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Learning from triplet comparison data has been extensively studied in
the context of metric learning, where we want to learn a distance metric
between two instances, and ordinal embedding, where we want to learn
an embedding in a Euclidean space of the given instances that preserve
the comparison order as much as possible. Unlike fully labeled data,
triplet comparison data can be collected in a more accurate and human-
friendly way. Although learning from triplet comparison data has been
considered in many applications, an important fundamental question
of whether we can learn a classifier only from triplet comparison data
without all the labels has remained unanswered. In this letter, we give
a positive answer to this important question by proposing an unbiased
estimator for the classification risk under the empirical risk minimiza-
tion framework. Since the proposed method is based on the empirical
risk minimization framework, it inherently has the advantage that any
surrogate loss function and any model, including neural networks, can
be easily applied. Furthermore, we theoretically establish an estimation
error bound for the proposed empirical risk minimizer. Finally, we
provide experimental results to show that our method empirically works
well and outperforms various baseline methods.

1 Introduction

Recently, learning from comparison-feedback data has received increasing
attention (Heim, 2016; Kleindessner, 2017). It is usually argued that humans
perform better in the task of evaluating which instances are similar, rather
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than identifying each individual instance (Stewart, Brown, & Chater, 2005).
It is also argued that humans can achieve much better and more reliable per-
formance on assessing the similarity on a relative scale (“Instance A is more
similar to instance B than to instance C”) rather than on an absolute scale
(“The similarity score between A and B is 0.9, while the one between A and
C is 0.4”) (Kleindessner, 2017). Collecting data in this manner has the advan-
tage of avoiding the problem caused by individuals’ different assessment
scales. However, the collected absolute similarity scores may only provide
information on a comparison level in some applications, such as sensor lo-
calization (Liu, Wu, & He, 2004). It was shown that keeping only the relative
comparison information can help an algorithm be resilient against measure-
ment errors and achieve high accuracy (Xiao, Li, & Luo, 2006).

In this letter, we focus on the problem of learning from triplet comparison
data, a common form of comparison-feedback data. A triplet comparison
(xa, xb, xc) contains the information that instance xa is more similar to xb than
to xc. As one example, search engine query logs can readily provide feed-
back in the form of triplet comparisons (Schultz & Joachims, 2004). Given a
list of website links {A, B,C} for a query, if links A and B are clicked and the
link C is not clicked, we can formulate a triplet comparison as (A, B,C). We
can also collect unlabeled data sets first and collect triplet comparison af-
terward, such as the instrument data set (Mojsilovic & Ukkonen, 2019) and
the car data set (Kleindessner, 2017). In these cases, data are collected in a
totally unlabeled way.

Learning from triplet comparison data was initially studied in the con-
text of metric learning (Schultz & Joachims, 2004), in which a consistent
distance metric between two instances is assumed to be learned from data.
The well-known triplet loss for face recognition was proposed in this line
of research (Schroff, Kalenichenko, & Philbin, 2015; Yu, Liu, Gong, Ding, &
Tao, 2018). When this loss function is used, an inductive mapping function
can be efficiently learned from triplet comparison image data. At the same
time, the problem of ordinal embedding has also been extensively studied
(Agarwal et al., 2007; Van Der Maaten & Weinberger, 2012). It aims to learn
an embedding of the given instances to the Euclidean space that preserves
the order given by the data. Algorithms for large-scale ordinal embedding
have been developed (Anderton & Aslam, 2019). In addition, many other
problem settings have been considered for the situation of using only triplet
comparison data, such as nearest-neighbor search (Haghiri, Ghoshdastidar,
& von Luxburg, 2017), kernel function construction (Kleindessner & von
Luxburg, 2017a) and outlier identification (Kleindessner & Von Luxburg,
2017b).

However, learning a binary classifier from triplet comparison data re-
mained untouched until recently. A random forest construction algorithm
(Haghiri, Garreau, & Luxburg, 2018) was proposed for both classification
and regression. However, it first requires a labeled data set and needs
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Classification from Triplet Comparison Data 661

to actively access a triplet comparison oracle many times. For passively
collected triplet comparison data, a boosting-based algorithm (Perrot & von
Luxburg, 2018) was recently proposed without accessing a triplet compari-
son oracle. However, a set of labeled data is still indispensable to initiating
the training process. To the best of our knowledge, this letter is the first
to tackle the problem of learning a classifier only from passively obtained
triplet comparison data without accessing either a labeled data set or an
oracle.

We show that we can learn a binary classifier from only passively ob-
tained triplet comparison data. We achieve this goal by developing a novel
method for learning a binary classifier in this setting with theoretical justifi-
cation. We use the direct risk minimization framework given for the classifi-
cation problem. We then show that the classification risk can be empirically
estimated in an unbiased way given only triplet comparison data. Theoret-
ically, we establish an estimation error bound for the proposed empirical
risk minimizer, showing that learning from triplet comparison data is con-
sistent. Our method also returns an inductive model, which is different from
clustering and ordinal embedding and can be applied to unseen test data
points. The test data would consist of single instances instead of triplet com-
parisons since our primitive goal is to perform a binary classification task
on unseen data points.

In summary, for the problem of classification using only triplet compar-
ison data, our contributions in this letter are three-fold:

• We propose an empirical risk minimization method for binary classi-
fication using only passively obtained triplet comparison data, which
gives us an inductive classifier.

• We theoretically establish an estimation error bound for our method,
showing that the learning is consistent.

• We experimentally demonstrate the practical usefulness of our
method.

2 Related Work

Our problem setting of learning a binary classifier from passively obtained
triplet comparison data can be considered a type of a weakly supervised
classification problem, where we do not have access to ground-truth labels
(Zhou, 2017).

An approach based on constructing an unbiased risk estimator of the true
classification risk from weakly supervised data has been explored in many
problem settings; for example, positive-unlabeled classification (du Plessis,
Niu, & Sugiyama, 2014; Niu, du Plessis, Sakai, Ma, & Sugiyama, 2016) and
similarity-unlabeled classification (Bao, Niu, & Sugiyama, 2018) can be han-
dled by the framework of learning from two sets of unlabeled data (Lu, Niu,
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Menon, & Sugiyama, 2019). Nevertheless, our problem setting is not a spe-
cial case addressed by Lu et al. (2019) since we have only one set of triplet
comparison data. We later show that we can formulate three different dis-
tributions, which is significantly different from the framework that Lu et al.
(2019) used and can be considered as a case of learning from three sets of
unlabeled data.

Moreover, our problem setting is also different from similarity-
dissimilarity-unlabeled classification (Shimada, Bao, Sato, & Sugiyama,
2019) in the sense that we have no access to unlabeled data and similarity
and dissimilarity pairs, only triplet comparison information. Furthermore,
it is important to note that our problem setting is also different from pref-
erence learning (Fürnkranz & Hüllermeier, 2010) since we do not want to
learn a ranking function but construct a binary classifier. Although we can
first learn a ranking function and then decide a proper threshold to con-
struct a binary classifier (Narasimhan & Agarwal, 2013), it is not straight-
forward to choose a proper threshold. Therefore, instead of this two-stage
method, we focus on a method that can directly learn a binary classifier
from triplet comparison data.

3 Learning a Classifier from Triplet Comparison Data

In this section, we first review the fully supervised classification setting.
Then we introduce the problem setting and assumption for the data gener-
ation process of triplet comparison data. Finally, we describe the proposed
method for training a binary classifier from only passively obtained triplet
comparison data.

3.1 Preliminary. We first briefly introduce the traditional binary classi-
fication problem. We denote X ⊂ Rd as a d-dimensional sample space and
Y = {+1,−1} as a binary label space. In the fully supervised setting, we
usually assume the labeled data (x, y) ∈ X × Y are drawn from the joint
probability distribution with density p(x, y) (Vapnik, 1995). The goal is to
obtain a classifier f : X → R that minimizes the classification risk

R( f ) = E
(x,y)∼p(x,y)

[�( f (x), y)], (3.1)

where the expectation is over the joint density p(x, y) and � : R × Y → R+
is a loss function that measures how well the classifier estimates the true
class label.

In the fully supervised classification setting, we are given both posi-
tive and negative training data collectively drawn from the joint density
p(x, y). However, in our case, we still want to train a binary classifier that
minimizes the classification risk, although we do not have fully labeled
data.
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3.2 Generation Process of Triplet Comparison Data. We formulate
the underlying generation process of triplet comparison data in order to
perform empirical risk minimization (ERM). Three samples in a triplet
(xa, xb, xc) are first generated independently and then shown to a user. The
user can mark the triplet to be proper or not. Denoting the similarity be-
tween two samples xa and xb as σab, the larger σab is, the more similar the two
samples are. Then a proper triplet means σab > σac. Specifically, it means that
three labels (ya, yb, yc) in a triplet appear to be one of the following cases:

Y1 � {(+1,+1,−1), (−1,−1,+1), (+1,+1,+1),

(−1,−1,−1), (+1,−1,−1), (−1,+1,+1)}.

Otherwise, it means the first sample is more similar to the third sample
than to the second sample; thus, the user chooses to mark the triplet as
not proper. Similarly, it means (ya, yb, yc) appears to be one of the follow-
ing cases:

Y2 � {(+1,−1,+1), (−1,+1,−1)}.

First, three data samples are generated independently from the un-
derlying joint density p(x, y); then D = {(xa, xb, xc)} are collected without
knowing the underlying true labels (ya, yb, yc). However, we can collect
information from user feedback about which case a triplet belongs to. No-
tice that in this problem setting, we assume the user always gives rational
feedback. This means the user never recognizes samples with different
labels to be more similar to each other. After receiving feedback from users,
we can actually obtain two distinct data sets. The data the user chooses to
keep the order are denoted as

D1 � {(xa, xb, xc)|(ya, yb, yc) ∈ Y1}.

Similarly, the data the user chooses to flip the order are denoted as

D2 � {(xa, xb, xc)|(ya, yb, yc) ∈ Y2}.

Note that the ratio of n1 � |D1| to n2 � |D2| is fixed because we assume
the three samples in a triplet are generated independently from p(x, y); thus,
the ratio n1

n2
is only dependent on the underlying class prior probabilities,

which are fixed, unknown values.
The two data sets can be considered to be generated from two underlying

distributions, as indicated by the following lemma.
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Lemma 1. Corresponding to the data generation process described above, let

p1(xa, xb, xc) = p(xa, xb, xc, (ya, yb, yc) ∈ Y1)
πT

,

p2(xa, xb, xc) = π+ p+(xa)p−(xb)p+(xc) + π− p−(xa)p+(xb)p−(xc), (3.2)

where πT = 1 − π+π−, π+ � p(y = +1) and π− � p(y = −1) are the class prior
probabilities that satisfy π+ + π− = 1 and p+(x) � p(x|y = +1) and p−(x) �
p(x|y = −1) are class-conditional probabilities. Then it follows that

D1 = {(x1,a, x1,b, x1,c)}n1
i=1

i.i.d.∼ p1(xa, xb, xc),

D2 = {(x2,a, x2,b, x2,c)}n2
i=1

i.i.d.∼ p2(xa, xb, xc).

Detailed derivation is given in appendix A.
We denote the pointwise data collected from D1 and D2 by ignoring

the triplet comparison relation as D1,a � {x1,a}n1
i=1, D1,b � {x1,b}n1

i=1, D1,c �
{x1,c}n1

i=1, D2,a � {x2,a}n2
i=1, D2,b � {x2,b}n2

i=1 and D2,c � {x2,c}n2
i=1, the marginal

densities of which can be expressed by the following theorem.

Theorem 1. Samples in D1,a, D1,c, D2,a, and D2,c are independently drawn from

p̃1(x) = π+ p+(x) + π− p−(x); (3.3)

samples in D1,b are independently drawn from

p̃2(x) = (π3
+ + 2π2

+π−)p+(x) + (2π+π2
− + π3

−)p−(x)
πT

; (3.4)

and samples in D2,b are independently drawn from

p̃3(x) = π− p+(x) + π+ p−(x). (3.5)

The proof is given in appendix B.
Theorem 1 indicates that from triplet comparison data, we can essen-

tially obtain samples that can be drawn independently from three different
distributions. We denote the three aggregated data sets as

D̃1 = D1,a ∪ D1,c ∪ D2,a ∪ D2,c,

D̃2 = D1,b, D̃3 = D2,b.

3.3 Unbiased Risk Estimator for Triplet Comparison Data. We now
attempt to express the classification risk,
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R( f ) � E
(x,y)∼p(x,y)

[�( f (x), y)], (3.6)

on the basis of the three pointwise densities presented in section 3.2.
The classification risk can be separately expressed as the expectations

over p+(x) and p−(x). Although we do not have access to data drawn from
these two distributions, we can obtain data from three related densities
p̃1(x), p̃2(x), and p̃3(x), as indicated in theorem 1. Letting

A �
π3

+ + 2π2
+π−

πT
, B �

2π+π2
− + π3

−
πT

, (3.7)

we can express the relationship between these densities as

⎡
⎢⎣

p̃1(x)

p̃2(x)

p̃3(x)

⎤
⎥⎦ =

⎡
⎢⎣

π+ π−
A B

π− π+

⎤
⎥⎦

[
p+(x)

p−(x)

]
. (3.8)

Our goal is to solve equation 3.8 so that we can express p+(x) and p−(x)
in terms of the three densities from which we have independent and identi-
cally distributed (i.i.d.) data samples. To this end, we can rewrite the classi-
fication risk, which we want to minimize, in terms of p̃1(x), p̃2(x), and p̃3(x).
An answer to equation 3.8 is given by the following lemma.

Lemma 2. We can express p+(x) and p−(x) in terms of p̃1(x), p̃2(x), and p̃3(x)
as

p+(x) = 1
(ac − b2)

((cπ+ − bπ−)p̃1(x) + (cA − bB)p̃2(x)

+ (cπ− − bπ+)p̃3(x)),

p−(x) = 1
(ac − b2)

((aπ− − bπ+)p̃1(x) + (aB − bA)p̃2(x)

+ (aπ+ − bπ−) p̃3(x)), (3.9)

provided ac − b2 �= 0 where

a � π2
+ + A2 + π2

−, b � 2π+π− + AB, c � π2
− + B2 + π2

+.

Detailed derivation is given in appendix C.
As a result of lemma 2, we can express the classification risk us-

ing only triplet comparison data. Letting �+(x) � �( f (x),+1) and �−(x) �
�( f (x),−1), we have the following theorem.
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Theorem 2. The classification risk can be equivalently expressed as

R( f ) = 1
(ac − b2)

{
E

x∼p̃1(x)
[πtest (cπ+ − bπ−) �+(x)

+ (1 − πtest )(aπ− − bπ+) �−(x)] + E
x∼p̃2(x)

[πtest (cA − bB) �+(x)

+ (1 − πtest )(aB − bA) �−(x)] + E
x∼p̃3(x)

[πtest (cπ− − bπ+) �+(x)

+ (1 − πtest )(aπ+ − bπ−) �−(x)]
}
, (3.10)

where πtest � ptest (y = +1) denotes the class prior of the test data set.

The proof is given in appendix D.
In this letter, we consider the common case in which πtest = π+, which

means the test data set shares the same class prior as the training data
set. However, even when πtest �= π+, which means the class prior shift
(Sugiyama, 2012) occurs, our method can still be used when πtest is known.

The process of obtaining the empirical risk minimizer of equation 3.10,
f̂ = arg min R( f ), is similar to other ERM-based learning approaches. As
long as the risk representation that we want to minimize is continuous and
differentiable with respect to the model parameters, such as the linear-in-
parameter model or neural networks, we can use powerful stochastic opti-
mization algorithms (Kingma & Ba, 2014).

4 Estimation Error Bound

In this section, we establish an estimation error bound for the proposed
unbiased risk estimator. Let F ⊂ RX represent a function class specified by
a model. First, let R(F ) be the (expected) Rademacher complexity of F ,
which is defined as

R(F ) � E
Z1,···,Zn∼μ

E
σ

[
sup
f∈F

1
n

n∑
i=1

σi f (Zi)

]
, (4.1)

where n is a positive integer, Z1, · · · , Zn are i.i.d. random variables drawn
from a probability distribution with density μ, and σ = (σ1, · · · , σn) are
Rademacher variables, which are random variables that take the value of
+1 or −1 with even probabilities.

We assume for any probability density μ, the specified model F satisfies
R(F ) ≤ CF√

n for some constantCF > 0. Also, let f ∗ � arg min
f∈F

R( f ) be the true

risk minimizer and f̂ � arg min
f∈F

R̂T,�( f ) the empirical risk minimizer.
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Figure 1: Behavior of the coefficient term.

Theorem 3. Assume the loss function � is ρ-Lipschitz with respect to the first
argument (0 < ρ < ∞), and all functions in the model class F are bounded—
that is, there exists a constant Cb such that || f ||∞ ≤ Cb for any f ∈ F . Let C� �
supt∈{±1}�(Cb, t). Then for any δ > 0, with probability at least 1 − δ,

R( f̂ ) − R( f ∗) ≤
⎛
⎝2ρCF√

n
+

√
C2

� log 2
δ

2n

⎞
⎠ · CR

|ac − b2| , (4.2)

where

CR = |πtest (cπ+ − bπ−)| + |(1 − πtest )(aπ− − bπ+)| + |πtest (cA − bB)|
+ |(1 − πtest )(aB − bA)| + |πtest (cπ− − bπ+)|
+ |(1 − πtest )(aπ+ − bπ−)|. (4.3)

The proof is given in appendix E.
Since n appears in the denominator, it is obvious that when the class prior

is fixed, the bound will get tighter as the triplet comparison data increase.
However, it is not clear how the bound will behave when we fix the amount
of triplet comparison data and change the class prior. Thus in Figure 1, we
show the behavior of the coefficient term CR

|ac−b2| with respect to the same
class prior of both training and test data sets. From the illustration, we can
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capture the rough trend that the bound gets tighter when the class prior
becomes further from 0.5. We will investigate this behavior in experiments.

5 On Class Prior

In the previous sections, the class prior π+ is assumed known. For this sim-
ple case, we can directly use the proposed algorithm to separate test data as
well as identify correct classes. However, it may not be true for many real-
world applications. Two situations can be considered. For the worst case, no
information about the class prior is given. Although we can still estimate a
result for the class prior from data and obtain a classifier that is able to sep-
arate data for different classes, we cannot identify the correct class without
the information about which class has a higher class prior. A better situation
is that we have the information about which class has a higher class prior.
By setting this class as the positive one, we can successfully train a classifier
to identify the correct class. Thus, we assume that the positive class has a
higher class prior, which means π+ > 1

2 .

5.1 Class Prior Estimation from Triplet Comparison Data. Noticing πT

= 1 − π+ + π2
+, we can obtain π2

+ − π+ + (1 − πT) = 0. By assuming π+ >

π−, we have

π+ = 1 + √
1 − 4(1 − πT)

2
. (5.1)

Since we can unbiasedly estimate πT by n1
n1+n2

, the class prior π+ can thus be
estimated once the triplet comparison data set is given.

6 Experiments

In this section, we conducted experiments using real-world data sets to
evaluate and investigate the performance of the proposed method for triplet
classification.

6.1 Baseline Methods

6.1.1 KMEANS. As a simple baseline, we used k-means clustering (Mac-
queen, 1967) with k = 2 on all the data instances of triplets while ignoring
all the relation information.

6.1.2 ITML. Information-theoretic metric learning (Davis, Kulis, Jain,
Sra, & Dhillon, 2007) is a metric learning method that requires pairwise
the relationship between data instances. From a triplet (xa, xb, xc), we con-
structed pairwise constraints as (xa, xb) being similar and (xa, xc) being dis-
similar. Using the metric returned by the algorithm, we conducted k-means
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Classification from Triplet Comparison Data 669

clustering on test data. We used the identity matrix for prior knowledge and
fix the slack variable as γ = 1.

6.1.3 TL. Triplet loss (Schroff et al., 2015) is a loss function proposed in
the context of deep metric learning, which can learn a metric directly from
triplet comparison data. Using the metric returned by the algorithm, we
conducted k-means clustering on test data.

6.1.4 SERAPH. Semisupervised metric learning paradigm with hyper-
sparsity (Niu, Dai, Yamada, & Sugiyama, 2014) is a metric learning method
based on entropy regularization. We formulated a pairwise relationship in
the same manner as with ITML. Using the metric returned by ITML, we
conducted k-means clustering on test data.

6.1.5 SU. SU learning (Bao et al., 2018) is a method for learning a binary
classifier from similarity and unlabeled data. We used the same method for
estimating the class prior and considered the less similar sample in a triplet
as unlabeled data.

6.2 Data Sets.

6.2.1 UCI Data Sets. We used six data sets from the UCI Machine Learn-
ing Repository (Asuncion & Newman, 2007). They are binary classification
data sets, and we use the given labels for further triplet comparison data
generation.

6.2.2 Image Data Sets. We used three image data sets.
The MNIST (LeCun, Bottou, Bengio, & Haffner, 1998) data set consists of

70,000 examples associated with a label from 10 digits. Each data instance
is a 28 × 28 gray-scale image; thus, the input dimension is 784. To form a
binary classification problem, we treat even numbers as the positive class
and odd numbers as the negative class. The data were standardized to have
zero mean and unit variance.

The Fashion MNIST (Xiao, Rasul, & Vollgraf, 2017) data set consists of
70,000 examples associated with a label from 10 fashion item classes. Each
data instance is a 28 × 28 gray-scale image; thus, the input dimension is 784.
To form a binary classification problem, we treat five classes—T-shirt/top,
Pullover, Dress, Coat, and Shirt—as positive class since they all represent
upper—body clothing. The data were standardized to have zero mean and
unit variance.

The CIFAR-10 (Krizhevsky & Hinton, 2009) data set consists of 60,000
examples associated with a label from 10 classes. Each image is given in
a 32 × 32 × 3 format; thus, the input dimension is 3,072. To form a binary
classification problem, we treated four classes—airplane, automobile, ship,
and truck—as positive classes since they all represent artificial objects.
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Figure 2: Average classification error and standard error over 20 trials.

Although these data sets have labels, using the triplet comparison data
composed of labeled data fulfills the purpose of experiments, which is to
assess whether the proposed method can work properly. As mentioned in
section 1, the proposed method can be applied to situations where we do
not have access to the labels.

6.3 Proposed Method. For the proposed method, we used a fully con-
nected neural network with only one hidden layer of width 100 and recti-
fied linear units (ReLUs) (Nair & Hinton, 2010) for all the data sets except
for CIFAR-10. The width of the hidden layer was set to be 100 throughout
all experiments. Adam (Kingma & Ba, 2014) was used for optimization. The
neural network architecture used for CIFAR-10 is specified in appendix F.
Two surrogate losses were used as indicated in Tables 1, 2, and 3.

6.4 Results. The proposed method estimates the unknown class prior
first. For baseline methods, performances are measured by the clustering
accuracy 1 − min(r, 1 − r) where r is the error rate. The results of different
triplet numbers are listed in Tables 1, 2, and 3. The best and equivalent meth-
ods are shown in bold on the one-sided t-test with a significance level of 5%.
Also, as shown in Figure 2, the performance of the proposed method with
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respect to the class prior and the size of training data set followed the pre-
diction by the theory in most of the cases.

7 Conclusion

In this letter, we proposed a novel method for learning a classifier from only
passively obtained triplet comparison data. We established an estimation
error bound for the proposed method and confirmed that the estimation
error decreases as the amount of triplet comparison data increases. We also
empirically confirmed that the performance of the proposed method sur-
passed multiple baseline methods on various data sets. For future work, it
would be interesting to investigate alternative methods that can handle a
multiclass case.

Appendix A: Proof of Lemma 1

From the data generation process, we can consider the generation distribu-
tion for data of D1 as

p1(xa, xb, xc) = p(xa, xb, xc|(ya, yb, yc) ∈ Y1)

= p(xa, xb, xc, (ya, yb, yc) ∈ Y1)
p((ya, yb, yc) ∈ Y1)

= p(xa, xb, xc, (ya, yb, yc) ∈ Y1)
π3+ + 2π2+π− + 2π+π2− + π3−

. (A.1)

Note that the denominator in equation A.1 can be rewritten as

πT � π3
+ + 2π2

+π− + 2π+π2
− + π3

−

= (π3
+ + π3

−) + 2(π2
+π− + π+π2

−)

= π2
+ + π+π− + π2

−

= 1 − π+π−. (A.2)

Then we have

p1(xa, xb, xc) = p(xa, xb, xc, (ya, yb, yc) ∈ Y1)
πT

. (A.3)

Moreover, the distribution p(xa, xb, xc, (ya, yb, yc) ∈ Y1) at the numerator
of equation A.3 can be explicitly expressed as

p(xa, xb, xc, (ya, yb, yc) ∈ Y1)

= π3
+ p+(xa)p+(xb)p+(xc) + π2

+π− p+(xa)p+(xb)p−(xc)
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+ π+π2
− p+(xa)p−(xb)p−(xc) + π2

+π− p−(xa)p+(xb)p+(xc)

+ π+π2
− p−(xa)p−(xb)p+(xc) + π3

− p−(xa)p−(xb)p−(xc), (A.4)

from the assumption that three instances in each triplet comparison are gen-
erated independently.

Similarly, the underlying density for data of D2 can be expressed as

p2(xa, xb, xc) = p(xa, xb, xc|(ya, yb, yc) ∈ Y2)

= p(xa, xb, xc, (ya, yb, yc) ∈ Y2)
p((ya, yb, yc) ∈ Y2)

= π2
+π− p+(xa)p−(xb)p+(xc) + π+π2

− p−(xa)p+(xb)p−(xc)
π2+π− + π+π2−

= π+ p+(xa)p−(xb)p+(xc) + π− p−(xa)p+(xb)p−(xc). (A.5)

�

Appendix B: Proof of Theorem 1

For simplicity, we give the proof of D2,a; the other five cases follow the sim-
ilar proof. Notice

D2 ∼
i.i.d.

p2(xa, xb, xc) = π+ p+(xa)p−(xb)p+(xc) + π− p−(xa)p+(xb)p−(xc).

(B.1)

In order to decompose the triplet comparison data distribution into point-
wise distribution, we marginalize p2(xa, xb, xc) with respect to xb and xc:∫

p2(xa, xb, xc)dxbdxc

= π+ p+(xa)
∫

p−(xb)dxb

∫
p+(xc)dxc + π− p−(xa)

∫
p+(xb)dxb

∫
p−(xc)dxc

= π+ p+(xa)
∫

p(xb, y = −1)
p(y = −1)

dxb

∫
p(xc, y = +1)

p(y = +1)
dxc

+ π− p−(xa)
∫

p(xb, y = +1)
p(y = +1)

dxb

∫
p(xc, y = −1)

p(y = −1)
dxc

= π+ p+(xa) + π− p−(xa)

= p̃1(xa). (B.2)

�
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Appendix C: Proof of Lemma 2

Notice that the equation has an infinite number of solutions. Letting

T �

⎡
⎢⎣

π+ π−
A B

π− π+

⎤
⎥⎦ , (C.1)

we resort to finding the Moore-Penrose pseudo-inverse (Moore, 1920; Pen-
rose, 1955), which provides the minimum Euclidean norm solution to the
above system of linear equations.

Let T∗ denote the conjugate transpose. We have

T∗T =
[

π2
+ + A2 + π2

− 2π+π− + AB

2π+π− + AB π2
− + B2 + π2

+

]
=

[
a b

b c

]
. (C.2)

In the next step, we need to take the inverse of the above 2 × 2 matrix. To
achieve a proper inverse matrix, we need to introduce another assumption
that π+ �= 1

2 , which guarantees ac − b2 �= 0. Then

(T∗T )−1 = 1
(ac − b2)

[
c −b

−b a

]
. (C.3)

Finally, the Moore-Penrose pseudo-inverse is given by

(T∗T )−1T∗ = 1
(ac − b2)

[
cπ+ − bπ− cA − bB cπ− − bπ+

−bπ+ + aπ− −bA + aB −bπ− + aπ+

]
.

(C.4)

Thus, we can express p+(x) and p−(x) in terms of p̃1(x), p̃2(x), and p̃3(x)
as

p+(x) = 1
(ac − b2)

((cπ+ − bπ−)p̃1(x) + (cA − bB)p̃2(x) + (cπ− − bπ+)p̃3(x)) ,

p−(x) = 1
(ac − b2)

((aπ− − bπ+) p̃1(x) + (aB − bA)p̃2(x) + (aπ+ − bπ−) p̃3(x)) .

(C.5)

�

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/32/3/659/1864621/neco_a_01262.pdf by guest on 27 Septem
ber 2021



Classification from Triplet Comparison Data 677

Appendix D: Proof of Theorem 2

Using equation 3.9, we can rewrite the classification risk as

R�( f ) = E
p(x,y)

[�( f (x), y)]

= πtest E
p+ (x)

[�+(x)] + (1 − πtest ) E
p− (x)

[�−(x)]

= πtest

(ac − b2)
{(cπ+ − bπ−) E

p̃1(x)
[�+(x)] + (cA − bB) E

p̃2(x)
[�+(x)]

+ (cπ− −bπ+) E
p̃3(x)

[�+(x)]}+ 1 − πtest

(ac−b2)
{(aπ− −bπ+) E

p̃1(x)
[�−(x)]

+ (aB − bA) E
p̃2(x)

[�−(x)] + (aπ+ − bπ−) E
p̃3(x)

[�−(x)]}, (D.1)

which can be then simplified as equation 3.10. �

Appendix E: Proof of Theorem 3

Letting

C1 � πtest

(cπ+ − bπ−)(ac − b2)
, C2 � 1 − πtest

(aπ− − bπ+)(ac − b2)
,

C3 � πtest

(cA − bB)(ac − b2)
, C4 � (1 − πtest )

(aB − bA)(ac − b2)
,

C5 � πtest

(cπ− − bπ+)(ac − b2)
, C6 � (1 − πtest )

(aπ+ − bπ−)(ac − b2)
,

and

Ra( f ) = E
x∼p̃1(x)

[C1�( f (x),+1) + C2�( f (x),−1)],

Rb( f ) = E
x∼p̃2(x)

[C3�( f (x),+1) + C4�( f (x),−1)],

Rc( f ) = E
x∼p̃3(x)

[C5�( f (x),+1) + C6�( f (x),−1)], (E.1)

we can simplify the unbiased risk estimator in the form

R( f ) = Ra( f ) + Rb( f ) + Rc( f ). (E.2)
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678 Z. Cui, N. Charoenphakdee, I. Sato, and M. Sugiyama

Then

R( f̂ ) − R( f ∗) ≤ 2 sup
f∈F

|Ra( f ) − R̂a( f )| + 2 sup
f∈F

|Rb( f ) − R̂b( f )|

+ 2 sup
f∈F

|Rc( f ) − R̂c( f )|.

For the first term,

sup
f∈F

|Ra( f ) − R̂a( f )| = sup
f∈F

∣∣∣∣∣ E
pa (x)

[C1�( f (x),+1) + C2�( f (x),−1)] − 1
n

n∑
i=1

L̂

∣∣∣∣∣
≤ |C1| sup

f∈F

∣∣∣∣∣ E
pa (x)

[�( f (x),+1)] − 1
n

n∑
i=1

̂�( f (x),+1)

∣∣∣∣∣
+ |C2| sup

f∈F

∣∣∣∣∣ E
pa (x)

[�( f (x),−1)] − 1
n

n∑
i=1

̂�( f (x),−1)

∣∣∣∣∣
≤ |C1|2R + |C1|

√
C2

� log 2
δ

2n
+ |C2|2R + |C2|

√
C2

� log 2
δ

2n

= (|C1| + |C2|)
⎛
⎝2ρCF√

n
+

√
C2

� log 2
δ

2n

⎞
⎠ . (E.3)

Combining three terms, theorem 3 is proved. �

Appendix E: CNN Structure for CIFAR10

The following structure is used:

• Convolution (3 in/32 out-channels, kernel size 3) with ReLU
• Convolution (32 in/32 out-channels, kernel size 3) with ReLU
• Max-pooling (kernel size 2, stride 2)
• Repeat twice:

Convolution (32 in/32 out-channels, kernel size 3) with ReLU
Convolution (32 in/32 out-channels, kernel size 3) with ReLU
Max-pooling (kernel size 2, stride 2)

• Fully connected (512 units) with ReLU
• Fully connected (1 unit) �
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