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Weather SDM: estimating snow density with high

precision using snow depth and local climate

Oddbjørn Bruland, Åshild Færevåg, Ingelin Steinsland, Glen E. Liston

and Knut Sand
ABSTRACT
Snow density is an important measure in hydrology used to convert snow depth to the snow water

equivalent (SWE). A model developed by Sturm, Tara and Liston predicts the snow density by using

snow depth, the snow age and a snow class defined by the location. In this work this model is

extended to include location and seasonal weather-specific variables. The model is named Weather

Snow Density Model (Weather SDM). A Bayesian framework is chosen, and the model is fitted to and

tested for 4,040 Norwegian snow depth and densities measurements between 1998 and 2011. The

final model improved the snow density predictions for the Norwegian data compared to the model of

Sturm by up to 50%. Further, the Weather SDM is extended to utilize local year-specific snow density

observations (Weather&ObsDensity SDM). This reduced the prediction error an additional 16%,

indicating a significant improvement when utilizing information provided by annual snow density

measurements.
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INTRODUCTION
Approximately 60% of the precipitation in Norway falls as

snow, and the snow storage is essential for flood and ava-

lanche forecasting and warning, climate research and

hydropower production. In hydropower production snow

represents energy storage, and exact estimates of the snow

storage, or snow water equivalent (SWE), are important

for power generation scheduling. The value of the Norwe-

gian snow storage is approximately 4 billion US dollars in

an average year, and hence small errors in snow storage esti-

mates can represent large values. SWE is determined by

snow depth and snow density. Snow depth typically has

higher variability and is most strongly correlated to SWE,

but is also far easier and less time-consuming to observe

than snow density. SWE in Norway has traditionally been

observed by measuring snow depths along snow courses

selected to describe the topographical variability in the

catchment. At least three density samples are recommended

for each course, giving between one and two samples per 20

depth measurements. Even though this is more than
reported by Sturm et al. (), the uncertainty related to

snow storage estimates are high. The amount of snow

depth data possible to collect has increased significantly

over the 15 last years by use of snow radar (Bruland et al.

; Lundberg et al. , ) which now are in oper-

ational use among Norwegian hydropower producers. If

also LiDAR (Sturm et al. ) is taken into operational

use among hydropower producers, the amount of snow

depth observations will further increase. With better

description of snow depth variability, snow density estimate

errors become more predominant in the estimation of the

areal SWE. There is thus an increased focus on improving

snow density estimates.

The density of snow is a result of the climate during the

snow accumulation period and the overlaying weight of

snow. Different models have been developed to calculate

the snow density. Steppuhn () and Lundberg et al.

() indicated that there is correlation between snow

depth and density, but Steppuhn found only a weak
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correlation at snow depths deeper than 85 cm. Elder et al.

() found that a linear model based on net solar radi-

ation, elevation and slope could explain 70% of the

variation in observed snow densities. Jonas et al. ()

was able to estimate SWE with an accuracy equivalent to

the variability of repeated SWE measurements at one site

in the Swiss Alps by using a snow density model (SDM)

based on information about season, snow depth, site alti-

tude, and site location. CROCUS (Brun et al. ), Alpine

3D (Lehning et al. ) and SnowTran-3D (Liston &

Sturm ; Liston & Elder ) are all models describing

snow density as a function of snow depth, snow age and

snow metamorphism. However, with the exception of

SnowTran-3D, these models are all complex with an

extensive need for detailed information and thus computa-

tionally intensive to run over large domains. Sturm et al.

() introduced a model that estimates the local snow

bulk density using snow depth, snow age and snow climate

classes from Sturm et al. (). They found that the relative

errors in SWE using this density model were of the same

magnitude as SWE that would be encountered at a single

site due to local variability. Thus, the simplicity of the

method, as well as the low requirements of input data,

makes the method presented in Sturm et al. () interest-

ing for testing for operational applications for hydropower

producers in Norway.

In Norway there are large differences in local climate

and topography, and it is questionable whether the climate

classes used in Sturm’s model cover the regional and tem-

poral variations found here. Statkraft is the largest

hydropower producer in Norway and has an extensive

data set of snow surveys including more than 37,000 snow

density observations from 982 locations in Norway. In this

study we test how well Sturm’s model, with the defined cli-

mate classes, reproduces these observations. We further

introduce and test new SDMs based on Sturm’s model:

Weather SDM. In Weather SDM, local and season-specific

observed weather quantities as well as other local explana-

tory variables are included in the SDM. The Weather

SDM, like Sturms’s model, can be used for areas without

snow density observations. We introduce also a version of

Weather SDM where we can include year and area-specific

snow density observations in the model. A Bayesian frame-

work is chosen for modeling and inference. For a
://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
thorough introduction to Bayesian statistics relevant to this

study, see e.g. Gamerman & Lopes (). Parameters are

then considered random variables, and are given prior distri-

butions. These distributions are updated using the data

through the model for the observations given the par-

ameters, known as the likelihood. This results in posterior

probability distributions for the parameters, and it is

common to report properties of posterior distribution such

as the posterior mean and the posterior standard deviation.

We further test whether the models reproduce the obser-

vations satisfactorily, and thus whether they can be used

operationally. In this study, a selection of 4,040 of Statkraft’s

snow density observations from different areas in Norway

between 1998 and 2011 are used to fit and test the models.

This work is based on a Master thesis (Færevåg ), and

more details can be found there.
BACKGROUND

Observed snow densities vary normally between 0.1 g/cm3

for new fallen snow to 0.5 g/cm3 and sometimes higher,

for wind-packed, icy or wet snow. Sturm et al. ()

developed a model that estimates the snow bulk density

based on data from the USA, Canada and Switzerland.

It takes snow depth, snow age and snow class as input

variables. The snow class is found by a classification

system for seasonal snow cover proposed in Sturm et al.

(). It has six classes, where each class is defined in

terms of physical characteristics of the snow and the

snow layers. The classes are derived for each location by

using wind, precipitation and air temperature climate vari-

ables found from a set of weather stations. The snow

classes in Scandinavia are shown in Figure 1 and in

Norway tundra and maritime snow are dominant.

Sturm et al. () model snow density observation Y as

beta distributed with an expected value that is a function of

snow depth (h) in cm, the day of year (DOY) for the

measurement, and the snow class parameters k1, k2, ρ0

and ρmax

E(Y) ¼ ρ

¼ (ρmax � ρ0)[1� exp (� k1 � h� k2 �DOY)]þ ρ0 (1)



Figure 1 | Snow class distribution in Norway. Source: Liston & Hiemstra (2011).
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where 0< ρ0� ρmax< 1. k1 and k2 are the densification par-

ameters for depth and DOY, ρmax is maximum bulk density

and ρ0 is the initial density of the individual snow layer. The

snow class parameters are given in Table 1. The snow

season begins early in October, and DOY represents the

effect of snow ageing and the number of days in the winter

season.

The beta distribution has two parameters, and using a

parameterization with the expected value as one of the par-

ameters, the other parameter is often called the precision

and is modeled by Sturm et al. () as

ω ¼ exp (β0 þ β1 � h)
1þ exp (β0 þ β1 � h)

, (2)

where β0 ∼ uniform(� 10, 1) and β1 ∼ uniform(� 0:1, 0).

A Norwegian data set with 37,000 snow density obser-

vations from the years 1930 to 2012 is used for comparing
Table 1 | Model parameters for each snow class (Sturm et al. 2010)

Snow class ρmax ρ0 k1 k2

Tundra 0.3630 0.2425 0.0029 0.0049

Maritime 0.5979 0.2578 0.0010 0.0038

Prairie 0.5940 0.2332 0.0016 0.0031

Alpine 0.5975 0.2237 0.0012 0.0038

Taiga 0.2170 0.2170 0.0000 0.0000
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snow density estimation methods developed in this study

with traditional estimation methods. The overall character-

istics of the snow density and depth in the data set

are given in Figure 2. The highest observed density is

0.656 g/cm3 and the lowest is 0.052 g/cm3. The average is

0.33 g/cm3 with a standard deviation of 0.07 g/cm3. 95%

of the observations are between 0.20 and 0.48 g/cm3

(Figure 2(a)). Figure 2(b) shows that both snow depth and

snow density increase through the season and data analysis

shows that 29% of the observed variance in snow densities

in this data set can be explained by snow age and depth.

Calculation of SWE for a catchment is normally based

on the average snow density or a density found by using

the snow depth/snow density relation from the observations

at the time of the measurement campaign. In the data set

one campaign has on average 15 density observations in

each catchment. Split sample analysis of this data set

shows that the average error when estimating a snow density

based on mean values is 9.9%. In a data set with less than 13

observed densities the density is better estimated when using

average density than using a linear relation between density

and depth found from the observations (Figure 3(d)).

Figure 3 further shows that the error has increased over

the years (Figure 3(a)) and decreases with snow depth

(Figure 3(b)) and number of observations (Figure 3(d)) for

both methods. The errors are largest for densities below

0.1 g/cm3 and above 0.5 g/cm3 (Figure 3(c)).



Figure 2 | (a) Snow density distribution and (b) average snow densities during the winter.
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Apart from snow depth, the model of Sturm et al. ()

does not include the variability in the density due to yearly

variability in the climate. Using the snow classes to predict

the snow density means that as long as snow depths

measured on the same date in various years are equal and

all other conditions are unchanged, then the estimated den-

sity will be equal too. The historical records of density

measurements in Norway show that the errors in snow den-

sity estimations have increased over the years since 1930

(Figure 3(a)). As long as density observation methodology

is unchanged, this indicates changing conditions and thus
Figure 3 | Snow density estimation errors when using traditional methods.

://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
a need for a methodology that takes into account long-

term changes in addition to year-specific conditions.
DATA AND MODELING

Snow data and meteorological data

The analysis, model development and testing in this

paper are based on snow depth and snow density obser-

vations from 244 locations within 17 different areas
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(see Figure 4), and covers most prevailing climates in

Norway. Table 2 displays the characteristics of the

snow data and climate for each of the measurement

areas as well as number of locations in each area and

the number of snow measurements used in each area.

The snow measurements are from the period February

to May with the majority between mid-February and

mid-April. The year-to-year variation in snow densities

and concurrent snow depths for Area F can be seen in

Figure 5. The measurement in this area is done in the

same period each year, and the between-year variability

seen here cannot be explained by snow depth and cli-

mate characteristics only. Therefore, models that also

account for year-to-year variations in weather are

proposed.

In the proposed models, weather variables that are

based on observed temperature, precipitation and wind

are used. This meteorological information is obtained

from meteorological stations within the areas and covers

both data from the Norwegian Meteorological office

(Met.no) and Statkraft’s meteorological station network

(Figure 4).
Figure 4 | Locations of the study 17 areas grouped in six main groups (A–F). Circles mark pos

om http://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
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Temperature normally decreases with elevation, and

location-specific temperature is calculated from the closest

weather station observations using Equation (3):

T ¼ T0 þ a(z� z0), (3)

where T is the air temperature to be found for the location

of interest at elevation z and T0 and z0 are the air tempera-

ture and elevation (masl) of the representative weather

station and a is the temperature gradient from a nearby

calibrated precipitation–runoff model.

The precipitation measurements are corrected for catch

loss using local wind measurement and corrections

suggested by Førland et al. ().
Construction of weather variables

In addition to the two explanatory variables used in Sturm

et al. (), snow depth and DOY, seven new explanatory

variables are introduced. These variables are denoted

x1, x2,… , x9. Most of the proposed explanatory variables
itions of meteorological stations.



Table 2 | Number of sub-locations, observed mean snow depth, snow density, snow water equivalent, total number of measurements (n), and information about the climate for the period

November–April for each measurement area

Temp Wind

ID Area No. of locations Depth (cm) Density (g/cm3) SWE (mm) n Mean Max Min Mean Max Precip total

1 Adamselv 5 74.1 0.345 26.4 42 �5.7 15.0 �26.0 4.5 21.1 49

2 Alta 1 51.7 0.266 13.4 18 �8.4 11.3 �38.8 2.2 16.7 101

3 Aura/Grytten 24/3 119.3 0.349 43.2 439 �0.9 20.0 �30.0 2.5 19.6 437

4 Tysso-Folgefonn 12 219.5 0.390 87.7 168 �2.1 15.0 �23.7 2.8 27.0 912

5 Innset 32 90.5 0.282 27.1 556 �5.8 15.0 �40.0 2.2 13.9 366

6 Jostedalen 1 190.3 0.327 64.1 39 �2.6 12.2 �25.3 1.6 22.0 631

7 Kobbelv 7 162.5 0.414 68.8 188 �3.8 12.8 �30.9 5.1 27.7 514

8 Nea-Nidelv 10 108.8 0.338 36.6 144 �4.1 16.9 �34.5 2.7 19.9 273

9 Nore 19 81.8 0.295 25.2 306 �6.4 16.2 �39.2 2.8 26.1 276

10 Rana 9 107.4 0.315 35.3 254 �4.4 14.5 �46.7 1.2 17.7 457

11 Røssåga 15 103.3 0.353 37.7 273 �3.0 15.0 �26.9 1.6 9.8 1145

12 Skjomen 24 123.6 0.34 43.4 324 �3.4 18.9 �25.7 3.0 50.0 273

13 Svorka/Trollheim 3/9 126.5 0.376 50.3 243 �1.8 18.1 �34.4 1.6 50.0 599

14 Tokke 40 99.9 0.306 31.9 535 �3.4 17.6 �34.9 1.8 24.6 604

15 Ulla-Førre 10 138.6 0.398 57.6 243 �0.7 21.7 �26.5 3.6 29.9 1143

16 Vik/Høyanger 5/2 184.8 0.384 75.4 191 �3.4 14.4 �45.0 4.4 23.2 668

17 Sira-Kvina 13 82.3 0.339 28.8 77 �3.0 16.2 �29.0 2.2 11.5 658

Total 244 118.2 0.337 42.5 4040 �3.7 21.7 �46.7 2.7 50.0 536

Figure 5 | Observed snow density in the Ulla-Førre area in the period 1983–2012. Corresponding snow depths are shown as bars at the bottom of the plot.
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are based on weather observations and state variables from

nearby calibrated precipitation–runoff models. The ratio-

nales behind choosing these explanatory variables, as well

as details of how they are derived, are given below.

Several accumulated weather variables are introduced,

and these are calculated for each snow density observation.
://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
All accumulated weather variables are calculated based on

hourly observations from a snow accumulation start time

t¼A0 to the day of the snow density observations

(DOY). Snow accumulation calculations in HBV models

established for catchments in the vicinity are used to set

the accumulation start time A0. If there was snow falling
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prior to A0, the model would have found that this has

melted away. The snow accumulation start time A0 is

thus the most recent date snow accumulation started, i.e.

when the observed snow layer started to accumulate. The

diurnal snow melt and accumulation have to be calculated

on an hourly basis, but can be summarized and represented

as daily values for numerical convenience in the further

calculations.
Snow depth, snow age and elevation

The snow density increases with age and higher com-

paction (snow depth). x1 represents the observed snow

depth of the measurement, which is the accumulated

sum of new and old snow. x2 is the DOY the measurement

is carried out, representing the snow age. DOY starts

at �92, the 1 October and runs to þ181, 30 June. If

DOY is 1, it means that the snow depth and density is

measured on 1 January. x3 is the elevation, or the height,

in meters above sea level (masl) of the location of the

measurement.
Positive degrees

In order to include the influence of high temperatures on

the snow density, x4 is the accumulated sum of positive

degrees.
Wind

Wind speed less than 2 m/s is here assumed to have no

effect on the snow density. The variable x5 is a measure of

the accumulated sum of wind velocities above 2 m/s while

temperature is below freezing point.
Snowfall and wind

x6 is the amount of accumulated precipitation falling as

snow when there is wind

x6 ¼ 1
H

XDOY

t¼A0

Pt � I Tt < 0f g I Wt > 0f g: (4)
om http://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
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Precipitation type

Under which conditions the precipitation is falling can influ-

ence the density of the snow. This is quantified by classifying

precipitation in three categories and using the ratio of each

class as explanatory variable: x7 is ratio of the total precipi-

tation that comes when there is snow, x8 mixed snow and

rain and x9 when it is raining

x7 ¼ 1
Ptot

XDOY

t¼A0

Pt � I Tt <�Tsf gI Wt > 0f g,

x8 ¼ 1
Ptot

XDOY

t¼A0

Pt � I Ts < Tt < Trf g I Wt > 0f g,

x9 ¼ 1
Ptot

XDOY

t¼A0

Pt � I Tt > Trf gI Wt > 0f g:

(5)

Ptot is the total precipitation at the location of each

snow density observation. Ts and Tr are threshold tempera-

tures for precipitation as snow and rain, respectively,

found from the nearest located HBV models.
Weather snow density model (Weather SDM)

The model of Sturm et al. () is extended by allowing

more explanatory variables in the model of the expected

snow density. A general form of the model is given by

ρ ¼ (ρmax � ρ0) 1� exp
Xv
v¼1

�kvxv

 !" #
þ ρ0, (6)

where xv is the explanatory variable number v introduced

in the section Construction of weather variables for each

observation and kv the associated densification parameter

to be estimated. Model performance will define which

variables are to be included in the final model. To

complete a Bayesian model specification, prior distri-

butions for all parameters both in Equations (6) and (7)

and Equation (2) need to be specified. Following

Sturm et al. (), uniform prior distributions are

used, but the range needs to be wider due to other

covariates: kv ∼ uniform(0, 0:08), ρ0 ∼ uniform(0:1, 0:5),

ρmax ∼ uniform(0:3, 0:8).



501 O. Bruland et al. | Weather SDM: a model for estimating snow density Hydrology Research | 46.4 | 2015

Downloaded from http
by guest
on 15 January 2025
Observed density extended weather SDM

(Weather&ObsDensity SDM)

The Weather SDM presented above can be used to esti-

mate snow density only using weather variables and

snow depth. It is likely that there exist effects caused by

weather and local conditions that Weather SDM does

not capture. These effects can probably only be

captured by local snow density observations. A reasonable

hypothesis is thus that if there are snow density

observations available for the specific year and area

of interest, a better estimate can be obtained by

using these in the model. Weather&ObsDensity SDM, a

version of Weather SDM that allows us to utilize snow

density observations for a given area and year, is

therefore introduced. This is done by extending the

Weather SDM in Equation (6) to also include

random effects ∈ j,m that are unique for each year (m)

and area ( j).

ρ ¼ ρmax � ρ0ð Þ 1� exp
Xv
v¼1

�kvxv� ∈ j,m

 !" #
þ ρ0: (7)

The j different areas are likely to have different overall

responses for each year m. The model accounts for this by

including a term ∈ j,m that can be interpreted as a correc-

tion factor for area j in year m. The parameters are given

the same prior distributions as for the Weather SDM, and

the random effects ∈ j,m are given uniform prior distri-

bution ∈ j,m∼ uniform(� 0:1, 0:1).
Inference and evaluation

It is only possible to analytically derive posterior probability

distributions in a few special cases. In most cases, including

the models presented above, numerical approximations

have to be used. A powerful method for doing Bayesian

inference is the Markov Chain Monte Carlo (MCMC)

methods (Gilks ). A Markov chain is then constructed

such that it, after a burn in, provides us with samples from

the posterior distribution. These MCMC samples can then

be used to estimate, for example, posterior mean for each

parameter of interest. All inference is performed by
://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
MCMC simulations using the WinBUGS (Lunn et al.

) and OpenBUGS (Spiegelhalter et al. ) software.

Each Markov chain ran for 15,000 iterations, and the first

5,000 were discarded as a burn-in period.

Models’ performance is based on their predictive ability

of snow density. The mean error, the mean absolute error

(MAE), the root mean squared error (RMSE) of the pos-

terior mean estimates and mean continuous ranked

probability score (CRPS) for the posterior density distri-

butions are used to evaluate the models. Since a predictive

distribution is considered, and CRPS measures both sharp-

ness of the distribution and reliability of the predictions,

CRPS will be the preferred score. To make the results

easier to compare, MAE and RMSE are also calculated

with weights compensating for different numbers of obser-

vations between the areas.

If models are fitted and tested on the same data set, a

more complex model will always have a better fit. But the

better fit might be due to over-fitting; some of the variables

should not be in the model, and the better fit is due to fitting

random errors. Over-fitting will result in poorer predictive

performance when used to new observations. To make the

evaluation realistic (cross-)validation schemes are used.

Data from 1998 to 2005 are used to train the models (i.e.

fit the parameters), and data from 2006 to 2011 are used

to test the models (with some adjustments for areas where

the complete data set is not available). This means that all

parameters for the Weather SDM and all parameters

except the random effects for the Weather&ObsDensity

SDM are estimated using the observations in the training

set (1998–2005). These parameters are applied for testing

the models using snow density observations in the test set

(year 2006 to 2011). To estimate the random effect for a

specific year and area in the test set, snow density obser-

vations for this year and area are needed. The parameters

for the Weather&ObsDensity SDM are estimated in two

different ways, denoted Method-2a and Method-2b. For

Method-2a the corresponding Weather SDM is first fitted

using the training set. For Method-2b the Weather&Obs-

Density model is fitted using the training data set, i.e. both

parameters and random effects are estimated. For both

methods the parameters obtained are hold fixed when the

models are tested against snow density observations for

2006–2011. To estimate random effects for the years and
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areas in the test set, a cross-validation scheme is used. The

observations done in the same year and area are randomly

partitioned k¼ 5 times into a training set and a test set.

The random effect is fitted k¼ 5 times using the training

sets, and the model is tested k¼ 5 times using the snow den-

sities in the corresponding test set. The mean of the scores

for the k¼ 5 training sets are reported. To test how many

snow density observations that are useful, the number of

observations in the training sets is changed. For each train-

ing set size the procedure above is followed.
RESULTS

First, different configurations of the explanatory variables of

the Weather SDM are compared to choose which explana-

tory variables to include. Next, the corresponding model

including observed densities are fitted and tested. For

comparison, Sturm’s model described in the section Back-

ground is also used, and corresponding predictive scores

given.

Model choice Weather SDM

The explanatory variables and their correlation to snow den-

sity and internal correlation are summarized in Table 3.

Snowdepth has a high correlation to snow density, and there-

fore snow depth is included in all models. Ten different

models with different combinations of the explanatory vari-

ables were tested. These are named Model A to Model J,
Table 3 | Correlation between the nine explanatory variables constructed for the model and b

Covariate Description y x1 x

x1 Snow depth 0.48 1.00

x2 Snow age (DOY) 0.39 0.25

x3 Elevation (masl) 0.20 0.39

x4 Degree days when Tt >0 WC 0.16 �0.05

x5 Wind days when Tt< 0 WC, W> 2 m/s 0.24 0.21

x6 Snowfall when W> 0 m/s 0.29 0.20

x7 Ratio snow precipitation �0.05 0.08

x8 Ratio mixed precipitation 0.07 �0.04 �
x9 Ratio rain precipitation 0.03 �0.08
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and they are specified in Table 4. These models were

chosen based on the estimated k parameters for Model J

(the full model), the estimated parameters and predictive per-

formance for Model A (including snow depth and

precipitation type ratios) and Model B (including snow

depth and accumulated weather variables).

In Figure 6, posterior mean snow density estimates from

Sturm’s model and Model A, Model E and Model G are

plotted together with the observed snow density for four

locations to give an impression of how the predictions look.

The performances of the different selected combinations are

presented in Table 5. Model J (the full model) is the only

Weather SDM that performs more poorly than Sturm’s

model. Further, Model C, Model D and Model E have very

similar scores, but Model E has a slightly better CRPS score.

The only difference between Model D and Model E is that

the covariate elevation (x3) is included in Model E. As the

CRPS implies a slightly better estimate for Model E, and as

the cost of including elevation is also low, this model is rec-

ommended. From this point Model E is referred to as the

Weather SDM. This model has expected value:

ρ ¼ (ρmax � ρ0)[1� exp (� k1x1 � k3x3 � k4x4 � k5x5)]

þ ρ0, (8)

or written in another form

ρ ¼ (ρmax � ρ0)[1� exp (� k1h� k3z� k4T � � k5W�)]þ ρ0,

(9)
etween snow density (y) and the covariates

2 x3 i4 x5 x6 x7 x8 x9

1.00

0.00 1.00

0.40 �0.30 1.00

0.42 0.32 �0.06 1.00

0.23 0.34 �0.02 0.53 1.00

0.09 0.34 �0.53 0.15 0.09 1.00

0.09 �0.17 0.34 �0.02 0.08 �0.75 1.00

0.03 �0.35 0.60 �0.19 �0.19 �0.69 0.33 1.00



Table 4 | Different test models

Model x1 x2 x3 x4 x5 x6 x7 x8 x9

A ✓ ✓ ✓ ✓

B ✓ ✓ ✓ ✓

C ✓ ✓ ✓ ✓ ✓ ✓

D ✓ ✓ ✓

E ✓ ✓ ✓ ✓

F ✓ ✓ ✓ ✓

G ✓ ✓ ✓ ✓

H ✓ ✓ ✓

I ✓ ✓ ✓ ✓ ✓

J ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sturm ✓ ✓

x1: snow depth, x2: day of year, x3: elevation, x4: accumulated wind, x5: accumulated posi-

tive degrees, x6: accumulated snow when there is wind, x7: ratio snow, x8: ratio mixed

snow and rain, x9: ratio rain.
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where h is snow depth, z is elevation, T* are accumulated

degree days when Tt> 0 WC and W* are accumulated wind

days when Tt< 0 WC and W> 2 m/s. Compared to the

model from Sturm et al. (), the DOY is excluded from

the model. This variable is relatively highly correlated with
Figure 6 | Posterior mean estimates and observed density in four different locations for four d

tundra; (c) Stordalen: area 3, tundra; (d) Stearuvuggi: area 7, tundra.

://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
the snow density, but also with the accumulated weather

variables T* andW*, and including DOY gave worse predic-

tions. An explanation for this is that the effect of ageing is

already embedded in the measurement of snow depth and

the accumulation of weather variables. The parameter esti-

mates from the MCMC simulations are given in Table 6.

The average absolute error of the prediction based on

Weather SDM is 0.046 g/cm3 or 9.4% for the test period

from 2006 to 2011. Table 7 shows the errors from the differ-

ent areas. There are three areas which have a remarkably

high error: Innset (area 5), Jostedal (area 6) and Nore

(area 9). For Nore, the errors are about average for all

years except 2006 which has large errors. For Innset and Jos-

tedal the errors are generally large.

Weather&ObsDensity SDM

The next question is whether the performance achieved

using the Weather SDM can be improved by utilizing

snow density measurements for the current year and area

of interest. Further, how a potentially improved predictive

performance relates to the number of snow density
ifferent models without random effects. (a) Vinjerui: area 14, maritime; (b) Illekleiv: area 4,



Table 5 | Test result of the different models

Model MAE Weighted MAE RMSE Weighted RMSE CRPS

A 0.0508 0.0537 0.0607 0.0648 0.03776

B 0.0465 0.0491 0.0567 0.0602 0.07472

C 0.0460 0.0487 0.0556 0.0590 0.03440

D 0.0460 0.0486 0.0555 0.0589 0.03440

E 0.0462 0.0488 0.0558 0.0590 0.03418

F 0.0493 0.0520 0.0596 0.0632 0.07675

G 0.0467 0.0490 0.0561 0.0590 0.03451

H 0.0477 0.0504 0.0572 0.0608 0.03538

I 0.0465 0.0490 0.0567 0.0600 0.06931

J 0.1487 0.1497 0.1577 0.1593 0.08074

Sturm 0.0617 0.0636 0.0719 0.0743 0.06170

Framed values indicate the best score for the different evaluation criteria.

MAE: mean absolute error; RMSE: root mean square error; CRPS: continuous ranked

probability score.

Both MAE and RMSE scores are also weighed by the number of observations.

Table 6 | Posterior mean and standard deviation for model parameters and number of

Markov Chain Monte Carlo samples

Variable Mean Std dev Sample size

ρ0 0.1481 0.0148 10,000

ρmax 0.4720 0.0128 10,000

k1 0.00503 0.000548 10,000

k3 0.00018 0.00463 10,000

k4 0.00477 0.000682 10,000

k5 0.00042 0.0000741 10,000
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measurements, and how many snow density measurements

are beneficial to do. These questions are answered by fitting

the Weather SDMs including density observations

(Weather&ObsDensity SDM) with the selected explanatory

variables for different number ( j) of area and year-specific

(training) data.

The model has expected snow density:

ρ ¼ (ρmax � ρ0)[1� exp (� k1x1 � k3x3 � k4x4, � k5x5
� ∈ j,m )]þ ρ0, (10)

where ρ is the snow density for each snow measurement in

area j for year m. j∈ (1,… ,17) and m∈ (1998,… ,2012), and

∈ j,m is the corresponding random effect.
om http://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
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The two different methods for fitting the Weather&Obs-

Density SDM are tested against reduction in prediction

error when using more snow density measurements from

the current year and area. Figure 7 displays the reduction

in the MAE as a function of number of annual measure-

ments n¼ {0,5,10,15,25} in year 1998 (n¼ 0 corresponds to

Weather SDM). Method-2a gave on average 6.5% reduction

with 20 observations within an area compared to the

Weather SDM (non-year and area-specific snow density

observations), while Method-2b already with five density

samples gave a reduction of 9.3% increasing to 16% with

20 observations. These results show that: (1) if year and

area-specific measurements are to be used, the parameters

should be estimated taking that into account, i.e. with

Method-2b; and (2) area and year-specific snow density

measurements can contribute to better snow density predic-

tions, but only the first 10–15 measurements. This result

supports the hypothesis that including area and year-specific

snow density measurements improves the model compared

to the Weather SDM which do not use (or need) year and

area-specific snow density observations. But the improve-

ment stagnates after 10–15 snow density observations.
DISCUSSION AND CONCLUSION

Snow densities predicted from a model presented by Sturm

et al. () were compared to a Norwegian data set. By

using the snow classification data set in Sturm et al. ()

most of the 244 locations in the Norwegian data set

were classified as maritime (58) and tundra (175) snow

class, and a few were classified as taiga snow. In most cases,

the model underestimated the Norwegian snow densities.

Based on the previous work of Sturm et al. (), a new

model that directly includes the variability in weather and

climate is developed. This model is also an extension of

the model of Sturm et al. (), using other explanatory

variables and new model parameters.

Several models consisting of different explanatory vari-

ables were tested against Norwegian snow data. Models

A–J are the best combinations of variables of a wider selec-

tion of combinations where the effect of each variable was

explicitly tested. Therefore, the internal correlation between

variables (Table 3) was ignored in this study, but for further



Figure 7 | Error reduction in absolute error by collection of n¼ {0,5,10,15,20,25} number

of year-specific measurements. Data from year 1998.

Table 7 | Prediction error in g/cm3 and average absolute relative error for each area in the test period

Area/year 2006 2007 2008 2009 2010 2011 Abs rel error (%)

1 – – – – 0.015 0.03 7

2 – 0.046 �0.033 0.022 0.024 0.062 12

3 �0.045 0.007 0 0.034 �0.019 �0.005 5

4 – �0.016 �0.005 �0.027 �0.018 0.009 3

5 �0.065 �0.02 �0.052 �0.049 �0.076 �0.02 18

6 �0.026 �0.05 �0.08 �0.087 �0.064 �0.047 19

7 0.034 0.064 0.065 0.052 0.025 �0.003 9

8 �0.056 �0.037 �0.025 �0.014 0.004 �0.014 8

9 �0.134 0.018 �0.009 �0.039 �0.041 �0.028 18

10 �0.017 �0.015 �0.022 0.036 �0.013 �0.027 7

11 0.02 0.019 0.002 0.054 0.004 �0.001 5

12 – 0.021 �0.029 �0.017 �0.037 �0.026 8

13 0.01 0.038 �0.03 0.072 �0.033 �0.009 9

14 – – – �0.021 �0.024 �0.023 8

15 0.062 0.041 0.027 0.035 0.026 0.052 11

16 �0.009 0.007 0.003 0.016 0.004 �0.02 3

17 – – – – – 0.046 12
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refinement of the models this could be considered. The final

model included the following predictor variables: (1)

measured snow depth; (2) elevation (masl) at the location;

(3) temperature – accumulated positive degrees; and (4)

wind – accumulated wind speeds above 2 m/s when the

temperature is below freezing point. These variables need

to be known for each location where snow density is to be
://iwaponline.com/hr/article-pdf/46/4/494/369691/nh0460494.pdf
predicted. The explanatory variables are derived based on

weather data from weather stations nearby the location of

interest/measurement locations.

Weather SDM includes the seasonal variability by the

variables wind and temperature. The elevation of the

location did not influence the model much, but was

chosen based on the CRPS score. An explanation of the

small effect is that the effect of location altitude is already

explained in the model through the correction of tempera-

ture due to altitude.

Weather SDM gives prediction errors, MAE, that are

under 10%, and thus in the same range as what was found

in historical records that can be expected when using the

relatively sparse information about densities from one

snow storage observation campaign. Weather SDM gives

about 30% lower errors than Sturm’s model, and the

CRPS score is improved by about 50%. This illustrates the

effect of including year-to-year variability of the weather in

the model.

Even if the variability among areas and years is con-

sidered through the use of weather variables, it is

conceivable that there is some other kind of variation in
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the properties of the snow densities that does not emerge

through the explanatory variables. Thus, a random year-

area effect is added in the Weather&ObsDensity SDM.

This random effect is estimated by year-specific measure-

ments in two different ways. The best predictions came

from a model with random effects. Weather&ObsDensity

SDM used information from year and area-specific measure-

ments already at the start while estimating model

parameters from the training data set. The use of year and

area-specific measurements assisted in bias removal and

improved the model by up to 16%. The improvements are

the largest for the five first measurements and stagnate

after 10–15 observations. This illustrates the effect of includ-

ing information about the specific year. Nevertheless, the

improvements are low compared to the effort of collecting

these samples. Thus, it can be questioned how many

samples should be recommended, at least after the five

first samples have provided information about year-specific

conditions beyond what the weather data can tell. Using

the same approach with Sturm’s model directly would also

make this model able to catch interannual variations in den-

sity due to different weather conditions. This approach

could be used in areas with sparse meteorological

information.

The snow density prediction model, Weather SDM,

developed in this study, can be useful for estimating the

snow density instead of manual measurements. As it takes

wind speeds, temperature, elevation and snow depth as

input variables, it is easy to use and applicable wherever

weather stations are available and representative. This

model is compared to the original model on which it is

based (Sturm et al. ) and gives more reliable predictions

for Norwegian snowpacks. Analyses show that information

gained by collecting five to 10 annual snow densities in

each area can improve the predictions.
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