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The mixture-of-experts (MoE) model is a popular neural network archi-
tecture for nonlinear regression and classification. The class of MoE mean
functions is known to be uniformly convergent to any unknown target
function, assuming that the target function is from a Sobolev space that
is sufficiently differentiable and that the domain of estimation is a com-
pact unit hypercube. We provide an alternative result, which shows that
the class of MoE mean functions is dense in the class of all continuous
functions over arbitrary compact domains of estimation. Our result can
be viewed as a universal approximation theorem for MoE models. The
theorem we present allows MoE users to be confident in applying such
models for estimation when data arise from nonlinear and nondifferen-
tiable generative processes.

1 Introduction

The mixture-of-experts (MoE) model is a neural network architecture for
nonlinear regression and classification. The model was introduced in Jacobs,
Jordan, Nowlan, and Hinton (1991) and Jordan and Jacobs (1994); reviews
can be found in McLachlan and Peel (2000) and Yuksel, Wilson, and Gader
(2012). Recent research includes Chamroukhi, Glotin, and Same (2013) and
Nguyen and McLachlan (2016), where MoE models are used for curve
classification and robust estimation, respectively.
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LetY ∈ R be a random variable and x ∈ X ⊂ R
p be a p-dimensional vector.

Let the conditional probability density function of Y given x be

fg(y|x) =
g∑

i=1

πi

(
x;ψg

)
h
(
y; γi + xTδi, νi

)
, (1.1)

where

πi

(
x;ψg

) = exp
(
αi + xTβi

)
∑g

j=1 exp
(
α j + xTβ j

) ,

y is a realization of Y, and h(y;μ, ξ) is a univariate component proba-
bility density function (PDF) (in Y) with mean μ and nuisance param-
eter ξ. Here αi, γi ∈ R, βi, δi ∈ R

p, and νi ∈ R
q for each i = 1, . . . , g, and

ψT
g = (α1,β

T
1 , . . . , αg,β

T
g ). We say that equation 1.1 is a g-component MoE

with mean function

μg

(
x; θg

) =
g∑

i=1

πi

(
x;ψg

)(
γi + xTδi

)
, (1.2)

where θT
g = (ψT

g , γ1, δ
T
1 , . . . , ψT

g , γg, δ
T
g ) is the function’s parameter vector.

The superscript T indicates matrix transposition.
Zeevi, Meir, and Maiorov (1998) showed that there exists a sequence of

functions μg(x; θg) that converges uniformly to any target function m(x),
in the index g, assuming that m(x) belongs to a Sobolev class of functions
and X is a closed unit hypercube. Their result was generalized to nonlinear
mappings of the expression γi + xTδi in the component PDFs of the MoE
in Jiang and Tanner (1999b). The result from Jiang and Tanner (1999b) was
expanded on in Jiang and Tanner (1999a), where it was shown that there
exists a sequence of conditional PDFs fg(y|x) that converges in Kullback-
Leibler divergence to any target-conditional PDF f (y|x) in g, assuming that
f (y|x) belongs to the one-parameter exponential family of density functions;
extensions to multivariate conditional density estimation are obtained in
Norets (2010). Convergence results for MoE models with polynomial mean
functions were obtained in Mendes and Jiang (2012). We note that the target
mean function m(x) is assumed to belong to a Sobolev class of functions in
each of Jiang and Tanner (1999a, 1999b) and Mendes & Jiang (2012), as they
are in Zeevi et al. (1998).

Define the class of all mean functions of form 1.2 as

M = {
μg(x; θg)|g ∈ N, θg ∈ R

g(2p+2)
}
,

and let C(X) be the class of continuous functions on the domain X. In this
note, we prove that M is dense in the set C(X) under the assumption that
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X is compact. Our result is obtained via the Stone-Weierstrass theorem
(Stone, 1948; see also Cotter, 1990, for a discussion in the context of neural
networks). Our result is a universal approximation theorem, similar in spirit
to Cybenko (1989, theorem 2), where the linear combination of sigmoidal
functions is proved dense in C(X). We show denseness of approximations
to some conditional mean functions, whereas Cybenko (1989) targets a
marginal multivariate mean function. Our results allow MoE users to be
confident in applying such models for estimation when data arise from
nonlinear and nondifferentiable generative processes as they improve on
the guarantees of Zeevi et al. (1998).

2 Main Result

Define 0 to be a vector of zeros of an appropriate dimensionality. In order
to facilitate the proofs, let

H = {
ηg(x;ωg)|g ∈ N,ωg ∈ R

g(p+2)
}
,

where

ηg

(
x;ωg

) =
g∑

i=1

γiπi

(
x;ψg

)

and ωT
g = (ψT

1 , γ1, . . . , ψ
T
g , γg) is the function’s parameter vector. Note that

μg

(
x; θ̃g

) = ηg

(
x;ωg

)
,

if θ̃
T
g = (ψT

g , γ1, 0T , . . . ,ψT
g , γg, 0T ); thus H ⊂ M.

Theorem 1. The class H is dense in C(X). Furthermore, the class M is dense in
C(X), since H ⊂ M.

3 Comparisons to Zeevi et al. (1998)

Zeevi et al. (1998, theorem 1) proved the class H dense within the Sobolev
class Wr

q (L) over the closed-unit hypercube domain (see Zeevi et al., 1998,
for definitions). First, unlike Zeevi et al. (1998), we make no assumptions
on the domain X other than compactness. Second, the target space C(X)

makes no restrictions on differentiability, whereas Wr
q (L) requires the rth

partial derivatives to exist. Finally, we do not require the target function or
its partial derivatives to be measurable or bounded, whereas Zeevi et al.
(1998) require partial derivatives up to order r to be measurable and possess
finite Lq norms bounded by L.
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Unfortunately, by operating in C(X) rather than Wr
q (L), we are unable to

obtain convergence rates for functions from H to target functions in C(X).
The convergence rates obtained in Zeevi et al. (1998) are conditional on the
differentiability r and the norm order q.

4 Proof of Main Result

The Stone-Weierstrass theorem can be phrased as follows (cf. Cotter, 1990):

Theorem 2. Let X ⊂ R
p be a compact set and let U be a set of continuous real-

valued functions on X. Assume that

i. The constant function u(x) = 1 is in U.
ii. For any two points x1, x2 ∈ X such that x1 �= x2, there exists a function

u ∈ U such that u(x1) �= u(x2).
iii. If a ∈ R and u ∈ U, then au ∈ U.
iv. If u, v ∈ U, then uv ∈ U.
v. If u, v ∈ U, then u + v ∈ U.

If assumptions i to v are true, then U is dense in C(X). In other words, for any
ε > 0 and any v ∈ C(X), there exists a u ∈ U such that supx∈X

|u(x) − v(x)| < ε.

We note that X is compact if and only if it is bounded and closed in
Euclidean spaces (see Dudley, 2004, chap. 2). We proceed to prove that H is
dense in C(X).

Lemma 1. The constant function η(x) = 1 is in H.

Proof. Let g = 1 and ω̃T
1 = (ψT

1 , 1). Set η(x) = η1(x; ω̃1). For any choice of
ψ1, η(x) = 1. We obtain the result by noting that η1(x; ω̃1) ∈ H.

Lemma 2. For any two points x1, x2 ∈ X such that x1 �= x2, there exists a function
η ∈ H such that η(x1) �= η(x2).

Proof. Let g = 2 and ω̄T
2 = (ψT

1 , 0, 0T , γ2), where γ2 �= 0. Set η(x) = η2(x; ω̄2),
and assume that xT

j = (x j1, . . . , x jp) for j = 1, 2, such that x1 �= x2. Let
η(x1) �= η(x2); this is equivalent to

η2(x1; ω̄2) �= η2(x2; ω̄2)

γ2

1 + exp(α1 + xT
1 β1)

�= γ2

1 + exp(α1 + xT
2 β1)

by substitution and reduces to

(x1 − x2)
Tβ1 �= 0. (4.1)
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Equation 4.1 is violated if either x1 = x2, which causes a contradiction, or
if βT

1 = (β1, . . . , βp) is such that βk = 0 whenever x1k �= x2k, for k = 1, . . . , p.
To avoid violation of equation 4.1, we can set βk �= 0 for all k.

Thus, let ω̃T
2 = (ψ̃

T
1 , 0, 0T , γ2) and η(x) = η2(x; ω̃2), where ψ̃1 ∈

(R\{0})p+1 and γ2 �= 0. If x1 �= x2, then η(x1) �= η(x2). We obtain the result by
noting that η2(x; ω̃2) ∈ H.

Lemma 3. If a ∈ R and η ∈ H, then aη ∈ H.

Proof. Let a ∈ R and η(x) = ηg(x;ωg). We can write

aη(x) = a
g∑

i=1

γiπi

(
x;ψg

)

=
g∑

i=1

(aγi)πi

(
x;ψg

)

=
g∑

i=1

γ̃iπi

(
x;ψg

)
,

where γ̃i = aγi for i = 1, . . . , g. Thus, aη(x) = ηg(x; ω̃g), where ω̃T
g =

(ψT
1 , γ̃1, . . . ,ψ

T
g , γ̃g). We obtain the result by noting that ηg(x; ω̃g) ∈ H.

Lemma 4. If η, λ ∈ H, then ηλ ∈ H.

Proof. Let g, m ∈ N,

ω[η]T
g = (

ψ
[η]T
1 , γ

[η]
1 , . . . , ψ[η]T

g , γ [η]
g

)

and

ω[λ]T
m = (

ψ
[λ]T
1 , γ

[λ]
1 , . . . , ψ[λ]T

g , γ [λ]
g

)
,

and set η(x) = ηg(x;ω
[η]
g ) and λ(x) = ηm(x;ω[λ]

m ). Here, the superscripts [η]
and [λ] denote the parameter components belonging to the functions η and
λ, respectively. We can write

η(x)λ(x) =
g∑

i=1

γ [η]
i πi

(
x;ψ[η]

g

) m∑

j=1

γ
[λ]
j π j

(
x;ψ[λ]

m

)

=
g∑

i=1

m∑

j=1

γ [η]
i γ

[λ]
j πi

(
x;ψ[η]

g

)
π j

(
x;ψ[λ]

m

)
. (4.2)
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To simplify equation 4.2, for each i = 1, . . . , g and j = 1, . . . , m, we can write

πi

(
x;ψ[η]

g

)
π j

(
x;ψ[λ]

m

)
(4.3)

=
exp

(
α

[η]
i + xTβ

[η]
i

)
exp

(
α

[λ]
j + xTβ

[λ]
j

)

∑g
k=1 exp

(
α

[η]
k + xTβ

[η]
k

) ∑m
l=1 exp

(
α

[λ]
l + xTβ

[λ]
l

)

=
exp

([
α

[η]
i + α

[λ]
j

] + xT
[
β

[η]
i + β

[λ]
j

])

∑g
k=1

∑m
l=1 exp

([
α

[η]
k + α

[λ]
l

] + xT
[
β

[η]
k + β

[λ]
l

]) .

On performing the mapping from Table 1A, we can write the final line of

equation 4.3 as πk(x; ψ̃gm), where ψ̃
T
k = (α̃k, β̃

T
k ) for k = 1, . . . , gm. Further-

more, via the mapping from Table 1A, equation 4.2 can be simplified to

η(x)λ(x) =
gm∑

k=1

γ̃kπk

(
x; ψ̃gm

)

= ηgm

(
x; ω̃gm

)
,

where ω̃T
gm = (ψ̃

T
1 , γ̃1, . . . , ψ̃

T
gm, γ̃gm). We obtain the result by noting that

ηgm(x; ω̃gm) ∈ H.

Lemma 5. If η, λ ∈ H, then η + λ ∈ H.

Proof. Let g, m ∈ N,

ω[η]T
g = (

ψ
[η]T
1 , γ

[η]
1 , . . . , ψ[η]T

g , γ [η]
g

)
,

and

ω[λ]T
m = (

ψ
[λ]T
1 , γ

[λ]
1 , . . . ,ψ[λ]T

g , γ [λ]
g

)
,

and set η(x) = ηg(x;ω
[η]
g ) and λ(x) = ηm(x;ω[λ]

m ). Here, the superscripts [η]
and [λ] denote the parameter components belonging to the functions η and
λ, respectively. We can write

η(x) + λ(x)

=
g∑

i=1

γ [η]
i πi

(
x;ψ[η]

g

) +
m∑

j=1

γ
[λ]
j π j

(
x;ψ[λ]

m

)

=
∑g

i=1 γ
[η]
i exp

(
α

[η]
i + xTβ

[η]
i

)
∑g

k=1 exp
(
α

[η]
k + xTβ

[η]
k

)
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Table 1: Mapping of Parameter Components for Lemmas 4 and 5.

A. Lemma 4
α

[η]
1 + α

[λ]
1 −→ α̃1 β

[η]
1 + β

[λ]
1 −→ β̃1 γ

[η]
1 γ

[λ]
1 −→ γ̃1

α
[η]
1 + α

[λ]
2 −→ α̃2 β

[η]
1 + β

[λ]
2 −→ β̃2 γ

[η]
1 γ

[λ]
2 −→ γ̃2

...
...

...
α

[η]
1 + α[λ]

m −→ α̃m+1 β
[η]
1 + β[λ]

m −→ β̃m+1 γ
[η]
1 γ [λ]

m −→ γ̃m+1

α
[η]
2 + α

[λ]
1 −→ α̃m+2 β

[η]
2 + β

[λ]
1 −→ β̃m+2 γ

[η]
2 γ

[λ]
1 −→ γ̃m+2

...
...

...
α

[η]
k + α[λ]

m −→ α̃km+1 β
[η]
k + β[λ]

m −→ β̃km+1 γ
[η]
k γ [λ]

m −→ γ̃km+1

α
[η]
k+1 + α

[λ]
1 −→ α̃km+2 β

[η]
k+1 + β

[λ]
1 −→ β̃km+2 γ

[η]
k+1γ

[λ]
1 −→ γ̃km+2

...
...

...
α[η]

g + α
[λ]
m−1 −→ α̃gm−1 β[η]

g + β
[λ]
m−1 −→ β̃gm−1 γ [η]

g γ
[λ]
m−1 −→ γ̃gm−1

α[η]
g + α[λ]

m −→ α̃gm β[η]
g + β[λ]

m −→ β̃gm γ [η]
g γ [λ]

m −→ γ̃gm

B. Lemma 5
α

[η]
1 + α

[λ]
1 −→ α̃1 β

[η]
1 + β

[λ]
1 −→ β̃1 γ

[η]
1 + γ

[λ]
1 −→ γ̃1

α
[η]
1 + α

[λ]
2 −→ α̃2 β

[η]
1 + β

[λ]
2 −→ β̃2 γ

[η]
1 + γ

[λ]
2 −→ γ̃2

...
...

...
α

[η]
1 + α[λ]

m −→ α̃m+1 β
[η]
1 + β[λ]

m −→ β̃m+1 γ
[η]
1 + γ [λ]

m −→ γ̃m+1

α
[η]
2 + α

[λ]
1 −→ α̃m+2 β

[η]
2 + β

[λ]
1 −→ β̃m+2 γ

[η]
2 + γ

[λ]
1 −→ γ̃m+2

...
...

...
α

[η]
k + α[λ]

m −→ α̃km+1 β
[η]
k + β[λ]

m −→ β̃km+1 γ
[η]
k + γ [λ]

m −→ γ̃km+1

α
[η]
k+1 + α

[λ]
1 −→ α̃km+2 β

[η]
k+1 + β

[λ]
1 −→ β̃km+2 γ

[η]
k+1 + γ

[λ]
1 −→ γ̃km+2

...
...

...
α[η]

g + α
[λ]
m−1 −→ α̃gm−1 β[η]

g + β
[λ]
m−1 −→ β̃gm−1 γ [η]

g + γ
[λ]
m−1 −→ γ̃gm−1

α[η]
g + α[λ]

m −→ α̃gm β[η]
g + β[λ]

m −→ β̃gm γ [η]
g + γ [λ]

m −→ γ̃gm

+
∑m

j=1 γ
[λ]
j exp

(
α

[λ]
j + xTβ

[λ]
j

)

∑m
l=1 exp

(
α

[λ]
l + xTβ

[λ]
l

)

=
∑g

i=1 γ
[η]
i exp

(
α

[η]
i + xTβ

[η]
i

) ∑m
l=1 exp

(
α

[λ]
j + xTβ

[λ]
j

)

∑g
k=1 exp

(
α

[η]
k + xTβ

[η]
k

) ∑m
l=1 exp

(
α

[λ]
l + xTβ

[λ]
l

)

+
∑m

j=1 γ
[λ]
j exp

(
α

[λ]
j + xTβ

[λ]
j

) ∑g
k=1 exp

(
α

[η]
i + xTβ

[η]
i

)

∑g
k=1 exp

(
α

[η]
k + xTβ

[η]
k

) ∑m
l=1 exp

(
α

[λ]
l + xTβ

[λ]
l

)
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=
∑g

i=1

∑m
l=1 γ

[η]
i exp

(
[α[η]

i + α
[λ]
j ] + xT

[
β

[η]
i + β

[λ]
j

])

∑g
k=1

∑m
l=1 exp

([
α

[η]
k + α

[λ]
l

]
xT

[
β

[η]
k + β

[λ]
l

])

+
∑g

i=1

∑m
j=1 γ

[λ]
j exp

([
α

[η]
i + α

[λ]
j

] + xT
[
β

[η]
i + β

[λ]
j

])

∑g
k=1

∑m
l=1 exp

([
α

[η]
k + α

[λ]
l

] + xT
[
β

[η]
k + β

[λ]
l

])

=
∑g

i=1

∑m
l=1

(
γ

[η]
i + γ

[λ]
j

)
exp

([
α

[η]
i + α

[λ]
j

] + xT
[
β

[η]
i + β

[λ]
j

])

∑g
k=1

∑m
l=1 exp

([
α

[η]
k + α

[λ]
l

] + xT
[
β

[η]
k + β

[λ]
l

]) . (4.4)

On performing the mapping from Table 1B, we can write equation 4.4 as

η(x)λ(x) =
∑gm

k=1 γ̃k exp(α̃k + xT β̃k)∑gm
l=1 exp(α̃l + xT β̃l )

=
gm∑

k=1

γ̃kπk(x; ψ̃gm)

= ηgm(x; ω̃gm),

where ω̃T
gm = (ψ̃

T
1 , γ̃1, . . . , ψ̃

T
gm, γ̃gm) and ψ̃

T
k = (α̃k, β̃

T
k ) for k = 1, . . . , gm. We

obtain the result by noting that ηgm(x; ω̃gm) ∈ H.

Lemmas 1 to 5 imply that the class H satisfies Assumptions (i)–(v) of
Theorem 2; thus Theorem 1 is proved.

5 Conclusion

In this note, we utilized the Stone-Weierstrass theorem to prove that the
class of MoE mean functions M is dense in the class of continuous functions
C (X) on the compact domain X.

Unlike in Zeevi et al. (1998), Jiang and Tanner (1999a, 1999b), and Mendes
and Jiang (2012), we do not obtain convergence rates. Furthermore, our re-
sult does not guarantee statistical estimability of the MoE mean functions.
Maximum likelihood (ML) estimation can obtain consistent estimates for
mean functions, when g is known (see Zeevi et al., 1998; Jiang & Tanner,
2000; and Nguyen & McLachlan, 2016). Results regarding regularized ML
estimation of MoE models were obtained in Khalili (2010). In Grun and
Leisch (2007) and Nguyen and McLachlan (2016), the Bayesian information
criterion (BIC; Schwarz (1978)) is shown effective for determination of un-
known g (see Olteanu & Rynkiewicz, 2011, for theoretical justification of the
BIC).
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