
ARTICLE Communicated by Terrence Sejnowski

On the Compressive Power of Autoencoders With Linear
and ReLU Activation Functions

Liangjie Sun
ljsun_seu@126.com
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Kyoto 611-0011, Japan, and Department of Mathematics, University
of Hong Kong, Hong Kong

Chenyao Wu
wcy3442@gmail.com
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Kyoto 611-0011, Japan

Wai-Ki Ching
wching@hku.hk
Department of Mathematics, University of Hong Kong, Hong Kong

Tatsuya Akutsu
takutsu@kuicr.kyoto-u.ac.jp
Bioinformatics Center, Institute for Chemical Research, Kyoto University,
Kyoto 611-0011, Japan

In this article, we mainly study the depth and width of autoencoders
consisting of rectified linear unit (ReLU) activation functions. An au-
toencoder is a layered neural network consisting of an encoder, which
compresses an input vector to a lower-dimensional vector, and a decoder,
which transforms the low-dimensional vector back to the original input
vector exactly (or approximately). In a previous study, Melkman et al.
(2023) studied the depth and width of autoencoders using linear thresh-
old activation functions with binary input and output vectors. We show
that similar theoretical results hold if autoencoders using ReLU activa-
tion functions with real input and output vectors are used. Furthermore,
we show that it is possible to compress input vectors to one-dimensional
vectors using ReLU activation functions, although the size of compressed
vectors is trivially �(log n) for autoencoders with linear threshold activa-
tion functions, where n is the number of input vectors. We also study the
cases of linear activation functions. The results suggest that the compres-
sive power of autoencoders using linear activation functions is consider-
ably limited compared with those using ReLU activation functions.

Neural Computation 37, 235–259 (2025)
https://doi.org/10.1162/neco_a_01729

© 2024 Massachusetts Institute of Technology

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

mailto:
mailto:
mailto:
mailto:
https://doi.org/10.1162/neco_a_01729

236 L. Sun et al.

1 Introduction

Over the past decade, we have seen a rapid progress in both developments
and applications of artificial neural network (ANN) technologies. Among
various models of ANNs, much attention has recently been paid on autoen-
coders because of their generative power of new data. Indeed, autoencoders
have been applied to various areas including image processing (Doersch,
2016), natural language processing (Tschannen et al., 2018), and drug dis-
covery (Gómez-Bombarelli et al., 2018). An autoencoder is a layered neural
network consisting of an encoder and a decoder, where the former trans-
forms an input vector x to a low-dimensional vector z = f(x) and the latter
transforms z to an output vector y = g(z), which should be the same as
or similar to the input vector. Therefore, an autoencoder performs a kind
of dimensionality reduction. Encoder and decoder functions, f and g, are
usually obtained via unsupervised learning that minimizes the difference
between input and output data by adjusting weights (and some additional
parameters).

Although autoencoders have a long history (Ackley et al., 1985; Baldi &
Hornik, 1989; Hinton & Salakhutdinov, 2006), how data are compressed via
autoencoders is not yet very clear. Baldi and Hornik (1989) studied relations
between principal component analysis (PCA) and autoencoders with one
hidden layer. Hinton and Salakhutdinov (2006) conducted empirical stud-
ies on relations between the depth of autoencoders and the dimensionality
reduction. The results suggest that deeper networks can produce lower re-
construction errors. Kärkkäinen and Hänninen (2023) also empirically stud-
ied relations between the depth and the dimensionality reduction using a
variant model of autoencoders. The results suggest that deeper networks
obtain lower autoencoding errors during the identification of the intrin-
sic dimension, but the detected dimension does not change compared to a
shallow network. Recently, several analyses have been done on mutual
information between layers in order to understand information flow in
autoencoders (Lee & Jo, 2021; Tapia & Estévez, 2020; Yu & Príncipe,
2019). Baldi (2012) presented and studied a general framework on autoen-
coders with both linear and nonlinear activation functions. In particular, he
showed that learning in the autoencoder with Boolean activation functions
is NP-hard in general by a reduction from a clustering problem.

However, as far as we know, no theoretical studies had been done on rela-
tions between the compressive power and the size of autoencoders, whereas
extensive theoretical studies have been done on the representational power
of deep neural networks (Delalleau & Bengio, 2011; Montufar et al., 2014;
Vershynin, 2020; Yun et al., 2019). Recently, some theoretical studies have
been done on the compressive power of autoencoders with linear thresh-
old functions (Akutsu & Melkman, 2023; Melkman et al., 2023) with respect
to the depth (number of layers) and width (number of nodes in a layer).
However, linear threshold networks are not popular in recent studies on

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 237

neural networks. Furthermore, linear threshold networks can only handle
binary input and output, which is far from the practical settings.

Motivated by this situation, we study in this article the compressive
power of autoencoders with real input and output vectors using rectified
linear unit (ReLU) functions as the activation functions, with focusing on
theoretical aspects. In order to clarify the superiority of ReLU functions over
linear functions, we also study the compressive power of autoencoders with
linear activation functions (not linear threshold activation functions).

The results are summarized in Table 1, where D and d denote the number
of dimensions of input and compressed vectors, respectively; n denotes the
number of input vectors; and A is a matrix explained in theorem 2. Note that
the number and dimensions of input vectors must be the same as those of
output vectors. Here, we first obtain some new results about autoencoders
with linear activation functions. Then we modify theorems 12, 19, and 22
in Melkman et al. (2023) for ReLU functions and real input vectors. In addi-
tion, we modify theorem 1 in Zhang et al. (2017) so that the number of nodes
in the middle layer decreases from n to 2�√n�. Based on the proof of the-
orem 3.1 in Yun et al. (2019), we design a four-layer ReLU neural network
to reduce the number of nodes in the middle layer. The difference between
this paper and theorem 3.1 is that hard-tanh activation functions are used in
the proof of theorem 3.1, while we use ReLU activation functions. Finally,
we modify the decoders in the proofs of theorems 19 and 22 in Melkman
et al. (2023).

Specifically, theorem 1 reveals that when a set of n = d + 1 vectors in
D-dimensional Euclidean space is given, there is a three-layer perfect au-
toencoder with linear activation functions that has the middle layer with d
nodes. When the number of vectors in the given set is greater than d + 1, a
three-layer perfect autoencoder with linear activation functions that has the
middle layer with d nodes may not exist, and in theorem 2, some conditions
for the existence of a three-layer perfect autoencoder with linear activation
functions that has the middle layer with d nodes are given.

Theorem 3 is obtained by modifying theorem 12 in Melkman et al. (2023).
Compared with theorem 12, we apply ReLU activation functions in theorem
3 to replace the binary input vectors with real input vectors, so that the
number of layers of the ReLU neural network designed is increased by 2
and the number of hidden nodes is increased by D + 5d

2 .
By adding a decoder to the encoder constructed by theorem 3, we obtain

a seven-layer perfect autoencoder in theorem 4. It is worth noting that in
the decoder part, we do not simply represent the threshold function of the-
orem 19 in Melkman et al. (2023) as three ReLU functions with two layers,
but design some new ReLU activation functions. Therefore, compared with
theorem 19 in Melkman et al. (2023), the numbers of nodes and layers in the
decoder part do not increase.

In theorem 4, the size of the middle layer is 2�√n�. In theorem 5, we
reduce the size of the middle layer from 2�√n� to 2�log

√
n�. Moreover,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

238 L. Sun et al.

Ta
bl

e
1:

Su
m

m
ar

y
of

R
es

ul
ts

.

V
ec

to
r

M
id

d
le

L
ay

er
(d

)
A

rc
hi

te
ct

ur
e

Ty
pe

A
ct

iv
at

io
n

T
he

or
em

1
re

al
n

−
1

D
/

d/
D

E
nc

od
er

/
D

ec
od

er
L

in
ea

r
T

he
or

em
2

re
al

d
D

/
d/

D
if

ra
nk

(A
)�

d
+

1
E

nc
od

er
/

D
ec

od
er

L
in

ea
r

T
he

or
em

3
re

al
2�

√ n�
D

/
(D

+
d)

/
(D

+
d 2

)/
3d 2

/
d

E
nc

od
er

R
eL

U
(T

he
or

em
12

bi
na

ry
2�

√ n�
D

/
(D

+
d 2

)/
d

E
nc

od
er

T
hr

es
ho

ld
(M

el
km

an
et

al
.,

20
23

))

T
he

or
em

4
re

al
2�

√ n�
D

/
(D

+
d)

/
(D

+
d 2

)/
3d 2

/
d/

dD 2
/
D

E
nc

od
er

/
D

ec
od

er
R

eL
U

(T
he

or
em

19
bi

na
ry

2�
√ n�

D
/
(D

+
d 2

)/
d/

dD 2
/
D

E
nc

od
er

/
D

ec
od

er
T

hr
es

ho
ld

(M
el

km
an

et
al

.,
20

23
))

T
he

or
em

5
re

al
2�

lo
g

√ n�
T

he
or

em
2

+2
d/

d/
4�

√ n�
/
2�

√ n�
/
D

�√ n�
/
D

E
nc

od
er

/
D

ec
od

er
R

eL
U

(T
he

or
em

22
bi

na
ry

2�
lo

g
√ n�

T
he

or
em

12
(M

el
km

an
et

al
.,

20
23

)
E

nc
od

er
/

D
ec

od
er

T
hr

es
ho

ld
(M

el
km

an
et

al
.,

20
23

))
+d

/
2�

√ n�
/
D

�√ n�
/
D

(C
or

ol
la

ry
8

bi
na

ry
�lo

g
n�

T
he

or
em

12
(M

el
km

an
et

al
.,

20
23

)
E

nc
od

er
/

D
ec

od
er

T
hr

es
ho

ld
(A

ku
ts

u
&

M
el

km
an

,2
02

3)
)

+d
/
2�

√ nD
�/

�√ nD
�/

D

Pr
op

os
it

io
n

2
re

al
1

D
/
1/

(2
�√ n�

+
1)

/
(�√ n�

+
1)

/
E

nc
od

er
/

D
ec

od
er

R
eL

U
3�

√ n�
/
2�

√ n�
/
D

�√ n�
/
D

T
he

or
em

7
re

al
2�

√ n�
D

/
d/

d/
1

M
em

or
iz

er
R

eL
U

(T
he

or
em

1
re

al
n

D
/

d/
1

M
em

or
iz

er
R

eL
U

(Z
ha

ng
et

al
.,

20
17

))

N
ot

e:
T

he
or

em
s

in
pa

re
nt

he
se

s
ar

e
ex

is
ti

ng
re

su
lt

s.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 239

theorem 5 is obtained by modifying theorem 22 in Melkman et al. (2023).
In proposition 2, we further reduce the size of the middle layer to 1 by us-
ing a real number as a compressed vector. The proof is obtained by simple
modifications of those for theorems 3 and 4.

We also consider the number of nodes and layers to represent a memo-
rizer, which is a set of pairs of input vectors and their output values. Com-
pared with theorem 1 in Zhang et al. (2017), in theorem 7, the number of
nodes in the middle layer decreases to 2�√n� and the number of layers in-
creases by 1. It is worth noting that the four-layer ReLU neural network
we designed in theorem 7 is based on the four-layer fully connected neu-
ral network of theorem 3.1 in Yun et al. (2019).1 However, in theorem 3.1,
it mainly describes the design process of a fully connected neural network
using hard-tanh activation functions, while we need to design a ReLU neu-
ral network, so there are some differences in the design process, and we
explain these differences.

It is seen from Table 1 that there is a large difference in the number of
nodes of the middle layer between the linear and ReLU autoencoders. Lin-
ear autoencoders need n − 1 nodes in the middle layer (especially when
rank(A) = n), whereas ReLU autoencoders need a much smaller number of
nodes in the middle layer. This is a crucial limitation of linear autoencoders.
However, ReLU autoencoders need more than three layers and a large num-
ber of nodes (e.g., D�√n� nodes) in some layers. This is a limitation of ReLU
autoencoders. In addition, errors are not taken into account in both types of
autoencoders, a limitation from a practical viewpoint.

In summary, the contribution of this article is to theoretically analyze the
number of nodes and layers of autoencoders for real input and output vec-
tors for the first time. Although we use the framework and some techniques
introduced in Melkman et al. (2023), we introduce additional techniques in
this article, and thus there exist substantial differences between the results
of Melkman et al. (2023) and those of this article, as seen from Table 1. We
also use some techniques introduced in Yun et al. (2019). However, we use
to show theorem 7, which can also be used as a decoder part of the autoen-
coder.

2 Problem Definitions

R stands for real numbers. Rn denotes the set of n-dimensional column vec-
tors. For integers a and b, a < b, we denote [a : b] := {a, a + 1, . . . , b}.

A function f: {0, 1}h → {0, 1} is called a Boolean threshold function if it is
represented as

1
In Yun et al. (2019), their network is stated as a three-layer network excluding the

input layer.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

240 L. Sun et al.

f (x) =
{

1, a · x ≥ θ,

0, otherwise,

for some (a, θ), where a ∈ Rh, θ ∈ R, and a · x denotes the inner product
between two vectors a and x. We also denote the same function f as [a · x �
θ].

A function f: Rh → R is called a ReLU function if it is represented as

f (x) = max(a · x + b, 0).

In this article, we only consider layered neural networks in which a lin-
ear, linear threshold, or ReLU function is assigned to each node except input
nodes. The nodes in a network are divided into L-layers, and each node in
the ith layer has inputs only from nodes in the (i − 1)th layer (i = 2, . . . ,
L − 1). Then the states of nodes in the ith layer can be represented as a
Wi-dimensional binary vector where Wi is the number of nodes in the ith
layer and is called the width of the layer. A layered neural network is repre-
sented as y = f(L − 1)(f(L − 2)(· · · f(1)(x) · · ·)), where x and y are the input and
output vectors, respectively, and f(i) is a list of activation functions for the
(i + 1)th layer. The 1st and (L)th layers are called the input and output layers,
respectively, and the corresponding nodes are called input and output nodes,
respectively. When we consider autoencoders, one layer (kth layer where k
∈ {2, . . . , L − 1}) is specified as the middle layer, and the nodes in this layer
are called the middle nodes. Then the middle vector z, encoder f, and decoder g
are defined by

z = f(k−1)(f(k−2)(· · · f(1)(x) · · ·)) = f(x),

y = f(L−1)(f(L−2)(· · · f(k)(z) · · ·)) = g(z).

Since we consider autoencoders, the input layer and the output layer have
the same number of nodes, denoted by D. We use d to denote the number
of nodes in the middle layer.

Let Xn = {x0, . . . , xn−1} be a set of n D-dimensional binary or real input
vectors that are all different. We define perfect encoder, decoder, autoen-
coder as follows (Melkman et al., 2023).

Definition 1. A mapping f is called a perfect encoder for Xn if f(xi) �= f(x j)
holds for all i �= j.

Definition 2. A pair of mappings (f, g) with f and g is called a perfect autoencoder
if g(f(xi)) = xi holds for all xi ∈ Xn. Furthermore, g is called a perfect decoder.

In a word, a perfect encoder maps distinct input vectors into distinct
middle vectors, a perfect decoder maps each middle vector into the original
input vector, and a perfect autodecoder maps each input vector into the
original input vector via a distinct middle vector.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 241

Note that a perfect decoder exists only if there exists a perfect autoen-
coder. Furthermore, it is easily seen from the definitions that if (f, g) is a
perfect autoencoder, f is a perfect encoder.

Many of the results in Table 1 rely on the following proposition. Since it
is mentioned in Zhang et al. (2017) without a proof, we give our own proof
here:
Proposition 1. For any set of D-dimensional distinct real vectors X =
{x0, . . . , xn−1}, there exists a real vector a satisfying a · xi �= a · x j for all i �= j.

Proof. We prove the proposition by mathematical induction on D.
In the case of D = 1, the claim trivially holds by letting a = [1]. Assume

that the claim holds for all X in the case of D = d − 1. Let X = {x0, . . . , xn−1}
be a set of d-dimensional distinct vectors. For each vector x = [x0, . . . , xd−1],
let x̂ = [x0, . . . , xd−2] and X̂ = {x̂0, . . . , x̂n−1}. It should be noted that x̂i = x̂ j

may hold for some i �= j. From the induction hypothesis, we can assume that
there exists a vector â = [a0, . . . , ad−2] satisfying â · x̂i �= a · x̂ j for all x̂i �= x̂ j.
Here, we define a = [a0, . . . , ad − 2, ad−1] by using a sufficiently large real
number ad−1 such that |ad−1 · (xi

d−1 − x j
d−1)| 	 |â · (x̂h − x̂k)| holds for any i,

j, k, h such that xi
d−1 �= x j

d−1. Then a · xi �= a · xj clearly holds for all i �= j. �
Furthermore, we can assume without loss of generality (w.l.o.g.) that xis

are reindexed so that

0 < c0 < · · · < cn−1, ci = a · xi, (2.1)

holds and additionally, c−1 = c0 − δ > 0 and cn = cn−1 + δ, hold for any δ >

0.
For the input vector, we can assume w.l.o.g. that all elements of the real

input vector xi are nonnegative, because this assumption can be satisfied
by adding a sufficiently large constant to each element. For example, let
z = mini∈[0:n−1], j∈[0:D−1](xi

j). If z < 0, all elements of the real input vector xi

can be made nonnegative by adding any value not less than −z to each
element, and this value does not affect network performance.

3 Autoencoders with Linear Activation Functions

In this section, we consider autoencoders using linear functions as the acti-
vation functions.

We begin with a simple example. Consider the case of D = 3, d = 1, and
n = 2. Then X = {[x0, y0, z0], [x1, y1, z1]}. Let f([xi, yi, zi]) = [xi]. Let g([xi]) =
[xi, axi + b, cxi + d], where axi + b satisfies ax0 + b = y0 and ax1 + b = y1, and
cxi + d satisfies cx0 + d = z0 and cx1 + d = z1. Then (f, g) is a perfect autoen-

coder for most X (precisely, if det
([

x0 1
x1 1

])
�= 0), where det(A) denotes

the determinant of a matrix A.)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

242 L. Sun et al.

For another example, consider the case of D = 4, d = 2, and n = 3. Then

X = {[x0, y0, z0,w0], [x1, y1, z1,w1], [x2, y2, z2,w2]}.

Let f([xi, yi, zi, wi]) = [xi, yi]. Let g([xi, yi]) = [xi, yi, axi + byi + c, dxi + eyi +
f], where axi + byi + c satisfies ax0 + by0 + c = z0, ax1 + by1 + c = z1, and
ax2 + by2 + c = z2, and dxi + eyi + f satisfies similar equations. Then, (f, g)

is a perfect autoencoder for most X (precisely, if det

⎛
⎝

⎡
⎣ x0 y0 1

x1 y1 1
x2 y2 1

⎤
⎦

⎞
⎠ �= 0).

By generalizing these simple examples, we have the following theorem.

Theorem 1. Let X be a set of d + 1 vectors in D-dimensional Euclidean space,
where D is any integer such that D > d. Then, for X, there exists a perfect autoen-
coder (f, g) with linear activation functions that has the middle layer (i.e., com-
pressed layer) with d nodes (i.e., perform dimensionality reduction to d).

Proof. Suppose that a set of d + 1 vectors in D-dimensional Euclidean space
is described as X = {x0, x1, . . . , xd}, where xi = [xi

0, xi
1, . . . , xi

D−1], i ∈ [0 : d]
and D > d.

Then a matrix A can be constructed as follows:

A =

⎡
⎢⎢⎢⎢⎣

x0
0 x0

1 · · · x0
D−1 1

x1
0 x1

1 · · · x1
D−1 1

...
...

. . .
...

...

xd
0 xd

1 · · · xd
D−1 1

⎤
⎥⎥⎥⎥⎦ .

Here, A is a (d + 1) × (D + 1) matrix and D > d, so rank(A) � d + 1 and
assuming w.l.o.g. that rank(A) = d1 + 1 (d1 � d).

Let

x0 =

⎡
⎢⎢⎢⎢⎣

x0
0

x1
0
...

xd
0

⎤
⎥⎥⎥⎥⎦ , . . . , xD−1 =

⎡
⎢⎢⎢⎢⎣

x0
D−1

x1
D−1
...

xd
D−1

⎤
⎥⎥⎥⎥⎦ , 1d+1 =

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦

and S = {x0, x1, . . . , xD−1, 1d+1}. According to the fact that the rank of the
matrix A is the maximum number of linearly independent column vectors
in A, we assume w.l.o.g. that a maximal linearly independent subset of S is
{xα1 , xα2 , . . . , xαd1

, 1d+1}, where 0 ≤ α1 < · · · < αd1 ≤ D − 1.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 243

A maximal linearly independent subset of S can be obtained as follows:

Step 1: Initialize S̄ = {1d+1}.
Step 2: Choose a column vector xi ∈ S. If 1d+1 and xi are linearly depen-

dent, remove xi from S and choose another column vector in S and
repeat this step. If 1d+1 and xi are linearly independent, add xi to the
set S̄, that is, S̄ = {1d+1, xi}, and go to the next step.

Step 3: Let S̄ = {1d+1, xi}, where 1d+1 and xi are linearly independent.
Choose a column vector xj ∈ S. If 1d+1, xi and xj are linearly depen-
dent, remove xj from S and choose another column vector in S and
repeat this step. If 1d+1, xi and xj are linearly independent, add xj to
the set S̄, that is, S̄ = {1d+1, xi, x j} and go to the next step.

Step 4: . . .

Going on in turn, we finally find that S̄ is a maximal linearly independent
subset of S. Here, 1d+1 ∈ S̄.

Then any other vector in S can be expressed as a linear combination of
elements of the maximal linearly independent subset, so for any xj ∈ S, we
can always have

x j = a j
1xα1 + a j

2xα2 + · · · + a j
d1

xαd1
+ a j1d+1,

where a j
1, a j

2, . . . , a j
d1

, a j ∈ R.
And especially if d1 < d, we add other d − d1 vectors xαd1+1 , . . . , xαd from

S \ {xα1 , . . . , xαd1
, 1d+1} to the maximal linearly independent subset. Then for

any xj ∈ S, we still have

x j = a j
1xα1 + a j

2xα2 + · · · + a j
dxαd + a j1d+1.

Let

f(xi) = f([xi
0, xi

1, . . . , xi
D−1]) = [xi

α1
, xi

α2
, . . . , xi

αd
]

and

g([xi
α1

, xi
α2

, . . . , xi
αd

]) = [yi
0, yi

1, . . . , yi
D−1],

where yi
j = a j

1xi
α1

+ a j
2xi

α2
+ · · · + a j

dxi
αd

+ a j, j ∈ [0 : D − 1], and i ∈ [0 : d].

Clearly, we have a j
1xi

α1
+ a j

2xi
α2

+ · · · + a j
dxi

αd
+ a j = xi

j, j ∈ [0 : D − 1], and i

∈ [0 : d], that is, g([xi
α1

, xi
α2

, . . . , xi
αd

]) = [xi
0, xi

1, . . . , xi
D−1]. Hence, (f, g) is a

perfect autoencoder for X.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

244 L. Sun et al.

For X, there exists a perfect autoencoder (f, g) with linear activation func-
tions that has the middle layer (i.e., compressed layer) with d nodes (i.e.,
perform dimensionality reduction to d). �

Furthermore, for X with |X| > d + 1, we consider whether there is a per-
fect autoencoder with linear activation functions that has the compressed
layer with d nodes and we have the following result:

Theorem 2. Consider a set of c+1 vectors X = {x0, x1, . . . , xc} in D-dimensional
Euclidean space, where xi = [xi

0, xi
1, . . . , xi

D−1], i ∈ [0 : c]. Let

A =

⎡
⎢⎢⎢⎢⎢⎣

x0
0 x0

1 · · · x0
D−1 1

x1
0 x1

1 · · · x1
D−1 1

...
...

. . .
...

...

xc
0 xc

1 · · · xc
D−1 1

⎤
⎥⎥⎥⎥⎥⎦ .

There are two cases:

• If rank(A) ≤ d + 1, then there exists a perfect autoencoder with linear acti-
vation functions that has the compressed layer with d, d < c nodes.

• If rank(A) > d + 1, then there does not exist a perfect autoencoder with lin-
ear activation functions that has the compressed layer with d, d < c nodes.

Proof. When rank(A) � d + 1, a perfect autoencoder can be constructed
similar to theorem 1.

When rank(A) > d + 1, let

x0 =

⎡
⎢⎢⎢⎢⎣

x0
0

x1
0
...

xc
0

⎤
⎥⎥⎥⎥⎦ , . . . , xD−1 =

⎡
⎢⎢⎢⎢⎣

x0
D−1

x1
D−1
...

xc
D−1

⎤
⎥⎥⎥⎥⎦ , 1c+1 =

⎡
⎢⎢⎢⎢⎣

1

1
...

1

⎤
⎥⎥⎥⎥⎦

and S = {x0, x1, . . . , xD−1, 1c+1}. If we want to find a basis for S, then the
number of vectors in the basis must be larger than d + 1. Hence, there does
not exist a perfect autoencoder with linear activation functions that has the
compressed layer with d nodes. �
Remark 1. According to theorems 1 and 2, we know that the number of
nodes in the compression layer is at least rank(A) − 1 for the existence of a
perfect autoencoder.

Remark 2. Theorem 1 still holds for multilayer networks because compo-
sition of linear functions is a linear function.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 245

Remark 3. It is worth noting that for the above example, if x0 = x1, the
method for the case of D = 3, d = 1, and n = 2 does not work. The reason is
that in this case,

{[
x0

x1

]
,

[
1

1

]}

is not the maximal linearly independent subset of

{[
x0

x1

]
,

[
y0

y1

]
,

[
z0

z1

]
,

[
1

1

]}
.

More generally, if {x0, x1, . . . , xd−1, 1d+1} does not contain the maximal lin-
early independent subset of S, then in order to get a perfect autoencoder,
we cannot design the encoder f as f (xi) = [xi

0, xi
1, . . . , xi

d−1].

Remark 4. According to theorem 2, we need to calculate the rank of the
matrix A. For the large matrix A, it is not very easy to directly obtain its
rank, but we can use rank estimation methods to estimate its rank, such as
in Ubaru and Saad (2016).

4 Autoencoders with ReLU functions for Real Vectors

According to Kumano and Akutsu (2022), we can simulate a threshold func-
tion by using three ReLU functions in two layers. Hence, theorems 12, 19,
and 22 in Melkman et al. (2023) can be modified for ReLU functions such
that binary input vectors are replaced by real input vectors, with increasing
the number of layers by some constant and increasing the number of nodes
in some layers by twice (because one threshold function can be simulated
using three ReLU functions with two layers). Note that the compressed
layer still corresponds to binary vectors.

Specifically, given n different binary input vectors of dimension D, in
theorem 12 (Melkman et al., 2023), it is mentioned that there is a three-layer
network whose activation functions are Boolean threshold functions that
maps these vectors to n different binary vectors of dimension 2�√n� using
�√n� + D hidden nodes, and then in theorem 19 (Melkman et al., 2023), it
is mentioned that there is a five-layer perfect Boolean threshold network
autoencoder, whose encoding is constructed based on theorem 12, and the
number of nodes in its middle hidden layer is 2�√n�. Further, in theorem
22 (Melkman et al., 2023), it is mentioned that there is a seven-layer perfect
Boolean threshold network autoencoder, and compared with the autoen-
coder constructed in theorem 19, the number of nodes in the middle hidden
layer is reduced to 2�log

√
n�, although the number of layers is increased

by 2.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

246 L. Sun et al.

As in Melkman et al. (2023), we define an r-dimensional binary vector
hi[r] = [hi

0, . . . , hi
r−1] by

hi
j =

{
1 if j ≤ i,

0 otherwise.

We first modify theorem 12 in Melkman et al. (2023) for ReLU functions and
real input vectors as follows:

Theorem 3. Let r = �√n�. For any set of D-dimensional real vectors,

X = {x0, x1, . . . , xn−1},

where xi = [xi
0, xi

1, . . . , xi
D−1] and i ∈ [0 : n − 1], there exists a five-layer ReLU

neural network that maps xi to (hk[r], hl[r]), where i = kr + l with i ∈ [0 : n −
1], k ∈ [0 : r − 1], and l ∈ [0 : r − 1].

The neural network has D input nodes x j, j ∈ [0 : D − 1]; D + 2r nodes in the
second layer α1

i , α
1
r+i, i ∈ [0 : r − 1] and α2

j , j ∈ [0 : D − 1], D + r nodes in the
third layer β1

i , i ∈ [0 : r − 1] and β2
j , j ∈ [0 : D − 1], 3r nodes in the fourth layer

γ 1
i , i ∈ [0 : r − 1] and γ 2

i , γ 2
r+i, i ∈ [0 : r − 1], and 2r output nodes η1

i , η
2
i , i ∈ [0 :

r − 1] (see also Figure 1).

Proof. First, the nodes α2
j simply copy the input, α2

j = x j, j ∈ [0 : D − 1].
For any i ∈ [0 : r − 1], we choose si with cir−1 < si < cir, and there exists
an ε1

i > 0, such that si − ε1
i > cir−1 and si + ε1

i < cir. Let the ReLU activation
function of α1

i be

max

(
1

2ε1
i

(a · x − (si − ε1
i)), 0

)

and the ReLU activation function of α1
r+i be

max

(
1

2ε1
i

(a · x − (si + ε1
i)), 0

)
.

In the third layer, let β2
j = α2

j , j ∈ [0 : D − 1] and

β1
i = max

(
α1

i − α1
r+i, 0

)
, i ∈ [0 : r − 1].

Here, it is easy to see that β1 = hk[r].
In the fourth layer, the node γ 1

i copies β1
i , where i ∈ [0 : r − 1]. For any

i ∈ [0 : r − 1], there exists an ε2
i > 0 such that ckr+i − 3ε2

i > ckr+(i−1). Let the
ReLU activation function of γ 2

i be

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 247

Figure 1: Five-layer ReLU neural network. The circle nodes represent those car-
rying input and output information. Specifically, there are D input nodes xj, j ∈
[0 : D − 1] and 2r output nodes η1

i , η
2
i , i ∈ [0 : r − 1]. The arrows connecting the

circle nodes show that the states of nodes in the ith (i = 2, 3, 4, 5) layer are de-
termined based on the ReLU activation functions related to the states of some
nodes in the (i − 1)th layer.

max

(
1

2ε2
i

(a · β2 − ti − (0 − ε2
i)), 0

)

and the ReLU activation function of γ 2
r+i be

max

(
1

2ε2
i

(a · β2 − ti − (0 + ε2
i)), 0

)
,

where ti = ciβ
1
0 + (cr+i − ci)β1

1 + · · · + (c(r−1)r+i − c(r−2)r+i)β1
r−1 − 2ε2

i and i ∈
[0 : r − 1].

Finally, the output node η1
i copies γ 1

i , where i ∈ [0 : r − 1]. The ReLU
activation functions of the remaining output nodes η2

i , i ∈ [0 : r − 1] are
max

(
γ 2

i − γ 2
r+i, 0

)
. Here, we can observe that η2 = hl[r]. �

Example 1. Suppose that n = 16. Then, we have r = √
16 = 4, h0[r] = [1, 0,

0, 0], h1[r] = [1, 1, 0, 0], h2[r] = [1, 1, 1, 0], and h3[r] = [1, 1, 1, 1]. Furthermore,
x9 is mapped to (η1, η2) = (h2[r], h1[r]) because 9 = 2 · 4 + 1.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

248 L. Sun et al.

By modifying theorem 19 in Melkman et al. (2023) for ReLU functions
and real input vectors, we get the following theorem.

Theorem 4. Let r = �√n�. For any set of D-dimensional real vectors,

X = {x0, x1, . . . , xn−1},

where xi = [xi
0, xi

1, . . . , xi
D−1] and i ∈ [0 : n − 1], there exists a seven-layer per-

fect ReLU neural network autoencoder. There are 2r nodes in the middle layer
β1

i , β2
i , i ∈ [0 : r − 1]; rD nodes in the sixth layer ηi, j, i ∈ [0 : r − 1], j ∈ [0 : D −

1]; and D output nodes y j, j ∈ [0 : D − 1].

Proof. On top of the encoder constructed in the proof of theorem 3, we add
a decoder that is a two-layer ReLU neural network.

Here, we need to design a decoder that outputs y = xkr+l for an input
(hk[r], hl[r]). Let (β1, β2) = (hk[r], hl[r]). Note that (β1, β2) corresponds to
(η1, η2) in theorem 3.

First, we choose an ε, where

ε > max
(
{xi

j|i ∈ [0 : n − 1], j ∈ [0 : D − 1]}
)

.

Equip the node ηi, j, i ∈ [0 : r − 1], j ∈ [0 : D − 1] with the ReLU activation
function

max(−xi
jβ

1
0 + (−xr+i

j + xi
j)β

1
1 + · · · +

(−xr(r−1)+i
j + xr(r−2)+i

j)β1
r−1 + ε(β2

i − β2
i+1), 0),

where β2
r = 0.

Note that when β1 = hk[r], we have

−xi
jβ

1
0 + (−xr+i

j + xi
j)β

1
1 + · · · + (−xr(r−1)+i

j + xr(r−2)+i
j)β1

r−1 = −xkr+i
j ≤ 0.

Furthermore, when β2 = hl[r], we have

ε(β2
i − β2

i+1) =
{

ε if i = l,

0 otherwise.

Hence, the value of ηi, j is −xkr+l
j + ε if i = l and 0 otherwise.

Finally, the ReLU activation function of the output node yj is

max

(
r−1∑
i=0

(−1 · ηi, j) + ε, 0

)
,

where j ∈ [0 : D − 1]. �

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 249

Figure 2: Eleven-layer perfect ReLU neural network autoencoder (omit the first
4 layers). The circle nodes represent those carrying input and output informa-
tion. Specifically, there are 2m nodes ξ 1

j , ξ
2
j , j ∈ [0 : m − 1] in the middle layer

and D nodes yj, j ∈ [0 : D − 1] in the output layer. The arrows connecting the
circle nodes show that the states of nodes in the ith (i = 6, 7, . . . , 11) layer are
determined based on the ReLU activation functions related to the states of some
nodes in the (i − 1)th layer.

In theorem 4, the size of the middle layer is 2�√n�. Next, we reduce the
size of the middle layer from 2�√n� to 2�log

√
n� by increasing the number

of layers.

Theorem 5. Let r = �√n�. For any set of D-dimensional real vectors

X = {x0, x1, . . . , xn−1},

where xi = [xi
0, xi

1, . . . , xi
D−1] and i ∈ [0 : n − 1], there exists an 11-layer perfect

ReLU neural network autoencoder. There are 2�log
√

n� nodes in the middle layer
(see also Figure 2).

Proof. The first five layers are constructed in the proof of theorem 3, and
then the input xi maps to (hk[r], hl[r]). Let (β1, β2) = (hk[r], hl[r]). For ease
of exposition, we assume that r = 2m.

On (β1, β2), the ReLU activation functions for γ i
j , i = 1, 2, j ∈ [0 : m − 1]

can be computed as follows:

γ i
m−1 : max

(
5 ·

(
β i

r
2
− 0.5

)
, 0

)
,

γ i
m−2 : max

(
5 ·

(
β i

r
4
− β i

2r
4

+ β i
3r
4

− 0.5
)

, 0
)

,

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

250 L. Sun et al.

γ i
m−3 : max

(
5 ·

(
β i

r
8
− β i

2r
8

+ β i
3r
8

− β i
4r
8

+ · · · + β i
7r
8

− 0.5
)

, 0
)

,

...

γ i
0 : max

(
5 · (

β i
1 − β i

2 + β i
3 − β i

4 + · · · + β i
r−1 − 0.5

)
, 0

)
,

and the ReLU activation functions for γ i
m+ j, i = 1, 2, j ∈ [0 : m − 1] can be

computed as follows:

γ i
m+(m−1) : max

(
5 ·

(
β i

r
2
− 0.7

)
, 0

)
,

γ i
m+(m−2) : max

(
5 ·

(
β i

r
4
− β i

2r
4

+ β i
3r
4

− 0.7
)

, 0
)

,

γ i
m+(m−3) : max

(
5 ·

(
β i

r
8
− β i

2r
8

+ β i
3r
8

− β i
4r
8

+ · · · + β i
7r
8

− 0.7
)

, 0
)

,

...

γ i
m+0 : max

(
5 · (

β i
1 − β i

2 + β i
3 − β i

4 + · · · + β i
r−1 − 0.7

)
, 0

)
.

Let ξ i
j = max

(
γ i

j − γ i
m+ j, 0

)
, where i = 1, 2 and j ∈ [0 : m − 1]. Then ξ i

gives a binary representation (in the reverse order) of β i. For example, ξ i =
[1, 1, 0] for β i = [1, 1, 1, 1, 0, 0, 0, 0], where n = 64 and r = 8.

In the next layer, let the ReLU activation functions for ρ i
j, i = 1, 2, j ∈ [0 :

r − 1] be

max

(
1
ε

(
m−1∑
h=0

ξ i
h2h − (j − 2ε)

)
, 0

)

and the ReLU activation functions for ρ i
r+ j, i = 1, 2, j ∈ [0 : r − 1] be

max

(
1
ε

(
m−1∑
h=0

ξ i
h2h − (j − ε)

)
, 0

)
,

where 0 < ε < 0.5.
Let μi

j = max
(
ρ i

j − ρ i
r+ j, 0

)
, where i = 1, 2 and j ∈ [0 : r − 1]. Here, we

can find that μ1 = β1 and μ2 = β2.
Finally, the last two layers are constructed as shown in the proof of

theorem 4. �
In the above, the compressed layer corresponds to binary vectors. How-

ever, we can simply use a · xi to compress a D-dimensional vector to
a 1-dimensional vector (i.e., a scalar). As shown below, decoders can be

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 251

developed for this compressed scalar value by modifying the decoders in
the proofs of theorems 3 and 4.

Proposition 2. Let r = �√n�. For any set of D-dimensional real vectors X =
{x0, x1, . . . , xn−1}, where xi = [xi

0, xi
1, . . . , xi

D−1] and i ∈ [0 : n − 1], there exists
an eight-layer perfect ReLU neural network autoencoder.

The neural network has D input nodes x j, j ∈ [0 : D − 1] one node in the second
layer a · x, 2r + 1 nodes in the third layer α1

i , α
1
r+i, i ∈ [0 : r − 1] and α2, r + 1

nodes in the fourth layer β1
i , i ∈ [0 : r − 1] and β2, 3r nodes in the fifth layer γ 1

i , i ∈
[0 : r − 1] and γ 2

i , γ 2
r+i, i ∈ [0 : r − 1], 2r nodes in the sixth layer η1

i , η
2
i , i ∈ [0 :

r − 1], Dr nodes in the seventh layer ξi, j, i ∈ [0 : r − 1], j ∈ [0 : D − 1], and D
output nodes y j, j ∈ [0 : D − 1].

Proof. We have one node a · x in the second layer, which corresponds to an
encoder.

The decoder is obtained by simple modifications of the proofs of theo-
rems 3 and 4. We use the output of the second layer in place of a · x in the
activation function for each of α1

i in the proof of theorem 3. Furthermore,
we replace β2 by a single node copying a · x, whose value is also used in
place of a · β2 in the proof of theorem 3. Then, as in the proof of theorem 4,
we identify the nodes in (η1, η2) of the proof of theorem 3 with the nodes
in (β1, β2) in the proof of theorem 4. It is straightforward to see that this
modification gives a perfect autoencoder. �

Next, we consider memorizers, that is, functions for finite input samples.
The following theorem is shown in Zhang et al. (2017).

Theorem 6 (Zhang et al., 2017). There exists a three-layer neural network with
ReLU activations and 2n + D weights that can represent any function on a sample
of size n in D dimensions.

For ease of understanding, we explain this theorem briefly. Here, X =
{x0, x1, . . . , xn−1} denotes a set of n D-dimensional real input vectors that
are all different, and Y = {y0, y1, . . . , yn−1} denotes a set of n 1-dimensional
real outputs that all yi � 0.

Then there exist weights

w0,w1, . . . ,wn−1, b0, b1, . . . , bn−1, a,

such that b0 < a · x0 < b1 < a · x1 < · · · < bn−1 < a · xn−1, and a three-layer
neural network with ReLU activation functions can be designed as follows:

z j = max
(
a · x − b j, 0

)
, where j ∈ [0 : n − 1],

y = max

⎛
⎝n−1∑

j=0

w jz j, 0

⎞
⎠ .

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

252 L. Sun et al.

Figure 3: Four-layer ReLU neural network. The circle nodes represent those car-
rying input and output information. The arrows connecting the circle nodes
show that the states of nodes in the ith (i = 2, 3, 4) layer are determined based
on the ReLU activation functions related to the states of nodes in the (i − 1)th
layer.

Now, we consider reducing the number of nodes in the middle layer
from O(n) to O(

√
n) (although the number of layers increases by one).

Theorem 7. Let r = �√n�. For any set of D-dimensional real vectors,

X = {x0, x1, . . . , xn−1},

and any set Y = {y0, y1, . . . , yn−1} that all yi ∈ [−1, 1], i ∈ [0 : n − 1], there ex-
ists a four-layer ReLU neural network with 2r nodes in the second layer and 2r
nodes in the third layer (see also Figure 3) whose output value satisfies σ = yi + 1
for each input vector xi.

Proof. Here, the four-layer ReLU neural network we designed is based on
the four-layer fully connected neural network of theorem 3.1 in Yun et al.
(2019). Notably, in the proof of theorem 3.1 (Yun et al., 2019), it mainly indi-
cates that there is a four-layer fully connected neural network using hard-
tanh activation functions, which can fit any arbitrary data set {(xi, yi)}N

i=1,
where all inputs xi ∈ Rdx are distinct and all yi ∈ [− 1, 1]. Although our
construction is very similar to their construction, there are some differences
because they use a neural network with hard-tanh activation functions.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 253

Therefore, in this proof, we mainly describe our construction of the ReLU
neural network with briefly explaining the differences from that in Yun et al.
(2019). The full proof is given in the online supplemental material.

For ease of exposition, we assume that r = √
n and r is a multiple of 2.

Divide total n input vectors into r groups with r vectors each.
First, let the ReLU activation functions for β1

j , j ∈ [0 : r − 1] be

max (f1(x) + 1, 0) ,

and the ReLU activation functions for β2
j , j ∈ [0 : r − 1] be

max (f1(x) − 1, 0) ,

where

f1(x) = (−1) j−1 4a · x
c jr+r−1 + c(j+1)r − c(j−1)r+r−1 − c jr

+

(−1) j c jr+r−1 + c(j+1)r + c(j−1)r+r−1 + c jr

c jr+r−1 + c(j+1)r − c(j−1)r+r−1 − c jr
,

where each ci is a constant given in equation 2.1. Here, we should note that
γ j = β1

j (x) − β2
j (x) − 1 is similar to the output of the jth node of the first

hidden layer α1
j (x) in theorem 3.1 (Yun et al., 2019). More specifically, when

j is even, we have

−1 < β1
j (x jr+r−1) − β2

j (x jr+r−1) − 1 < · · · < β1
j (x jr) − β2

j (x jr) − 1 < 1,

β1
j (xi) − β2

j (xi) − 1 = −1, if i > jr + r − 1,

β1
j (xi) − β2

j (xi) − 1 = 1, if i ≤ (j − 1)r + r − 1.

When j is odd, we have

−1 < β1
j (x jr) − β2

j (x jr) − 1 < · · · < β1
j (x jr+r−1) − β2

j (x jr+r−1) − 1 < 1,

β1
j (xi) − β2

j (xi) − 1 = −1, if i < jr,

β1
j (xi) − β2

j (xi) − 1 = 1, if i ≥ (j + 1)r.

In the next layer, let the ReLU activation functions for ξ 1
k , k ∈ [0 : r − 1]

be

max

(
r−1∑
l=0

wk,l (β1
l (x) − β2

l (x) − 1) + bk + 1, 0

)

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

254 L. Sun et al.

and the ReLU activation functions for ξ 2
k , k ∈ [0 : r − 1] be

max

(
r−1∑
l=0

wk,l (β1
l (x) − β2

l (x) − 1) + bk − 1, 0

)
,

where wk = [wk, 0, wk, 1, . . . , wk, r−1] and bk are solutions of the following
equations:

r−1∑
l=0

wk,lγl (xik, j) + bk = yik, j , j ∈ [0 : r − 1],

under the condition that each element of wk is sufficiently large negative
(resp., positive) when k is even (resp., odd). The main difference from Yun
et al. (2019) is that we define set Ik, k ∈ [0 : r − 1] as

Ik := {k, 2r − 1 − k, 2r + k, 4r − 1 − k, . . . , r2 − 1 − k},

where ik, j, j ∈ [0 : r − 1] are used to represent the elements in the set Ik, and
ik,0 = k, ik, 1 = 2r − 1 − k, . . . , ik,r−1 = r2 − 1 − k.

Finally, in the last layer, let σ = max
(∑r−1

l=0 (ξ 1
l − ξ 2

l − 1), 0
)

. Here,

ξ 1
l (x) − ξ 2

l (x) − 1, l ∈ [0 : r − 1] is similar to the output of the lth node of the
second hidden layer α2

l (x) in theorem 3.1, and for j ∈ [0 : r − 1] and k ∈ [0 :
r − 1], we also have

σ =
r−1∑
l=0

(ξ 1
l (xik, j) − ξ 2

l (xik, j) − 1) = yik, j + 1.

�
Remark 5. When yi, i ∈ [0 : n − 1] is any real number, we can also construct
a four-layer ReLU neural network. First, let

ymax = max(y0, y1, . . . , yn−1), ymin = min(y0, y1, . . . , yn−1)

and

ymean = y0 + y1 + · · · + yn−1

n
.

By means of zi = yi−ymean

ymax−ymin
, we can scale the elements yi ∈ Y to −1 � zi � 1,

and then put {z0, z1, . . . , zn−1} as outputs; then we can construct a four-layer
ReLU neural network as shown in theorem 7. Only for the last layer do we
change it to

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 255

σ = (ymax − ymin) · max

(
r−1∑
l=0

(ξ 1
l − ξ 2

l − 1), 0

)
+ ymean − ymax + ymin.

Remark 6. It is worth noting that theorem 1 in Zhang et al. (2017) (i.e., the-
orem 6 in this article) shows that there exists a two-layer neural network.
Similarly, theorem 3.1 in Yun et al. (2019) shows that there is a three-layer
hard-tanh, fully connected neural network. However, since here we regard
the input layer as the first layer, to avoid confusion, the number of layers is
increased by 1 when we describe the neural networks of theorems 1 and 3.1
in this article.

5 Computational Experiments

In order to test whether some of the autoencoder (memorizer) architectures
obtained through theoretical analyses can be used in the design of practi-
cal neural networks, we conducted some computational experiments using
neural networks. Here, the activation functions are learned from input and
output data. All numerical experiments were conducted on a PC with Xeon
Gold 5222 CPU and A100 GPU under the Ubuntu 18.04.

First, we performed computational experiments on theorem 4, consider-
ing the use of 256 36-dimensional real vectors as input vectors and 324 40-
dimensional real vectors as input vectors, respectively. For the training of
neural networks with gaussian error linear unit (GELU) functions (Dubey
et al., 2022), we employed the Adam optimizer in PyTorch with a learning
rate 0.01 and 800 epochs repetition. The specific process is as follows.

Step 1: Generate a neural network N with the architecture given in the-
orem 4.

Step 2: Randomly generate D-dimensional real vectors x0, x1, . . . , xn−1,
where each xi

j ∈ [0, 2], i = 0, 1, . . . , n − 1, j = 0, 1, . . . , D − 1.
Step 3: Train N using x0, x1, . . . , xn−1 for both input and output data.
Step 4: Compute the training accuracy of the trained N using x0, x1, . . . ,

xn−1 as the input data. Assuming y0, y1, . . . , yn−1 are the corresponding
output data, the training accuracy is defined as

∑n−1
i=0

∑D−1
j=0 I[−0.2,0.2]

(
yi

j − xi
j

)
n · D

, (5.1)

where I[−0.2,0.2]

(
yi

j − xi
j

)
is an indicator function, that is,

I[−0.2,0.2]

(
yi

j − xi
j

)
=

{
1 if yi

j − xi
j ∈ [−0.2, 0.2],

0 otherwise.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

256 L. Sun et al.

Table 2: Results of Computational Experiments on Theorem 4.

Architecture D n d Training Accuracy

Theorem 4 36 256 32 0.9899
Theorem 4 40 324 36 0.9837

Table 3: Results of Computational Experiments on Theorem 7.

Architecture D n d Training Accuracy

Theorem 7 36 256 32 1.0000
Theorem 7 40 324 36 1.0000

We repeated this procedure 100 times to obtain the average training accu-
racy; the results are shown in Table 2.

In the above experiment, we used the GELU function instead of the ReLU
function, mainly because we found that the training accuracy obtained by
training a neural network with ReLU functions was not ideal. We believe
that the main reason for this phenomenon is that the neural network con-
structed by theorem 4 has a slightly large number of layers and relatively
complex connection methods for each layer. Using the GELU function, de-
scribed as a smoother version of the ReLU function, for neural network
training can provide smoother gradients, which can help maintain gradient
flow in complex models and avoid problems such as vanishing or exploding
gradients. In contrast, when the data range is small and the network hierar-
chy is complex, using the ReLU function may lead to numerical instability,
thereby affecting the convergence and final performance of the model.

Subsequently, we also conducted experiments using neural networks
with ReLU functions on theorem 7, and the process is similar to that men-
tioned above. Here, generate a neural network N with the architecture
given in theorem 7 and randomly generate data set {xi, yi}n−1

i=0 , where xi ∈
RD (each xi

j ∈ [0, 1], i = 0, 1, . . . , n − 1, j = 0, 1, . . . , D − 1) is the input and
yi ∈ [− 1, 1] is the output. Consider two cases: D = 36, n = 256 and D = 40,
n = 324. We also repeated this procedure 100 times and recorded the aver-
age training accuracy in Table 3. Here, the training accuracy is defined as

∑n−1
i=0 I[−0.2,0.2] (ŷi − yi)

n
, (5.2)

where ŷi is the output obtained by the trained neural network N using xi

as the input data and

I[−0.2,0.2] (ŷi − yi) =
{

1 if ŷi − yi ∈ [−0.2, 0.2],

0 otherwise.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

Compressive Power of Autoencoders With ReLU Functions 257

The above experimental results indicate that our proposed architec-
tures may provide useful insights for designing practical autoencoders
(memorizer).

6 Discussion

In this article, we studied relations between the compressed vectors and
the depth and width (the number of node in a layer) of autoencoders with
real input and output vectors using linear and ReLU activation functions,
under the condition that the input and output vectors must be the same.
The results on ReLU activation functions suggest that we can achieve the
same compression ratio as in the case of binary input and output vectors
(Melkman et al., 2023) using similar archtectures. The results are interest-
ing because real input and output vectors can be handled by replacing lin-
ear threshold activation functions with ReLU activation functions, where
some modifications are required. Furthermore, the results on linear activa-
tion functions suggest that ReLU activation functions are much more pow-
erful than linear activation functions with respect to autoencoders with real
input and output vectors.

Although we have mainly given upper bounds on the depth and width,
we have not shown any lower bounds for autoencoders using ReLU acti-
vation functions. Note that a lower bound of �(

√
Dn/d) is known for the

width of autoencoders using linear threshold activation functions (Akutsu
& Melkman, 2023). However, the techniques used there heavily depend on
properties of Boolean functions and thus cannot be applied to the case of
ReLU activation functions. Thus, showing lower bounds on autoencoders
with ReLU activation functions is left as future work. For the case of d =
�log n�, an O(

√
Dn) upper bound is shown for the width of autoencoders

using linear threshold activation functions (see corollary 8 of Akutsu &
Melkman, 2023), which is better than an O(D

√
n) upper bound shown in

Melkman et al. (2023) and this article. Hence, development of an autoen-
coder with width O(

√
Dn) using ReLU activation functions is also left as

future work. Furthermore, it is interesting to study whether it is possible
to develop autoencoders with a smaller width using ReLU activation func-
tions than those using linear threshold activation functions.

In our definition of the perfect autoencoder, we assumed that the input
vectors must be the same as the output vectors. But in practical situations,
the input and output vectors need not be the same but should be similar.
For the case of autoencoders with linear threshold activation functions, it is
shown that the width of the decoder part can be reduced by a constant fac-
tor if some Hamming distance error is allowed (Akutsu & Melkman, 2023).
However, the techniques used in that study cannot be applied to real input
and output vectors because the Hamming distance cannot be directly gener-
alized to real vectors and the construction of autoencoders heavily depends
on binary values. Therefore, conducting theoretical studies on autoencoders

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

258 L. Sun et al.

allowing errors between real input and output vectors is interesting and im-
portant future work.

Another drawback of this work is that the proposed design methods are
somewhat ad hoc. However, most of the designed architectures are based on
existing ones for binary vectors using linear threshold activation functions,
and the main purpose of this article is to extend such existing ones to a more
practical setting (i.e., real vectors using ReLU activation functions). There-
fore, this work can be considered an important step toward understanding
data compression mechanisms of autoencoders in more practical settings.
Of course, many other practical activation functions are known (Apicella
et al., 2021; Dubey et al., 2022). Therefore, important future work is to de-
velop more general design methods that can be applied to many practical
activation functions.

Acknowledgments

T.A. was partially supported by grants-in-aid 22H00532 and 22K19830 from
JSPS, Japan; W.C. was partially supported by Hong Kong RGC GRF grant
17301519, IMR, and Hung Hing Ying Physical Sciences Research Fund,
HKU.

References

Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltz-
mann machines. Cognitive Science, 9(1), 147–169.

Akutsu, T., & Melkman, A. A. (2023). On the size and width of the decoder of a
Boolean threshold autoencoder. IEEE Transactions on Neural Networks and Learning
Systems, (PP)99, 1–8. 10.1109/TNNLS.2023.3342818

Apicella, A., Donnarumma, F., Isgró, F., & Prevete, R. (2021). A survey on modern
trainable activation functions. Neural Networks, 138, 14–32. 10.1016/j.neunet.2021
.01.026

Baldi, P. (2012). Autoencoders, unsupervised learning, and deep architectures. In
Proceedings of ICML Workshop on Unsupervised and Transfer Learning, 27 (pp. 37–
49).

Baldi, P., & Hornik, K. (1989). Neural networks and principal component analy-
sis: Learning from examples without local minima. Neural Networks, 2(1), 53–58.
10.1016/0893-6080(89)90014-2

Delalleau, O., & Bengio, Y. (2011). Shallow vs. deep sum-product networks. In S.
Hanson, J. Cowan, & C. Giles (Eds.), Advances in neural information processing sys-
tems, 24 (pp. 666–674). MIT Press.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv:1606.05908.
Dubey, S. R., Singh, S. K., & Chaudhuri, B. B. (2022). Activation functions in deep

learning: A comprehensive survey and benchmark. Neurocomputing, 503, 92–108.
10.1016/j.neucom.2022.06.111

Gömez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, Sánchez-
Lengeling, Sheberla, . . . Aspuru-Guzik, A. (2018). Automatic chemical design

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

https://doi.org/10.1109/TNNLS.2023.3342818
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1016/0893-6080(89)90014-2
https://doi.org/10.1016/j.neucom.2022.06.111

Compressive Power of Autoencoders With ReLU Functions 259

using a data-driven continuous representation of molecules. ACS Central Science,
4(2), 268–276.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504–507. 10.1126/science.1127647

Kärkkäinen, T., & Hänninen, J. (2023). Additive autoencoder for dimension estima-
tion. Neurocomputing, 551, 126520.

Kumano, S., & Akutsu, T. (2022). Comparison of the representational power of ran-
dom forests, binary decision diagrams, and neural networks. Neural Computation,
34(4), 1019–1044. 10.1162/neco_a_01486

Lee, S., & Jo, J. (2021). Information flows of diverse autoencoders. Entropy, 23(7), 862.
Melkman, A. A., Guo, S., Ching, W-K., Liu, P., & Akutsu, T. (2023). On the com-

pressive power of Boolean threshold autoencoders. IEEE Transactions on Neural
Networks and Learning Systems, 34(2), 92–931. 10.1109/TNNLS.2021.3104646

Montufar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of linear
regions of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N.
Lawrence, & K. Q. Weinberger (Eds.), Advances in neural information processing
systems, 27 (pp. 2924–2932). Curran.

Tapia, N. I., & Estévez, P. A. (2020). On the information plane of autoencoders.
In Proceedings of the 2020 International Joint Conference on Neural Networks
(pp. 1–8).

Tschannen, M., Bachem, O., & Lucic, M. (2018). Recent advances in autoencoder-based
representation learning. arXiv:1812.05069.

Ubaru, S., & Saad, Y. (2016). Fast methods for estimating the numerical rank of large
matrices. In Proceedings of the 33rd International Conference on Machine Learning (pp.
468–477).

Vershynin, R. (2020). Memory capacity of neural networks with threshold and rec-
tified linear unit activations. SIAM Journal on Mathematics of Data Science, 2(4),
1004–1033. 10.1137/20M1314884

Yu, S., & Príncipe, J. C. (2019). Understanding autoencoders with information theo-
retic concepts. Neural Networks, 117, 104–123. 10.1016/j.neunet.2019.05.003

Yun, C., Sra, S., & Jadbabaie, A. (2019). Small ReLU networks are powerful memo-
rizers: A tight analysis of memorization capacity. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural
information processing systems, 32 (pp. 15532–15543). Curran.

Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. (2017). Understanding deep
learning requires rethinking generalization. In Proceedings of the International Con-
ference on Learning Representations.

Received April 3, 2024; accepted October 2, 2024.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/37/2/235/2482171/neco_a_01729.pdf by guest on 19 April 2025

https://doi.org/10.1126/science.1127647
https://doi.org/10.1162/neco_a_01486
https://doi.org/10.1109/TNNLS.2021.3104646
https://doi.org/10.1137/20M1314884
https://doi.org/10.1016/j.neunet.2019.05.003

