|s′; θ)|ds′ds

+
∫

s∈S

∫
s′∈S

dθ′ (s′)|p(s|s′; θ) − p(s|s′; θ′)|ds′ds

+ C1‖θ − θ′‖1

≤ e−1/τ

∫
s∈S

|dθ(s) − dθ′ (s)|ds + 2C1‖θ − θ′‖1.

The second equality comes from the definition of the stationary state distri-
bution, and the third inequality can be obtained from the triangle inequality.
The last inequality follows from assumption 1 and proposition 4. Thus, we
have

|ρt (θ) − ρt (θ
′)| ≤ 2C1 − C1e−1/τ

1 − e−1/τ
‖θ − θ′‖1,

which concludes the proof.

Appendix F: Proof of Proposition 10

This proof is following the same line as lemma 5.1 in Even-Dar et al. (2009):

∫
s∈S

|dA,k(s) − dθt
(s)|ds

=
∫

s∈S

∫
s′∈S

∣∣∣dA,k−1(s
′)p(s|s′; θk) − dθt

(s′)p(s|s′; θt )

∣∣∣ ds′ds

≤
∫

s∈S

∫
s′∈S

∣∣∣dA,k−1(s
′)p(s|s′; θt ) − dθt

(s′)p(s|s′; θt )

∣∣∣ ds′ds
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+
∫

s∈S

∫
s′∈S

∣∣dA,k−1(s
′)p(s|s′; θk) − dA,k−1(s

′)p(s|s′; θt )
∣∣ ds′ds

≤ e−1/τ

∫
s∈S

∣∣∣dA,k−1(s) − dθt
(s)

∣∣∣ ds + 2(t − k)C1C2Nηt−1. (F.1)

The first equation comes from the definition of the stationary state distribu-
tion, and the second inequality can be obtained by the triangle inequality.
The third inequality holds from assumption 1 and

∫
s∈S

∫
s′∈S

∣∣dA,k−1(s
′)p(s|s′; θk) − dA,k−1(s

′)p(s|s′; θt )
∣∣ ds

≤ C1‖θt − θk‖1

≤ C1

t−1∑
i=k

ηi‖∇θρi(θi)‖1

≤ 2(t − k)C1C2Nηt−1.

Recursively using equation F.1, we have

∫
s∈S

|dA,t(s) − dπt
(s)|ds ≤ 2

t∑
k=2

e−(t−k)/τ (t − k)C1C2Nηt−1 + 2e−t/τ

≤ 2τ 2C1C2Nηt−1 + 2e−t/τ ,

which concludes the proof.

Appendix G: Proofs of Lemmas 4 and 5

As we show in section 5, an unbiased estimator of reward function is used
for updating the parameter θ; we also show that the corresponding esti-
mated gradient is unbiased, which can be bounded by the following lemma,
which is proved in appendix H.

Lemma 6. The estimated gradient ∇θρ̂t(θ) satisfies

‖∇θρ̂t(θ)‖1 ≤ C3 N + C4 N.

Following the same line with the proof of lemma 3.1 in Flaxman, Kalai,
and McMahan (2005), we first define the auxiliary functions for all x ∈ � as

�t (x) = ρt (x) + x�κt,
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where κt = ∇θρ̂t (θt ) − ∇θρt (θt ). It is observed that

∇x�t (θt ) = ∇θρ̂t (θt ),

and the unbiased estimation satisfies

Ept (s,a)[�t (θt )|A] = ρt (θt ),

where the above equation follows from the fact that Ept (s,a)[κt |A] = 0, and
Ept (s,a)[θtκt |A] = 0. Thus, we can obtain

T∑
t=1

(
ρt (θ

∗) − ρt (θt )
) ≤ F2

2

√
T + (C3 + C4)N

√
T,

which concludes the proof of lemma 4 by using the result of lemma 6.
Similarly, using lemma 6 in the proof of lemma 3, we obtain lemma 5.

Appendix H: Proof of Lemma 6

The estimated gradient is expressed as

∇θρ̂t (θt ) =
∫

s∈S

∫
a∈A

dθt
(s)π(a|s; θt )r̂t (s, a)

× (∇θ ln dθt
(s) + ∇θ ln π(a|s; θt ))dsda

=
∇θdθt

(st )

dA,t(st )
rt (st, at )

+
dθt

(st )

dA,t (st )
ln ∇θπ(a|s; θt )rt (st, at ).

Consider the stationary distribution as a function of parameter θ for all
s ∈ S, Then, from proposition 5, the bound for the gradient of the stationary
distribution is given by

|∇θdθt
(s)| ≤ C1N

1 − e−1/τ
,∀s ∈ S,∀t = 1, . . . , T.
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Similarly, from assumption 2, the bound for the gradient of policy π is given
by

|∇θ ln π(a|s; θt )| ≤ C1N
ξ

,∀s ∈ S,∀a ∈ A,∀t = 1, . . . , T.

Then we have

‖∇θρ̂t (θt )‖1 ≤ C1N
ε(1 − e−1/τ )

+ C1N
εξ

,∀t = 1, . . . , T.

Appendix I: Concavity Analysis for Target Tracking

The reward function in the target tracking experiment is defined as

rt (s, a) = e− 1
2 (s−tar(t))2− 1

2 a2
,∀t = 1, . . . , T.

Then for all t = 1, . . . , T, the expected average reward function is given by

ρt (θ )=
∫

s∈S
N0,σ̃ (s)

∫
a∈A

Nμ,σ (a)e− 1
2 (s−tar(t))2− 1

2 a2
dads

= 1
�

exp
(

− tar(t)2(� 2 − σ̃ 2 − σ 2σ̃ 2)

2� 2

)
,

where � = √
1 + σ 2 + σ̃ 2 + σ 2σ̃ 2 + σ̃ 2θ2 and σ̃ = σ√−θ2−2θ

. For verifying the
concavity of ρt (θ ), we obtain the derivative of ρt (θ ) with respect to θ by
plugging in σ = 3 as

∂ρt (θ )

∂θ

=
√

−θ2 − 2θ

−θ2 − 20θ + 90
exp

(
− t2

2
· −θ2 − 20θ

−θ2 − 20θ + 90

)

×
[
−tar(t)2 −90(θ + 10)

(−θ2 − 20θ + 90)2 − −9θ2 + 90θ + 90
(−θ2 − 20θ + 90)(−θ2 − 2θ )

]
.

We observed that
∂ρt (θ )

∂θ
is monotonically nonincreasing as shown in Figure 5.

Thus, the defined expected average reward functions ρt (θ ),∀t = 1, . . . , T
are concave with respect to the parameter θ .
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Figure 5: The derivative of ρt (θ ) with respect to θ .
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