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The k-dimensional coding schemes refer to a collection of methods that
attempt to represent data using a set of representative k-dimensional
vectors and include nonnegative matrix factorization, dictionary learn-
ing, sparse coding, k-means clustering, and vector quantization as
special cases. Previous generalization bounds for the reconstruction
error of the k-dimensional coding schemes are mainly dimensionality-
independent. A major advantage of these bounds is that they can be
used to analyze the generalization error when data are mapped into
an infinite- or high-dimensional feature space. However, many applica-
tions use finite-dimensional data features. Can we obtain dimensionality-
dependent generalization bounds for k-dimensional coding schemes that
are tighter than dimensionality-independent bounds when data are in a
finite-dimensional feature space? Yes. In this letter, we address this prob-
lem and derive a dimensionality-dependent generalization bound for
k-dimensional coding schemes by bounding the covering number of the
loss function class induced by the reconstruction error. The bound is
of order O((mk ln(mkn)/n)λn ), where m is the dimension of features, k
is the number of the columns in the linear implementation of coding
schemes, and n is the size of sample, λn > 0.5 when n is finite and λn = 0.5
when n is infinite. We show that our bound can be tighter than previ-
ous results because it avoids inducing the worst-case upper bound on k
of the loss function. The proposed generalization bound is also applied
to some specific coding schemes to demonstrate that the dimensionality-
dependent bound is an indispensable complement to the dimensionality-
independent generalization bounds.
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1 Introduction

The k-dimensional coding schemes (Maurer & Pontil, 2010) are abstract
and general descriptions of a collection of methods, all of which encode a
data point x ∈ H as a representative vector y ∈ R

k by a linear map T, where
H denotes the Hilbert space. These coding schemes can be formulated as
follows:

ŷ = arg min
y∈Y

‖x − Ty‖2, (1.1)

where Y ⊆ R
k is called the codebook and the linear map T ∈ R

m×k is called
the implementation of the codebook. The implementation projects the code-
book back to the data source space. The dimension of a data point x can be
either finite or infinite. In this letter, we consider the data as having finite
dimensions of features, that is, H = R

m.
Each data point in H can be exactly or approximately reconstructed by a

code y in the codebook. The reconstruction error of a data point x is defined
as

fT (x) = min
y∈Y

‖x − Ty‖2. (1.2)

The function fT (x), whose variables are x and T, is also called the loss
function. Nonnegative matrix factorization (NMF) (Lee & Seung, 1999;
Févotte, Bertin, & Durrieu, 2009; Guan, Tao, Luo, & Yuan, 2012), dictionary
learning (Chen, Donoho, & Saunders, 1999; Ivana & Pascal, 2011), sparse
coding (Olshausen & Field, 1996; Amiri & Haykin, 2014; Gui, Sun, Ji, Tao, &
Tan, 2016), k-means clustering (MacQueen, 1967; Anderberg, 1973; Liu, Liu,
Wu, Tao, & Fu, 2015), and vector quantization (Gray, 1984; Schneider, Biehl,
& Hammer, 2009a) are specific forms of k-dimensional coding schemes
because they share the same form of the reconstruction error as equation
1.2. They have achieved great successes in the fields of pattern recognition
and machine learning for their superior performances on a broad spectrum
of applications (Liu, Shao, Li, & Fu, 2016; Pehlevan, Hu, & Chklovskii,
2015; Gong, Zhang, Schölkopf, Tao, & Geiger, 2015; Liu, Wu, Tao, Zhang, &
Fu, 2015; Liu, Tao, Cheng, & Tang, 2014; Mairal, Bach, & Ponce, 2012; Hunt,
Ibbotson, & Goodhill, 2012; Wright, Yang, Ganesh, Sastry, & Ma, 2009;
Schneider, Biehl, & Hammer, 2009b; Dhillon, Guan, & Kulis, 2007; Quiroga,
Nadasdy, & Ben-Shaul, 2004; Kanungo et al., 2002; Abbott & Dayan, 1999).

Any coding scheme should find a proper implementation T. A natural
choice for T is the one that minimizes the expected reconstruction error.
The expected reconstruction error with respect to the implementation T is
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Bounds for k-Dimensional Coding Schemes 2215

defined as

R(T ) =
∫

x
fT (x)dρ(x) =

∫
x

fT (x)p(x)dx, (1.3)

where ρ(x) is a Borel measure of the data source and p(x) is the probabil-
ity density function. However, in most cases, p(x) is unknown, and R(T )

cannot be directly minimized. An alternative approach is the empirical risk
minimization (ERM) method (Vapnik, 2000; Cucker & Smale, 2002). Given
a finite number of independent and identically distributed (i.i.d.) observa-
tions x1, . . . , xn ∈ R

m, the empirical reconstruction error with respect to T is
defined as

Rn(T ) = 1
n

n∑
i=1

fT (xi). (1.4)

The ERM method searches for a Tn that minimizes Rn(T ), and in the hope
that R(Tn) has a small distance to the expected reconstruction error R(T∗),
where

T∗ = arg min
T∈T

R(T ), (1.5)

and T denotes a particular class of linear operators T.
A probabilistic bound on the defect

sup
T∈T

∣∣R(T ) − Rn(T )
∣∣

is called the generalization (error) bound. This letter focuses on this er-
ror bound in the framework of k-dimensional coding schemes. Although
different restrictions are imposed on the choices of T and Y for different
concrete forms of k-dimensional coding schemes (e.g., NMF requires both
T and Y to be nonnegative, and sparse coding requires sparsity in Y), they
are closely related. For example, Ding, He, and Simon (2005) showed that
NMF with orthogonal (y1, . . . , yn)� is identical to k-means clustering of
{x1, . . . , xn}. Analyzing the generalization bounds together in this context
has the advantages of exploiting the common properties and mutual cross-
fertilization.

1.1 Related Work. Maurer and Pontil (2010) and Gribonval, Jenatton,
Bach, Kleinsteuber, and Seibert (2015) have performed the only known
theoretical analyses on the generalization error in the framework of k-
dimensional coding schemes. Other work has concentrated only on spe-
cific k-dimensional coding schemes. Since some previous work has studied
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consistency performance, which considers the quantity R(Tn) − R(T∗) of the
related ERM-based algorithms, we demonstrate the relationship between
the generalization error and consistency performance here:

R(Tn) − R(T∗)

= R(Tn) − Rn(Tn) + Rn(Tn) − Rn(T∗) + Rn(T∗) − R(T∗)

≤ R(Tn) − Rn(Tn) + Rn(T∗) − R(T∗)

≤ 2 sup
T∈T

|R(T ) − Rn(T )|. (1.6)

Thus, analyzing the generalization error provides an approach for analyzing
the consistency performance, and the consistency performance provides di-
rections to generalization error analysis. We review the generalization error
and consistency performance of k-dimensional coding schemes together:

� Nonnegative matrix factorization (NMF). The only known generaliza-
tion bounds of NMF have been developed by Maurer and Pontil
(2010) and Gribonval et al. (2015).

� Dictionary learning. Maurer and Pontil (2010) have developed
dimensionality-independent generalization bounds. Vainsencher,
Mannor, and Bruckstein (2011) and Gribonval et al. (2015) have stud-
ied the dimensionality-dependent generalization bounds.

� Sparse coding. A generalization bound for sparse coding was first de-
rived by Maurer and Pontil (2010) and subsequently extended by
Xu and Lafferty (2012), Mehta and Gray (2013), Maurer, Pontil, and
Romera-Paredes (2013), and Gribonval et al. (2015). Maurer et al.
(2013) derived a faster convergence rate upper bound of the consis-
tency performance in a transfer learning setting.

� K-means clustering and vector quantization. Consistency performances
of k-means clustering and vector quantization have mostly been stud-
ied for H = R

m. Asymptotic and nonasymptotic consistency perfor-
mances have been considered by Pollard (1982), Chou (1994), Linder,
Lugosi, and Zeger (1994), Bartlett, Linder, and Lugosi (1998), Linder
(2000), Antos, Györfi, and György (2005), Antos (2005), and Levrard
(2013). Biau, Devroye, and Lugosi (2008), Maurer and Pontil (2010),
and Levrard (2015) developed dimensionality-independent general-
ization bounds for k-means clustering.

We are aware that these specific forms of k-dimensional coding schemes
have many applications for finite-dimensional data, and only a few
dimensionality-dependent methods have been developed to analyze the
generalization bounds for all these coding schemes.

In this letter, we develop a dimensionality-dependent method to ana-
lyze the generalization bounds for the framework of k-dimensional coding
schemes. Our method is based on Hoeffding’s inequality (Hoeffding, 1963)
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and the Bennett-type inequalities (Boucheron, Lugosi, & Massart, 2013) and
directly bounds the covering number of the loss function class induced by
the reconstruction error, which avoids inducing the worst-case upper bound
on k of the loss function. Our method allows a generalization bound of or-
der O((mk ln(mkn)/n)λn ), where λn is much bigger than 0.5 when n is small,
which delicately describes the nonasymptotic behavior of the learning pro-
cess. However, when n goes to infinity, λn approaches 0.5. The obtained
dimensionality-dependent generalization bound can be much tighter than
the previous ones when the number k of columns of the implementation is
larger than the dimensionality m, which could often happen for dictionary
learning, sparse coding, k-means clustering, and vector quantization. We
therefore obtain state-of-the-art generalization bounds for NMF, dictionary
learning, sparse coding, k-means clustering, and vector quantization.

The remainder of the letter is organized as follows. We present our
motivation in section 2 and main results in section 3. In section 4, we apply
our results to specific coding schemes and empirically compare them with
state-of-the-art generalization bounds. We prove our results in section 5 and
conclude the letter in section 6.

2 Motivation

We first introduce the dimensionality-independent generalization bounds
and demonstrate why our dimensionality-dependent bound complements
them.

Assume that data points are drawn from a Hilbert space H with distri-
bution μ. For any r ≥ 0, let P(r) denote the set of probability distributions
on H supported on the closed ball of radius r centered at the origin. In
other words, μ ∈ P(r) means that P{‖x‖ ≤ r} = 1. Let T be bounded in the
operator norm; that is, for every T ∈ T , it holds that ‖Tv‖ ≤ c for all v
with ‖v‖ ≤ 1. Then we also have that the columns of T are bounded as
‖Tei‖ ≤ c, i = 1, . . . , k, where {ei|1 ≤ i ≤ k} is the orthonormal basis of R

k.
The following two theorems are equivalent to the main theorems proved

by Maurer and Pontil (2010) but are represented in a different way. They are
dimensionality-independent generalization bounds obtained in the frame
of the k-dimensional coding schemes. They exploited the Rademacher com-
plexity technique (Bartlett & Mendelson, 2003), which is suitable for deriv-
ing dimensionality-independent bounds (see Biau et al., 2008).

Theorem 1. Assume that μ ∈ P(r ) and Y is a closed subset of the unit ball of R
k

and that there is c ≥ 0 such that for all T ∈ T , ‖Tei‖ ≤ c, i = 1, . . . , k. Suppose
that the reconstruction error functions fT for T ∈ T have a range contained in [0, b].
For any δ ∈ (0, 1), with probability at least 1 − δ in the independently observed
data x1, . . . , xn ∼ μ, we have

sup
T∈T

|R(T) − Rn(T)| ≤ (4crk + 2c2k2)
√

π

n
+ b

√
8 ln2/δ

n
.
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Remark 1. The dimensionality-independent generalization bound in theo-
rem 1 is valuable because it shows a convergence rate of order O(

√
1/n).

Theorem 2. Assume that μ ∈ P(r ) and ‖T ‖Y = supT∈T supy∈Y‖Ty‖ and that
the reconstruction error functions fT for T ∈ T have a range contained in [0, b].
For any δ ∈ (0, 1), with probability at least 1 − δ in the independently observed
data x1, . . . , xn ∼ μ, we have

sup
T∈T

|R(T) − Rn(T)|

≤ b

√
ln2/δ

2n
+

bk
2

√
ln
(
16n‖T ‖2

Y

)
n

+
4 + 4‖T ‖Y +

√
8πrk‖T ‖Y√

n
.

If H is finite dimensional, the above result will be improved to

sup
T∈T

∣∣R(T) − Rn(T)
∣∣

≤ b

√
ln2/δ

2n
+

b
2

√
mk ln(16n‖T ‖2

Y)
n

+
4 + 4‖T ‖Y +

√
8πrk‖T ‖Y√

n
.

Remark 2. The condition that Y is a closed subset of the unit ball of R
k can

be easily achieved by controlling the upper bound of columns of T because
there is a trade-off between the bounds of columns of T and the entries of
y ∈ Y.

Remark 3. We note that theorems 1 and 2 are more complicated than the
original results presented in Maurer and Pontil (2010). This is because we
have removed the restrictions that c ≥ 1 and ‖T ‖Y ≥ 1, which are required
to simplify their results, to reveal the intrinsic relationships between the
order of k and the Rademacher complexities (discussed below). The proof
methods of theorems 1 and 2 in this letter are exactly the same as those
presented by Maurer and Pontil (2010).

We note that if y is in the unit ball of R
k, then

fT (x) = min
y∈Rk×1

‖x − Ty‖2 ≤ min
y∈Rk×1

(‖x‖2 + ‖Ty‖2) ≤ r2 + min
y∈Rk×1

‖Ty‖2

= r2 + min
y∈Rk×1

k∑
i, j

〈
yiTei, y jTe j

〉
≤ r2 + min

y∈Rk×1

k∑
i, j

‖yiTei‖‖y jTe j‖

≤ r2 + c2k2,
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where r, the upper bound of the data point, can be reduced by normaliza-
tion. However, k is a fixed integer, whose value is usually large in practice.
Thus, c2k2 is the dominant factor in the upper bound of fT. It is evident that
fT has the worst-case upper bound on k of order O(k2); that is, the depen-
dency with regard to k of the upper bound of fT has the worst-case order
O(k2). However, for some special forms of k-dimensional coding schemes,
the upper bound of fT has a very small order about k. Taking NMF as an
example, the order about k is zero because

fT (x) = min
y∈Rk

+
‖x − Ty‖2 ≤ ‖x‖2 + ‖T0‖2 ≤ r2. (2.1)

It is evident that the term 2c2k2√π/n in theorem 1 has the same order as
that of the worst-case upper bound on k of fT. It will therefore be loose for
some specific k-dimensional coding schemes. Maurer and Pontil (2010) in-
troduced the proof method of theorem 2 to overcome this problem; however,
the term rk‖T ‖Y

√
8π/n implies that the problem is only partially solved be-

cause rk represents the worst-case upper bound on k of
√

fT (details can be
found in the proof therein). For example, in NMF, the term rk‖T ‖Y

√
8π/n is

of order O(
√

k3/n) (discussed in remark 4). The dimensionality-dependent
bound in theorem 2 faces the same problem because the proof method
computes the Rademacher complexity, corresponding to which part the ob-
tained bound is dimensionality independent and involves the worst-case
upper bound on k of

√
fT .

We try to avoid the worst case by employing a covering number method
to measure the complexity of the induced loss function class FT = { fT |T ∈
T }. However, in our setting, the dimensionality m of data space must be
finite.

3 Main Results

Before presenting our main results, we introduce the definition of covering
number Np(F, ξ , n) (Zhang, 2002).

Definition 1. Let B be a metric space with metric d. Given observations X =
{x1, . . . , xn} and vectors f (X) = { f (x1), . . . , f (xn)} ∈ Bn, the covering number
in p-norm, denoted as Np(F, ξ, X), is the minimum number u of a collection of
vectors v1, . . . , vu ∈ Bn, such that ∀ f ∈ F, ∃v j :

‖d( f (X), v j )‖p =

[
n∑

i=1

d( f (xi ), v
i
j )

p

]1/p

≤ n1/pξ, (3.1)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/10/2213/974071/neco_a_00872.pdf by guest on 16 Septem
ber 2021



2220 T. Liu, D. Tao, and D. Xu

where vi
j is the i-th component of vector vj. We also define Np(F, ξ, n) =

supX Np(F, ξ, X).

Let T = R
m×k. We can upper-bound the covering number of the induced

loss function class of any k-dimensional coding scheme.

Lemma 1. Let FT = { fT |T ∈ T , T = R
m×k} be the loss function class induced by

the reconstruction error for a k-dimensional coding scheme. We have

lnN1(FT , ξ ′, n) ≤ mk ln
(

4(r + ck)
√

mck
ξ ′

)
.

By employing Hoeffding’s inequality (Hoeffding, 1963), we can derive a
dimensionality-dependent generalization bound for k-dimensional coding
schemes.

Theorem 3 (Main Result 1). Assume that μ ∈ P(r ) and Y is a closed subset of
the unit ball of R

k and that there is c ≥ 0 such that for all T ∈ T , ‖Tei‖ ≤ c, i =
1, . . . , k, and that the functions fT for T ∈ T have a range contained in [0, b]. For
any δ ∈ (0, 1), with probability at least 1 − δ, we have

sup
T∈T

|R(T) − Rn(T)| ≤ 2
n

+ b

√
mk ln

(
4(r + ck)

√
mckn

)
+ ln2/δ

2n
.

Our result is dimensionality-dependent. Compared to the bound in the-
orem 2, our bound could be tighter if m ln m ≤ k‖T ‖2

Y .

Remark 4. Let us take NMF as an example to show how our method avoids
inducing the worst-case upper bound on k of the loss function compared to
those of theorems 1 and 2. Regarding NMF,

‖T ‖Y = sup
T∈T

sup
y∈Y

‖Ty‖ = sup
T∈T

sup
y∈Y

∥∥∥∥∥
k∑

i=1

yiTei

∥∥∥∥∥ = sup
y∈Y

c
k∑

i=1

∥∥yiei

∥∥ = c
√

k.

(3.2)

If we consider only the order of m, k, and n, our bound is of order
O(
√

km ln (mkn)/n), while theorem 1 has order O(
√

k4/n) and theorem 2 is
of order O(

√
k3/n +

√
k2 ln(kn)/n). Our bound is tighter when m ln m ≤ k2.

Remark 5. For dictionary learning, sparse coding, k-means clustering, and
vector quantization, the number k of the columns of the linear implemen-
tation may be larger than the dimensionality m. If k > m, our bound will be
much tighter than the dimensionality-independent generalization bound.
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Remark 6. According to the proofs of lemma 1 and theorem 3, our result
is based on the estimation of the Lipschitz constant of the loss function
fT (x) with regard to the implementation T. Particularly, we proved the
property | fT (x) − fT ′ (x)| ≤ L|T − T ′| for all T and T ′ in T , where L is a
constant depending on a specific k-dimensional coding scheme. Similar to
our idea, Gribonval et al. (2015) also developed dimensionality-dependent
generalization bounds for k-dimensional coding schemes. However, their
method is different from ours. Their results are essentially based on the
property that | fT (x) − fT ′ (x)| ≤ L′‖T − T ′‖1→2 for all T and T ′ in T , where
L′ is also a constant and the operator norm ‖ · ‖1→2 of an m × k matrix
A = [A1, . . . , Ak] is defined as ‖A‖1→2 = sup‖α‖1≤1 ‖Aα‖2. As a result, under
some assumptions (see assumptions A1–A4, B1–B3 and C1–C2 therein) and
with high probability, they have that

supT∈T |R(T ) − Rn(T )| ≤ 3c

√
mk · max(ln 2L′C

c , 1) ln n
n

+c

√
mk · max(ln 2L′C

c , 1) + ln 2/δ

n
,

where c,C, T are constants depending on a specific k-dimensional coding
scheme. Note that in most applications, ln 2L′C

c > 1 and ln n > 1. Their bound
could be looser than the derived bound in theorem 3 because in the cases,
it holds that ln 2L′C

c ln n > ln 2L′C
c + ln n. Detailed comparisons are presented

in section 4.

The result in theorem 3 can be improved by exploiting Bennett-type
inequalities. We can make the upper bound to have either a smaller constant
or a faster convergence rate as follows.

By employing Bernstein’s inequality, we show that a tighter generaliza-
tion bound of k-dimensional coding schemes than that in theorem 3 can be
derived.

Theorem 4 (Main Result 2). Assume that μ ∈ P(r ) and Y is a closed subset of
the unit ball of R

k and that there is c ≥ 0 such that for all T ∈ T , ‖Tei‖ ≤ c, i =
1, . . . , k, and that the functions fT for T ∈ T have a range contained in [0, 1]. For
any δ ∈ (0, 1), with probability at least 1 − δ, we have

sup
T∈T

|R(T) − Rn(T)| ≤ 2
n

+
5
(
mk ln

(
4(r + ck)

√
mckn

)
+ ln2/δ

)
n

+

√
2Rn(T)

(
mk ln

(
4(r + ck)

√
mckn

)
+ ln2/δ

)
n

.
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Remark 7. The upper bound in theorem 4 can be much tighter than
that in theorem 3. The dominant term in the upper bound of theorem 4

is
√

2Rn(T )(mk ln(4(r+ck)
√

mckn)+ln 2/δ)
n . Since the empirical reconstruction error

Rn(T ) is no bigger and sometimes much smaller than 1, the upper bound
in theorem 4 can be much tighter than that in theorem 3.

We can represent the result by using the inequality that for all a, b, λ > 0,√
2ab < λa + b/(4λ).

Proposition 1. Assume that μ ∈ P(r ) and Y is a closed subset of the unit ball of
R

k and that there is c ≥ 0 such that for all T ∈ T , ‖Tei‖ ≤ c, i = 1, . . . , k, and
that the functions fT for T ∈ T have a range contained in [0, 1]. For any T ∈ T ,
any λ > 0, and any δ ∈ (0, 1), with probability at least 1 − δ, we have

R(T) ≤ (1 + λ)Rn(T) +
2
n

+
(

1
4λ

+ 5
) (

mk ln
(
4(r + ck)

√
mckn

)
+ ln 2/δ

)
n

.

We have claimed that theorem 4 and proposition 1 can be tighter than
theorem 3 by saying that Rn(T ) can be very small. However, sometimes
such a term could be large. If Rn(T ) > 1/4 (note that the reconstruction
error function fT ∈ [0, 1]), theorem 4 and proposition 1 will be looser than
theorem 3.

The following theorem implies that by employing Bennett’s type in-
equality, the generalization bound can be improved no matter what the
value of Rn(T ) is.

Theorem 5 (Main Result 3). Assume that μ ∈ P(r ) and Y is a closed subset of
the unit ball of R

k and that there is c ≥ 0 such that for all T ∈ T , ‖Tei‖ ≤ c, i =
1, . . . , k, and that the functions fT for T ∈ T have a range contained in [0, 1]. For
any δ ∈ (0, 1), with probability at least 1 − δ, it holds for all T ∈ T that

|R(T) − Rn(T)| ≤ 2
n

+

(
mk ln

(
4(r + ck)

√
mckn

)
+ ln 2

δ

βn

) 1

2− ln(8βV/3)
ln |R(T)−Rn(T)|

,

when V satisfies that |R(T) − Rn(T)| ≤ V ≤ 3/8β and β is any positive constant.

Remark 8. Since fT (x) ≤ 1 in theorem 5, we have that ln(8βV/3)

ln |R(T )−Rn(T )| ≥ 0
if the condition 8βV < 3 holds. For simplicity, set β = 2. If we have that
|R(T ) − Rn(T )| ≤ V ≤ 3/16, the upper bound in theorem 5 will be the same
as that in theorem 3 except for a faster convergence rate. Thus, the upper
bound in theorem 5 can be much tighter than that in theorem 3 in the sense
that it converges much faster.
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Remark 9. The generalization bound in theorem 3 is of order O((mk ln
(mkn)/n)

1
2 ), while the generalization bound in theorem 5 is of order

O((mk ln(mkn)/n)λn ), where λn > 1/2 when n is finite. The generalization
bound in theorem 5, derived by employing Bennett’s inequality, converges
faster when the sample size n is small, which is often the case in practice and
describes the nonasymptotic behavior of the learning process. More empir-
ical discussions can be found in Zhang (2013). However, when the sample
size n goes to infinity, the term 1

2− ln(8βV/3)

ln |R(T )−Rn (T )|
will approach 1

2 , which means

that the upper bounds in theorems 5 and 3 describe the same asymptotic
behavior of the learning process.

Remark 10. Theorem 5 looks complex, since the exponent in the conver-
gence rate depends itself on the sample size in an implicit way. Here we
show the superiority of theorem 5 by comparing it with theorem 3. From the
proof of theorem 5, we can see that the theorem depends on the following
inequality (see equation 5.13):

P
{∣∣R(T ) − Rn(T )

∣∣ ≥ ε
} ≤ 2 exp

(
−nVh

( ε

V

))
≤ 2 exp

(
−βnε2− ln(8βV/3)

ln ε

)
,

where ε ≤ V . Note that for Hoeffding’s inequality, with any β, we also have

P
{∣∣R(T ) − Rn(T )

∣∣ ≥ ε
} ≤ 2 exp

(−2nε2) = 2 exp
(
−βnε2− ln(β/2)

ln ε

)
.

Thus, according to Hoeffding’s inequality and the proof method of theorem
5, for all T ∈ T , with probability at least 1 − δ, it holds that

|R(T ) − Rn(T )| ≤ 2
n

+
(

mk ln
(
4(r + ck)

√
mckn

)+ ln 2
δ

βn

) 1

2− ln(β/2)
ln |R(T )−Rn (T )|

.

Comparing the above bound with that in theorem 5, we can see that if we
interpret theorem 3 with a faster convergence rate, the upper bound there
is looser than that in theorem 5 when V ≤ 3/16.

Our main results in theorems 3, 4, and 5 apply to all the k-dimensional
coding schemes because the covering number in lemma 1 measures the
complexity of the loss function class that includes all the possible loss
functions of k-dimensional coding schemes. However, for some specific k-
dimensional coding schemes, the complexity of the corresponding induced
loss function class can be refined. We discuss the details in the next section.1

1Even though the faster convergence interpretation in theorem 5 is interesting, it looks
complicated, and the upper bound is almost as tight as that of theorem 4. Therefore, we
do not discuss its applications for specific k-dimensional coding schemes.
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4 Applications

In this section, we apply our proof methods to specific k-dimensional
coding schemes. We show that our methods provide state-of-the-art
dimensionality-dependent generalization bounds.

4.1 Nonnegative Matrix Factorization. NMF factorizes a data matrix
X ∈ R

m×n
+ into two nonnegative matrices T ∈ R

m×k
+ and Y ∈ R

k×n
+ , where

k < min(m, n). NMF has been widely exploited since Lee and Seung (1999)
provided a powerful psychological and physiological interpretation as a
parts-based factorization and an efficient multiplicative update rule for
obtaining a local solution. Many fast and robust algorithms then followed
(e.g., Gillis & Vavasis, 2014; Guan, Tao, Luo, & Yuan, 2011; Liu & Tao, 2015).
In all applications, both the data points and the vectors Tei, i = 1, . . . , k
are contained in the positive orthant of a finite-dimensional space. In this
case, our method for deriving dimensionality-dependent generalization
bounds is likely to be superior to the method for obtaining dimensionality-
independent results.

Letting X = (x1, . . . , xn) ∈ R
m×n
+ , NMF can be formulated as

minT,Y ‖X − TY‖2
F,

s.t. T ∈ R
m×k
+ ,Y ∈ R

k×n
+ ,

where ‖ · ‖F is the matrix Frobenius norm.
Because TY = TQ−1QY if Q is a scaling matrix, we can normalize T

without changing the optimization problem by choosing

Q =

⎛
⎜⎜⎜⎝

‖T1‖
‖T2‖

. . .
‖Tk‖

⎞
⎟⎟⎟⎠ .

If we restrict μ ∈ P(r) and normalize T, columns of Y will also be upper-
bounded by r. This can be seen in the following lemma, which generalizes
lemma 2 in Maurer and Pontil (2010):

Lemma 2. For NMF with normalized T, if μ ∈ P(r ), then every column of Y is
upper bounded by r; that is, ‖y‖ ≤ r for all y ∈ Y.

For a fixed T, Y is determined by a convex problem. Thus, the recon-
struction error for NMF is

fT (x) = min
y∈Rk

+
‖x − Ty‖2, (4.1)
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and the generalization error of NMF can be analyzed under the framework
of the k-dimensional coding schemes.

Using the same proof method as that of lemma 1, we have the following
lemma:

Lemma 3. Let μ ∈ P(1) and FT = { fT |T ∈ T , T = R
m×k
+ } be the loss function

class induced by the reconstruction error of NMF. We have

lnN1(FT , ξ ′, n) ≤ mk ln
(

2(1 + k)
√

mk
ξ ′

)
.

Then, according to the proof methods of theorems 3, 4, and 5, we have
the following dimensionality-dependent generalization bounds for NMF:

Theorem 6. For NMF, assume that μ ∈ P(1) and that T is normalized. For any
δ ∈ (0, 1), with probability at least 1 − δ, it holds for all T ∈ T that

|R(T) − Rn(T)|

≤ 2
n

+ min

⎧⎨
⎩
√

mk ln
(
2(1 + k)

√
mkn

)
+ ln 2/δ

2n
,

5
(
mk ln

(
2(1 + k)

√
mkn

)
+ ln2/δ

)
n

+

√
2Rn(T)

(
mk ln

(
2(1 + k)

√
mkn

)
+ ln 2/δ

)
n

⎫⎬
⎭ .

Since the value of Rn(T ) is unknown in this letter (it is usually known in
an optimization procedure), in the rest of the letter, we will only compare
the bound in theorem 3 with state-of-the-art bounds. Theorem 3 gives the
following bound for NMF:

2
n

+
√

mk ln
(
2(1 + k)

√
mkn

)+ ln 2/δ

2n
. (4.2)

Under the setting of theorem 6, theorem 2 yields the following bound:

k√
n

(
14

√
k + 1

2

√
ln(16nk)

)
+
√

ln 2/δ

2n
. (4.3)
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Figure 1: Comparisons of the generalization bounds of NMF. (a) The conver-
gence of the bound in equation 4.2, where m = 1000. (b) Comparing the con-
vergence with state-of-the-art generalization bounds, where k = 50, m = 1000.
(c) Comparing the generalization bound with state-of-the-art generalization
bounds in terms of the parameter m, where k = 50, n = 106. (d) Comparing the
generalization bound with state-of-the-art generalization bounds in terms of
the parameter k, where m = 103, n = 106.

Gribonval et al.’s (2015) result gives the following bound:

3√
8

√
mk ln(12

√
8mk) ln n

n
+ 1√

8

√
mk ln(12

√
8mk) + ln 2/δ

n
. (4.4)

We then carefully compare the above generalization bounds. For NMF
problems, the dimensionality m is usually very large compared to the re-
duced dimensionality k. We set m = 1000, k = 50, δ = 0.01. The comparisons
are illustrated in Figure 1. The figure shows that in most cases, the derived

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/10/2213/974071/neco_a_00872.pdf by guest on 16 Septem
ber 2021



Bounds for k-Dimensional Coding Schemes 2227

generalization bound is tighter than state-of-the-art bounds. In Figure 1 d,
the bound in equation 1.3 is tighter than the derived bound in a small range
because it is dimensionality independent and m = 1000 is set to be much
larger than the corresponding reduced dimensionality k.

4.2 Dictionary Learning. Dictionary learning tries to find a dictionary
such that all observed data points can be approximated by linear combina-
tions of atoms in the dictionary. Let the columns of T be the atoms of the
dictionary. For an observation x ∈ R

m, the dictionary learning method will
represent x by a linear combination of columns of T as

x′ =
k∑

i=1

αiTi, αi ∈ R, i = 1, . . . , k. (4.5)

Thus, the reconstruction error of dictionary learning is the same as those of
k-dimensional coding schemes.

Vainsencher et al. (2011) provided notable dimensionality-dependent
generalization bounds for dictionary learning by considering two types of
constraints on coefficient selection, respectively. For the 
0-norm regular-
ized coefficient selection, where every signal is approximated by a combi-
nation of, at most, p dictionary atoms, the generalization bound (theorem
14 therein) is of order O(

√
mk ln(np)/n) under an approximate orthogo-

nality assumption on the dictionary. For the 
1-norm regularized coeffi-
cient selection, the generalization bound (theorem 7 therein) is of order
O(
√

mk ln(nλ)/n) under the requirements that λ, which is the upper bound
of the 
1-norm of the coefficient, is larger than e/4, and that the signal x
is mapped onto the (m − 1)-sphere. Our result on k-dimensional coding
scheme can also be applied to dictionary learning and provides a more
general bound, which does not require x to be on the (m − 1)-sphere or
the near-orthogonality requirement and directly applies to all dictionary
learning problems.

Theorem 7. For dictionary learning, assume that μ ∈ P(1), that Y is a closed
subset of the unit ball of R

k , and that every atom Ti , i = 1, . . . , k is bounded by
‖Ti‖ ≤ c, i = 1, . . . , k. Then, for any δ ∈ (0, 1), with probability at least 1 − δ, it
holds for all T ∈ T that

|R(T) − Rn(T)|

≤ 2
n

+ min

⎧⎨
⎩
√

mk ln
(
4(1 + ck)

√
mckn

)
+ ln2/δ

2n
,
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5
(
mk ln

(
4(1 + ck)

√
mckn

)
+ ln2/δ

)
n

+

√
2Rn(T)

(
mk ln

(
4(1 + ck)

√
mckn

)
+ ln2/δ

)
n

⎫⎬
⎭ .

The proof of theorem 7 is the same as that of theorem 6.

Remark 11. If we substitute an upper bound λ ≤ √
k into the bound

in Vainsencher et al. (2011), the bound in theorem 7 therein will
be of order O(

√
mk ln(kn)/n), which has the same order as term√

mk ln(4(1+ck)
√

mckn)+ln 2/δ

2n . However, our bound in theorem 5 also shows a
faster convergence rate.

Remark 12. The method Vainsencher et al. (2011) used to upper-bound the
covering number of the induced loss function class is very different from
ours. To upper bound the covering number of the induced loss function class
for dictionary learning, Vainsencher et al. (2011) used the knowledge that
a uniform L Lipschitz mapping between metric spaces converts ξ/L covers
into ξ covers. Then they focused on analyzing the Lipschitz property of the
reconstruction error function that maps a dictionary into a reconstruction
error, �λ : D �→ hR

λ
,D, Rλ = {a : ‖a‖1 ≤ λ}, as shown in their lemma 7. Also

note that to upper-bound the Lipschitz constant of the mapping �k : D �→
hHk,D

, Hk = {a : ‖a‖0 ≤ k}, they introduced the approximate orthogonality
condition (a bound on the Babel function) on the dictionary.

Remark 13. Analyzing the Lipschitz properties of the induced loss
functions is essential for upper bounding the generalization error of
k-dimensional coding schemes. Different from the method used in
Vainsencher et al. (2011), Maurer and Pontil (2010) employed Slepian’s
lemma to exploit the Lipschitz property, while in this letter, we also pro-
posed a novel method, presented in the proof of theorem 3.

The comparisons of the generalization bounds of dictionary learning
are similar to that of NMF because NMF can be regarded as dictionary
learning in the positive orthant. We therefore omit the comparison. Many
algorithms used in applications require sparsity in Y, because sparsity has
advantages, such as for computation and storage. We therefore analyze
sparsity in section 4.3.

4.3 Sparse Coding. Sparse coding requires sparsity in the codebook.
We use the hard constraint discussed in Maurer and Pontil (2010), that
is, T = {T : R

k → R
m|‖Tei‖ ≤ c, i = 1, . . . , k}, Y = {y|y ∈ R

k, ‖y‖p ≤ s}, and
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1/p + 1/q = 1, 2 ≤ p ≤ ∞. Thus, we have

‖Ty‖=
∥∥∥∥∥

k∑
i=1

yiTei

∥∥∥∥∥ ≤
k∑

i=1

|yi|‖Tei‖

(Using Hölder’s inequality)

≤ s

(
k∑

i=1

‖Tei‖q

)1/q

≤ sck1/q = sck1−1/p. (4.6)

The following generalization bound for sparse coding is also from the
work of Maurer and Pontil (2010), derived using the proof method of theo-
rem 2.

Theorem 8. For sparse coding, assume that μ ∈ P(1). Let Y = {y|y ∈ R
k, ‖y‖p ≤

s} where 1 ≤ p ≤ ∞. Let also assume that for all T ∈ T , ‖Tei‖ ≤ 1, i = 1, . . . , k.
Then for any δ ∈ (0, 1), with probability at least 1 − δ, it holds for all T ∈ T that

∣∣R(T) − Rn(T)
∣∣≤ k

2

√
ln(16ns22k2−2/p)

n
+

√
ln2/δ

2n

+
4 + 4sk1−1/p +

√
8πsk2−1/p

√
n

.

We now consider the generalization bound of sparse coding using our
method. The following lemma is proved in section 5.7.

Lemma 4. Follow the setting of theorem 8. Let FT be the loss function class of
sparse coding. We have

lnN1(FT , ξ ′, n) ≤ mk ln
(

4(s + s2k1−1/p)
√

mk1−1/p

ξ ′

)
.

Then we have the generalization bounds for sparse coding as follows:

Theorem 9. Follow the setting of theorem 8. For any δ ∈ (0, 1), with probability
at least 1 − δ, it holds for all T ∈ T that

|R(T) − Rn(T)|

≤ min

{
2
n

+

√
Δ + ln2/δ

2n
,

2
n

+
5 (Δ + ln2/δ)

n
+

√
2Rn(T) (Δ + ln2/δ)

n

}
,

where Δ = mk ln(4(s + s2k1−1/p)
√

mk1−1/pn).
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The proof of theorem 9 is the same as that of theorem 6.
Theorem 9 gives the following bound for sparse coding:

2
n

+
√

mk ln
(
4(s + s2k1−1/p)

√
mk1−1/pn

)+ ln 2/δ

2n
. (4.7)

The upper bound for sparse coding derived by Maurer and Pontil (2010) is
presented in theorem 8:

k
2

√
ln (16ns22k2−2/p)

n
+
√

ln 2/δ

2n
+ 4 + 4sk1−1/p + √

8πsk2−1/p

√
n

. (4.8)

Gribonval et al.’s (2015) result gives the following bound for sparse coding:

1√
8

⎛
⎜⎜⎝3

√√√√mk max
(

ln
(

6
√

8sk1−1/p
)

, 1
)

ln n

n

+

√√√√mk max
(

ln
(

6
√

8sk1−1/p
)

, 1
)

+ ln 2/δ

n

⎞
⎟⎟⎠ . (4.9)

We then compare the above generalization bounds of sparse coding in
Figure 2 by setting m = 100, k = 50, δ = 0.01, p = 1, and s = 10. The com-
parisons show that the derived generalization bound is tighter than state-
of-the-art bounds.

4.4 Vector Quantization and k-Means Clustering. The k-means clus-
tering (or vector quantization) method aims to find k cluster centers such
that observations can be partitioned into k clusters and represented by the k
cluster centers with a small reconstruction error. Taking every column of T
as a cluster center and setting Y as the standard bases {e1, . . . , ek}, we see that
solving a k-means clustering problem is equal to finding an implementation
T. The corresponding reconstruction error is

fT (x) = min
i∈{1,...,k}

‖x − Tei‖2. (4.10)

So the reconstruction error of k-means clustering and vector quantization
is also within the framework of the reconstruction error of k-dimensional
coding schemes.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/10/2213/974071/neco_a_00872.pdf by guest on 16 Septem
ber 2021



Bounds for k-Dimensional Coding Schemes 2231

Figure 2: Comparisons of the generalization bounds of sparse coding. (a) The
convergence of the bound in equation 4.7, where m = 100. (b) Comparing the
convergence with state-of-the-art generalization bounds, where k = 50, m =
100. (c) Comparing the generalization bound with state-of-the-art bounds in
terms of the parameter m, where k = 50, n = 106. (d) Comparing the general-
ization bound with state-of-the-art bounds in terms of the parameter k, where
m = 100, n = 106.

The following lemma is essential for proving our dimensionality-
dependent generalization bounds:

Lemma 5. Assume that μ ∈ P(1). Let FT be the loss function class of k-means
clustering and vector quantization. Then

lnN1(FT , ξ ′, n) ≤ mk ln
(

8
√

m
ξ ′

)
.
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Theorem 10. For k-means clustering and vector quantization, assume that μ ∈
P(1) and that the functions fT for T ∈ T have a range contained in [0, 1]. Then,
for any δ ∈ (0, 1), with probability at least 1 − δ, it holds for all T ∈ T that

|R(T) − Rn(T)| ≤ 2
n

+ min

⎧⎨
⎩
√

mk ln
(
8
√

mn
)

+ ln2/δ

2n
,

5
(
mk ln

(
8
√

mn
)

+ ln2/δ
)

n
+

√
2Rn(T)

(
mk ln

(
8
√

mn
)

+ ln2/δ
)

n

⎫⎬
⎭ .

The proof of theorem 10 is the same as that of theorem 6.
Theorem 10 gives the following bound for k-means clustering and vector

quantization:

2
n

+
√

mk ln
(
8
√

mn
)+ ln 2/δ

2n
. (4.11)

Maurer and Pontil (2010) derived the following bound:

3
√

2πkr2

√
n

+ r2

√
8 ln 1/δ

n
. (4.12)

Gribonval et al. (2015) provided the following bound:

3√
8

√
mk ln(12

√
8) ln n

n
+ 1√

8

√
mk ln(12

√
8) + ln 2/δ

n
. (4.13)

Remark 14. The bound in equation 4.12 has order O(k/
√

n), which
is the same as the bound obtained by Biau et al. (2008). The

term
√

mk ln(8
√

mnr2)+ln 2/δ

2n in theorem 10 has order O(
√

mk ln (mn)/n). If
m ln (mn) ≤ k, our bound can be tighter than that of Maurer and Pontil
(2010) and the result in Biau et al. (2008). The generalization bounds derived
by Maurer and Pontil (2010) and Biau et al. (2008) also have an advantage
that they converge faster. As discussed in Bartlett et al. (1998), Linder et al.
(1994), and Devroye, Györfi, and Lugosi (1996), the factor

√
ln n in theorem

10 can be removed by the sophisticated uniform large-deviation inequali-
ties of Alexander (1984) or Talagrand (1994). However, Devroye et al. (1996)
proved that (in their theorem 12.10) the fast convergence upper bound
has an astronomically large constant. The corresponding convergence
bound is therefore loose. Our generalization bound, which is derived by
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Figure 3: Comparisons of the generalization bounds of k-means clustering and
vector quantization. (a) The convergence of the bound in equation 4.11, where
m = 100. (b) Comparing the convergence with state-of-the-art generalization
bounds, where k = m = 100. (c) Comparing the generalization bound with
state-of-the-art bounds in terms of the parameter m, where k = 100, n = 106.
(d) Comparing the generalization bound with state-of-the-art bounds in terms
of the parameter k, where m = 100, n = 106.

exploiting Bennett’s inequality, will be tighter if the empirical reconstruc-
tion error Rn(T ) is small.

We compare the above generalization bounds of k-means clustering and
vector quantization in Figure 3 by setting k = m = 100. For k-means cluster-
ing and vector quantization problems, the dimensionality m can be inde-
pendent of the reduced dimensionality k. Figure 3 shows that when k is not
very large, the derived bound is tighter than state-of-the-art generalization
bounds.
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5 Proofs

In this section we prove the main results in section 2 and some of the results
presented in section 3.

5.1 Concentration Inequalities. In this section, we introduce the con-
centration inequalities that will be used to prove our assertions.

We first present Hoeffding’s inequality (Hoeffding, 1963), which is
widely used for deriving generalization bounds.

Theorem 11 (Hoeffding’s inequality). Let X = {x1, . . . , xn} ∈ Hn be a sample set
of independent random variables such that xi ≤ B for some B > 0 almost surely
for all i ≤ n. Then for any X ∈ Hn and ε > 0, the following inequality holds:

P

{∣∣∣∣∣E 1
n

n∑
i=1

xi − 1
n

n∑
i=1

xi

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

(−2nε

B2

)
.

We will also use Bernstein’s inequality and Bennett’s inequality
(Boucheron et al., 2013; Zhang, 2013) to derive generalization bounds.

Theorem 12 (Bernstein’s inequality). Let X = {x1, . . . , xn} ∈ Hn be a sample set
of independent random variables such that xi ≤ B for some B > 0 and Ex2

i is no
bigger than V for some V > 0 almost surely for all i ≤ n. Then for any X ∈ Hn

and ε > 0, the following inequality holds:

P

{∣∣∣∣∣E 1
n

n∑
i=1

xi − 1
n

n∑
i=1

xi

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

( −nε2

2(V + Bε/3)

)
. (5.1)

Theorem 13 (Bennett’s inequality). Let X = {x1, . . . , xn} ∈ Hn be a sample set
of independent random variables such that xi ≤ B for some B > 0 and Ex2

i is no
bigger than V for some V > 0 almost surely for all i ≤ n. Then, for any X ∈ Hn

and ε > 0, the following inequality holds:

P

{∣∣∣∣∣E 1
n

n∑
i=1

xi − 1
n

n∑
i=1

xi

∣∣∣∣∣ ≥ ε

}
≤ 2 exp

(
−nV

B2
h
(

Bε

V

))
, (5.2)

where h(x) = (1 + x)ln(1 + x) − x for x > 0.

5.2 Proof of Lemma 1. We will bound the covering number of the loss
function class FT by bounding the covering number of the implementation

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/10/2213/974071/neco_a_00872.pdf by guest on 16 Septem
ber 2021



Bounds for k-Dimensional Coding Schemes 2235

class T . Cutting the subspace [−c, c]m ⊂ R
m into small m-dimensional reg-

ular solids with width ξ , there are

⌈
2c
ξ

⌉m

≤
(

2c
ξ

+ 1
)m

≤
(

4c
ξ

)m

such regular solids. If we pick out the centers of these regular solids and
use them to make up T, there are

⌈
2c
ξ

⌉mk

≤
(

4c
ξ

)mk

choices, denoted by S. Then |S| is the upper bound of the ξ -cover of the
implementation class T .

We will prove that for every T, there exists a T ′ ∈ S such that

sup
x

| fT (x) − fT ′ (x)| ≤ ξ ′,

where ξ ′ = (r + ck)
√

mkξ . The proof is as follows:

| fT (x) − fT ′ (x)|

=
∣∣∣∣min

y
‖x − Ty‖2 − min

y
‖x − T ′y‖2

∣∣∣∣
=
∣∣∣∣min

y
‖x − Ty‖2 + max

y

(−‖x − T ′y‖2)∣∣∣∣
≤
∣∣∣∣max

y

(‖x − Ty‖2 − ‖x − T ′y‖2)∣∣∣∣
≤
∣∣∣∣max

y
2x�Ty − 2x�T ′y

∣∣∣∣+
∣∣∣∣max

y
‖Ty‖2 − ‖T ′y‖2

∣∣∣∣
=
∣∣∣∣∣max

y

k∑
i=1

yi

〈
2x, (T − T ′)ei

〉∣∣∣∣∣+
∣∣∣∣∣max

y

k∑
i, j

yiy j〈(T + T ′)ei, (T − T ′)e j〉
∣∣∣∣∣

(Using Hölder’s inequality)

≤
∣∣∣∣∣

k∑
i=1

| 〈2x, (T − T ′)ei

〉 |
∣∣∣∣∣+
∣∣∣∣∣

k∑
i, j

|〈(T + T ′)ei, (T − T ′)e j〉|
∣∣∣∣∣

(Using Cauchy-Schwarz inequality)

≤
∣∣∣∣∣

k∑
i=1

‖2x‖‖(T − T ′)ei‖
∣∣∣∣∣+
∣∣∣∣∣∣

k∑
i, j

‖(T + T ′)ei‖
∥∥∥(T − T ′)e j

∥∥∥
∣∣∣∣∣∣
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≤
∣∣∣∣∣

k∑
i=1

‖2x‖
∥∥∥∥ξ

2
1
∥∥∥∥
∣∣∣∣∣+
∣∣∣∣∣∣

k∑
i, j

‖(T + T ′)ei‖
∥∥∥∥ξ

2
1
∥∥∥∥
∣∣∣∣∣∣

≤ √
mrkξ + √

mck2ξ

= (r + ck)
√

mkξ = ξ ′. (5.3)

The last inequality holds because of the triangle inequality. We have

k∑
i, j

‖(T + T ′)ei‖ ≤
k∑

i, j

(‖Tei‖ + ‖T ′ei‖
) ≤

k∑
i, j

2c = 2ck2. (5.4)

Let FT denote the loss function class for the algorithms when search-
ing for implementations T ∈ T and the metric d be the metric that
d( fT (x), fT ′ (x)) = supx | fT (x) − fT ′ (x)|. According to definition 1, for ∀ fT ∈
FT , there is a T ′ ∈ S such that

‖d( fT (X), fT ′ (X))‖1 =
[

n∑
i=1

d( fT (xi), fT ′ (xi))

]
≤ nξ ′. (5.5)

Thus,

N1(FT , ξ ′, n) ≤ |S| ≤
(

4c
ξ

)mk

=
(

4(r + ck)
√

mck
ξ ′

)mk

. (5.6)

Taking log on both sides, we have

lnN1(FT , ξ ′, n) ≤ mk ln
(

4(r + ck)
√

mck
ξ ′

)
. (5.7)

5.3 Proof of Theorem 3. We first prove the following theorem, which is
useful to prove theorem 3.

Theorem 14. Let X = {x1, . . . , xn} ∼ μn be a set of independent random variables
such that fT (xi ) ≤ b for some b > 0 almost surely for all fT ∈ FT and i ≤ n. Then
for any X ∼ μn and δ ∈ (0, 1), with probability at least 1 − δ, we have

sup
fT ∈FT

∣∣R(T) − Rn(T)
∣∣ ≤ 2

n
+ b

√
lnN1(FT , 1/n, n) + ln2/δ

2n
,

where Rn(T) = 1
n

∑n
i=1 fT (xi ) and R(T) = Ex Rn(T).
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Proof. Since FT (X) = { fT (x1), . . . , fT (xn)} is a set of independent random
variables, according to Hoeffding’s inequality, for any δ ∈ (0, 1), with prob-
ability at least 1 − δ, we have

|R(T ) − Rn(T )| ≤ b

√
ln 2/δ

2n
.

Let FT ,ε be a minimal ε-cover of FT. Then |FT ,ε | = N1(FT , ε, n). By a union
bound of probability, we have that with probability at least 1 − δ, the fol-
lowing holds:

sup
fT ∈FT ,ε

∣∣R(T ) − Rn(T )
∣∣≤ b

√
ln 2N1(FT , ε, n)/δ

2n

= b

√
lnN1(FT , ε, n) + ln 2/δ

2n
. (5.8)

It can be easily verified that

sup
fT∈FT

|R(T ) − Rn(T )| ≤ 2ε + sup
fT ∈FT,ε

|R(T ) − Rn(T )|. (5.9)

Combining inequalities 5.8 and 5.9, and letting ε = 1/n, we have that with
probability at least 1 − δ, the following holds:

sup
fT ∈FT

∣∣R(T ) − Rn(T )
∣∣ ≤ 2

n
+ b

√
lnN1(FT , 1/n, n) + ln 2/δ

2n
. (5.10)

This concludes the proof.

Theorem 3 can be proven by combining theorem 14 and lemma 1. We
can also prove proposition 1 using the same method as that of theorem 3.

5.4 Proof of Theorem 4. According to Bernstein’s inequality, we have
the following theorem, which is useful to prove theorem 4.

Theorem 15. Let X = {x1, . . . , xn} ∼ μn be a set of independent random variables
such that fT (xi ) ≤ 1 almost surely for all fT ∈ FT and i ≤ n. Then for any X ∼ μn

and δ ∈ (0, 1), with probability at least 1 − δ, we have

sup
fT ∈FT

∣∣R(T) − Rn(T)
∣∣

≤ 2
n

+
5
(
lnN1(FT , 1/n, n) + ln2/δ

)
n

+

√
2Rn(T)

(
lnN1(FT , 1/n, n) + ln2/δ

)
n

.
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Proof. Since FT (X) = { fT (x1), . . . , fT (xn)} is a set of independent random
variables, according to Bernstein’s inequality, for any δ ∈ (0, 1), with prob-
ability at least 1 − δ, we have

∣∣R(T ) − Rn(T )
∣∣ ≤ 2 ln 2/δ

3n
+
√

2V ln 2/δ

n
. (5.11)

We also have that V ≤ R(T ) because E fT (xi)
2 ≤ E fT (xi) = R(T ). Collecting

the terms in R(T ), completing the square, and solving for
√

R(T ) shows
that with probability at least 1 − δ, we have

√
R(T ) ≤ √Rn(T ) + 3

√
ln 2/δ

n
. (5.12)

Straightforward substitution of inequality 5.12 into inequality 5.11 shows
that with probability at least 1 − δ, we have

∣∣R(T ) − Rn(T )
∣∣ ≤ 5 ln 2/δ

n
+
√

2Rn(T ) ln 2/δ

n
.

Similar to the proof of theorem 14, by a union bound of probability, we then
have that with probability at least 1 − δ, the following holds:

sup
fT ∈FT

∣∣R(T ) − Rn(T )
∣∣

≤ 2
n

+ 5
(
lnN1(FT , 1/n, n) + ln 2/δ

)
n

+
√

2Rn(T )
(
lnN1(FT , 1/n, n) + ln 2/δ

)
n

.

This concludes the proof.

Theorem 4 can be proven by combining theorem 15 and lemma 1.

5.5 Proof of Theorem 5. The following theorem, derived by exploiting
Bennett’s inequality, is essential to prove theorem 5.

Theorem 16. Let X = {x1, . . . , xn} ∼ μn be a set of independent random variables
such that fT (xi ) ≤ 1 almost surely for all fT ∈ FT and i ≤ n. Then for any X ∼ μn

and δ ∈ (0, 1), with probability at least 1 − δ, it holds for all T ∈ T that

∣∣R(T) − Rn(T)
∣∣ ≤ 2

n +
(

lnN1(FT ,1/n,n)+ln2/δ

βn

) 1

2− ln(8βV/3)
ln|R(T)−Rn(T)|
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when V is no smaller than
∣∣R(T) − Rn(T)

∣∣ and there is a positive constant β such
that 8βV < 3.

Theorem 16 can be easily proven by using Bernstein’s inequality. How-
ever, to show the faster convergence property, we propose a new method
to prove Bernstein’s inequality, which needs the following lemma:

Lemma 6. For ε ∈ (0, 1] and V ≥ ε, there exists some β > 0 and 0 < γ < 2 such
that the following holds:

−Vnh
( ε

V

)
≤ −βnεγ ≤ O

(−nε2) .
Let {x1, . . . , xn} be i.i.d. variables such that xi ≤ 1, Ex2

i ≤ V, and∣∣R(T) − Rn(T)
∣∣ ≤ V are almost surely for all i ≤ n. Then, for any δ ∈ (0, 1),

with probability at least 1 − δ, we have

∣∣R(T) − Rn(T)
∣∣ ≤ ( ln 2/δ

βn

) 1

2− ln(8βV/3)
ln|R(T)−Rn(T)| .

Proof. We prove the first part. We have

−Vnh
( ε

V

)
≤ −βnεγ

⇐⇒V
((

1 + ε

V

)
ln
(

1 + ε

V

)
− ε

V

)
≥ βεγ

(Because that ε < 1)

⇐⇒ γ ≥
ln
(

V
β

((
1 + ε

V

)
ln
(
1 + ε

V

)− ε
V

))
ln ε

.

It holds that

ln
(

V
β

((
1 + ε

V

)
ln
(
1 + ε

V

)− ε
V

))
ln ε(

Because (1 + x) ln(1 + x) ≥ 1
2+ 2x

3
x2 + x for x ≥ 0

)

≤
ln
(

V
β

3
6+ 2ε

V

(
ε
V

)2)
ln ε

=
ln
(

3ε2

β(6V+2ε)

)
ln ε

= 2 − ln
(
2β(V + ε

3 )
)

ln ε

≤ 2, when ε ≤ V and 8βV < 3.
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Thus, there are many pairs of (β, γ ) such that the first part of lemma 6
holds.

We then prove Bernstein’s inequality and the second part. According to
Bennett’s inequality, we have

P
{∣∣R(T ) − Rn(T )

∣∣ ≥ ε
}≤ 2 exp

(
−nVh

( ε

V

))

≤ 2 exp
(

−βnε2− ln(2β(V+ ε
3 ))

ln ε

)

= 2 exp
( −nε2

2(V + ε
3 )

)
, (5.13)

which is the Bernstein’s inequality.
To prove the second part, let ε < V . We have

P
{∣∣R(T ) − Rn(T )

∣∣ ≥ ε
}≤ 2 exp

( −nε2

2(V + ε
3 )

)
(5.14)

≤ 2 exp

(
−nε2

2(V + V
3 )

)
(5.15)

= 2 exp
(

−βnε2− ln
( 8βV

3

)
ln ε

)
. (5.16)

For any δ ∈ (0, 1), let

2 exp
(

−βnε2− ln
( 8βV

3

)
ln ε

)
= δ. (5.17)

Then, with probability at least 1 − δ, we have

∣∣R(T ) − Rn(T )
∣∣ ≤ ε. (5.18)

Combining equations 5.17 and 5.18 with probability at least 1 − δ, we have

ln 2/δ

βn
= ε2− ln

( 8βV
3

)
ln ε ≥ ε

2− ln
( 8βV

3

)
ln|R(T )−Rn (T )| (5.19)

and

ε ≤
(

ln 2/δ

βn

) 1

2−
ln
( 8βV

3

)
ln|R(T )−Rn (T )| . (5.20)
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Combining equations 5.18 and 5.20 with probability at least 1 − δ, we have

∣∣R(T ) − Rn(T )
∣∣ ≤ ( ln 2/δ

βn

) 1

2−
ln
( 8βV

3

)
ln|R(T )−Rn (T )| . (5.21)

Thus, the second part of lemma 6 holds.

Similar to the proof of theorem 14, theorem 16 can be proven by using
lemma 6 and a union bound of probability.

Theorem 5 can be proven by combining theorem 16 and lemma 1.

5.6 Proof of Lemma 2. The proof method is the same as that of Lemma
2 in Maurer and Pontil (2010).

Proof. Let

h(y) =
∥∥∥∥∥x −

k∑
i=1

Tiyi

∥∥∥∥∥
2

. (5.22)

Assume that y is a minimizer of h and ‖y‖ > r. Because T is normalized,
‖Ti‖ = 1, i, . . . , k. Then

∥∥∥∥∥
k∑

i=1

Tiyi

∥∥∥∥∥
2

= ‖y‖2 +
∑
i �= j

yiy j

〈
Ti, Tj

〉
> r2. (5.23)

Let the real-valued function f be defined as

f (t) = h(ty). (5.24)

Then

f ′(1) = 2

⎛
⎝
∥∥∥∥∥

k∑
i=1

Tiyi

∥∥∥∥∥
2

−
〈

x,

k∑
i=1

Tiyi

〉⎞⎠
(Using Cauchy-Schwarz inequality)

≥ 2

⎛
⎝
∥∥∥∥∥

k∑
i=1

Tiyi

∥∥∥∥∥
2

− r

∥∥∥∥∥
k∑

i=1

Tiyi

∥∥∥∥∥
⎞
⎠

= 2

(∥∥∥∥∥
k∑

i=1

Tiyi

∥∥∥∥∥− r

)∥∥∥∥∥
k∑

i=1

Tiyi

∥∥∥∥∥ > 0. (5.25)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/28/10/2213/974071/neco_a_00872.pdf by guest on 16 Septem
ber 2021
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So f cannot have a minimum at 1, whence y cannot be a minimizer of h.
Thus, the minimizer y must be contained in the ball with radius r in the
m-dimensional space.

5.7 Proof of Lemma 4. As in the proof of lemma 1, we can pick out a set

S, where |S| ≤ ( 4c
ξ

)mk
, having the property that for every T, there exists a T ′ ∈

S such that supx | fT (x) − fT ′ (x)| ≤ ξ ′ with ξ ′ = (rs + cs2k1−1/p)
√

mξk1−1/p.
The detail is as follows:

| fT − fT ′ | =
∣∣∣∣min

y
‖x − Ty‖2 − min

y
‖x − T ′y‖2

∣∣∣∣
≤
∣∣∣∣max

y

(‖x − Ty‖2 − ‖x − T ′y‖2)∣∣∣∣
≤
∣∣∣∣max

y
2x�Ty − 2x�T ′y

∣∣∣∣+
∣∣∣∣max

y
‖Ty‖2 − ‖T ′y‖2

∣∣∣∣
=
∣∣∣∣∣max

y

k∑
i=1

yi

〈
2x, (T − T ′)ei

〉∣∣∣∣∣+
∣∣∣∣∣∣max

y

k∑
i, j

yiy j〈(T + T ′)ei, (T − T ′)e j〉
∣∣∣∣∣∣ .

(5.26)

Using Hölder’s inequality, we have

∣∣∣∣∣max
y

k∑
i=1

yi

〈
2x, (T − T ′)ei

〉∣∣∣∣∣
≤
∣∣∣∣∣∣max

y
‖y‖p

(
k∑

i=1

∣∣〈2x, (T − T ′)ei

〉∣∣q)1/q
∣∣∣∣∣∣

≤
∣∣∣∣∣∣max

y
‖y‖p

(
k∑

i=1

∣∣‖2x‖‖(T − T ′)ei‖
∣∣q)1/q

∣∣∣∣∣∣
≤ √

msrξk1/q

≤ √
msrξk1−1/p. (5.27)

Using Hölder’s inequality again, we have inequalities 5.28 and 5.29:

∣∣∣∣∣∣max
y

k∑
i, j

yiy j

〈
(T + T ′)ei, (T − T ′)e j

〉∣∣∣∣∣∣
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≤

∣∣∣∣∣∣∣max
y

‖y‖p

⎛
⎝ k∑

i

∣∣∣∣∣∣
k∑
j

〈
(T + T ′)ei, (T − T ′)e j

〉
y j

∣∣∣∣∣∣
q⎞
⎠

1/q
∣∣∣∣∣∣∣ (5.28)

and

∣∣∣∣∣∣
k∑
j

〈
(T + T ′)ei, (T − T ′)e j

〉
y j

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
⎛
⎝ k∑

j

〈
(T + T ′)ei, (T − T ′)e j

〉q⎞⎠
1/q⎛
⎝ k∑

j

|y j|p

⎞
⎠

1/p
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
⎛
⎝ k∑

j

(
‖(T + T ′)ei‖‖(T − T ′)e j‖

)q

⎞
⎠

1/q⎛
⎝ k∑

j

|y j|p

⎞
⎠

1/p
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
⎛
⎝ k∑

j

(
(‖Tei‖ + ‖T ′ei‖)‖(T − T ′)e j‖

)q

⎞
⎠

1/q⎛
⎝ k∑

j

|y j|p

⎞
⎠

1/p
∣∣∣∣∣∣∣

≤ √
mscξk1/q = √

mscξk1−1/p. (5.29)

Combining inequalities 5.28 and 5.29, it gives

∣∣∣∣∣∣max
y

k∑
i, j

yiy j

〈
(T + T ′)ei, (T − T ′)e j

〉∣∣∣∣∣∣
≤
∣∣∣∣∣∣max

y
‖y‖p

(
k∑
i

∣∣√mscξk1−1/p
∣∣q)1/q

∣∣∣∣∣∣ (5.30)

≤ √
ms2cξk2−2/p.

Combining inequalities 5.26, 5.27, and 5.30, we have

| fT − fT ′ | ≤
∣∣∣∣∣max

y

k∑
i=1

yi

〈
2x, (T − T ′)ei

〉∣∣∣∣∣
+
∣∣∣∣∣∣max

y

k∑
i, j

yiy j

〈
(T + T ′)ei, (T − T ′)e j

〉∣∣∣∣∣∣
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≤ √
msrξk1−1/p + √

ms2cξk2−2/p

= (rs + cs2k1−1/p)
√

mξk1−1/p = ξ ′. (5.31)

According to definition 1, for ∀ fT ∈ FT , there is a T ′ ∈ S such that

‖d( fT (X), fT ′ (X))‖1 =
[

2∑
i=1

d( fT (xi), fT ′ (xi))

]
≤ 2ξ ′. (5.32)

Thus,

N1(FT , ξ ′, n) ≤ |S| ≤
(

4c
ξ

)mk

=
(

4(rs + cs2k1−1/p)
√

mck1−1/p

ξ ′

)mk

.

(5.33)

Taking log on both sides, we have

lnN1(FT , ξ ′, n) ≤ mk ln
(

4(rs + cs2k1−1/p)
√

mck1−1/p

ξ ′

)
,

which concludes the proof.

5.8 Proof of Lemma 5. The proof method of lemma 5 is similar to that
of lemma 1.

Proof. For k-means clustering and vector quantization, we can easily prove
that ‖Tei‖ ≤ r, i = 1, . . . , k. As in the proof of lemmas 1 and 4, we can pick

out a set S, where |S| ≤
(

4r
ξ

)mk
, having the property that for every T, there

exists a T ′ ∈ S such that supx | fT (x) − fT ′ (x)| ≤ ξ ′ with ξ ′ = 2r
√

mξ . The
proof is as follows:

| fT − fT ′ |

≤
∣∣∣∣ max
i∈{1,...,k}

(‖x − Tei‖2 − ‖x − T ′ei‖2)∣∣∣∣
≤
∣∣∣∣ max
i∈{1,...,k}

2x�Tei − 2x�T ′ei

∣∣∣∣+
∣∣∣∣ max
i∈{1,...,k}

‖Tei‖2 − ‖T ′ei‖2
∣∣∣∣

=
∣∣∣∣ max
i∈{1,...,k}

〈
2x, (T − T ′)ei

〉∣∣∣∣+
∣∣∣∣ max
i∈{1,...,k}

〈
(T + T ′)ei, (T − T ′)ei

〉∣∣∣∣
(Using Cauchy-Schwarz inequality)
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≤
∣∣∣∣ max
i∈{1,...,k}

‖2x‖‖(T − T ′)ei‖
∣∣∣∣+
∣∣∣∣ max
i∈{1,...,k}

(‖Tei‖ + ‖T ′ei‖
) ‖(T − T ′)ei‖

∣∣∣∣
≤ √

mrξ + √
mrξ

= 2r
√

mξ = ξ ′. (5.34)

Thus,

N1(FT , ξ ′, n) ≤ |S| ≤
(

4r
ξ

)mk

=
(

8r2√m
ξ ′

)mk

. (5.35)

Taking log on both sides, we have

lnN1(FT , ξ ′, n) ≤ mk ln
(

8r2√m
ξ ′

)
, (5.36)

which concludes the proof.

6 Conclusion

We have proposed a method to analyze the dimensionality-dependent gen-
eralization bounds for k-dimensional coding schemes, which are the abstract
and general descriptions of a set of methods that encode random vectors
in Hilbert space H. There are several specific forms of k-dimensional cod-
ing schemes, including NMF, dictionary learning, sparse coding, k-means
clustering, and vector quantization, which have achieved great successes
in pattern recognition and machine learning.

Our proof approach is based on an upper bound for the covering
number of the loss function class induced by the reconstruction error.
We explained that the covering number is more suitable for deriving
dimensionality-dependent generalization bounds for k-dimensional cod-
ing schemes, because it avoids the worst-case dependency with regard to
the number k of the columns of the linear implementation. If k is larger
than the dimensionality m, our bound could be much tighter than the
dimensionality-independent generalization bound. Moreover, according to
Bennett’s inequality, we derived a dimensionality-dependent generaliza-
tion bound of order O

(
mk ln(mkn)/n

)λn , where λn > 0.5 when the sample
size n is finite, for k-dimensional coding schemes. Our method therefore
provides state-of-the-art dimensionality-dependent generalization bounds
for NMF, dictionary learning, sparse coding, k-means clustering, and vector
quantization.
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