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Comparison of random forests and other statistical

methods for the prediction of lake water level: a case

study of the Poyang Lake in China

Bing Li, Guishan Yang, Rongrong Wan, Xue Dai and Yanhui Zhang
ABSTRACT
Modeling of hydrological time series is essential for sustainable development and management of

lake water resources. This study aims to develop an efficient model for forecasting lake water level

variations, exemplified by the Poyang Lake (China) case study. A random forests (RF) model was first

applied and compared with artificial neural networks, support vector regression, and a linear model.

Three scenarios were adopted to investigate the effect of time lag and previous water levels as

model inputs for real-time forecasting. Variable importance was then analyzed to evaluate the

influence of each predictor for water level variations. Results indicated that the RF model exhibits the

best performance for daily forecasting in terms of root mean square error (RMSE) and coefficient of

determination (R2). Moreover, the highest accuracy was achieved using discharge series at 4-day-

ahead and the average water level over the previous week as model inputs, with an average RMSE of

0.25 m for five stations within the lake. In addition, the previous water level was the most efficient

predictor for water level forecasting, followed by discharge from the Yangtze River. Based on the

performance of the soft computing methods, RF can be calibrated to provide information or

simulation scenarios for water management and decision-making.
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INTRODUCTION
Lake water level forecasting has important applications for

identifying the main influencing factors of water level fluctu-

ations, determination of the watershed hydrological cycle

variation trends under projections of global climate changes,

integration of reservoir management schemes, and ensuring

sufficient freshwater supply (Wantzen et al. ; Hu et al.

; Kourgialas et al. ). However, lake water level vari-

ations involve a complex nonlinear process, which

integrates precipitation, discharge from tributaries,
topography, and so on. The variations become even more

complex when the lake interacts with a large river (e.g., the

interaction of the Poyang Lake with the Yangtze River).

Reliable and accurate forecasting of lake water level has

always been a challenge for hydrologists and water resource

managers.

In recent decades, numerous forecasting techniques,

including physically based hydrodynamic models (e.g.,

CHAM, MIKE21, and EFDC), time series analysis (e.g.,

auto-regressive moving average and auto-regressive inte-

grated moving average), and soft computing methods (e.g.,

artificial neural networks (ANNs), support vector regression

(SVR), and model trees), have been developed to simulate
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hydrological time series. (Belmans et al. ; Hsu et al.

; Dawson & Wilby ; Alvisi et al. ; Khan & Cou-

libaly ; Altunkaynak ; Lai et al. ; Li et al. ).

In particular, physically based hydrodynamic models exhibit

the best performance in forecasting water level. However,

these methods require detailed terrain data, as well as com-

plex boundaries and parameters as input, and are

computationally expensive and limited to restricted duration

(Li et al. ). Time series analysis is more complex and

unreliable than the neural network model (Altunkaynak

). In addition, time series analysis does not consider

the nonstationary and nonlinear characteristics of data

structure (Kumar & Maity ). It is difficult to use non-

linear and complex exhibition of model variables for

accurate quantification of uncertainty associated with the

predictions, which often mislead water resource managers

during decision-making (Aqil et al. ; Mustafa et al.

). Soft computing methods are capable of capturing com-

plex nonlinear relationships between inputs and outputs

without the need for explicit knowledge of the physical pro-

cess, and they also avoid the creation of extremely complex

models in the rare cases when all information is available

(Trichakis et al. ). Soft computing methods, particularly

ANN and SVR, have been successfully applied to solve non-

linear problems in hydrological series simulations, such as

groundwater level forecasting (Daliakopoulos et al. ;

Yoon et al. ; Gholami et al. ), rainfall prediction

(Chau & Wu ), and surface water level/discharge fore-

casting (Altunkaynak ; Callegari et al. ).

The random forests (RF) model has been proposed as a

new soft computing method by Breiman (). RF handles

nonlinear and non-Gaussian data well, is amenable to model

interpretation, and is free of over-fitting problems as the

number of trees increases. Furthermore, RFprovides ameasure

of the relative importance of descriptors, which can be further

utilized in variable selection (Genuer et al. ). In the past few

years, RF has been employed to simulate suspended sediment

concentration and soil organic carbon stocks (Francke et al.

; Were et al. ). However, soft computing methods

with different algorithms may have different levels of adapta-

bility for diverse problems. For example, Yoon et al. ()

found that the performance of ANN is better than that of

SVM in the model training and testing stages when predicting

groundwater level in a coastal aquifer. Rodriguez-Galiano
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et al. () found that the RF method performs better than

ANNand SVM in predicting andmapping mineral prospectiv-

ity. Were et al. () concluded that RF has the highest

tendency for overestimation, and that SVR is the best model

for predicting soil organic carbon stocks. However, few studies

have compared the adaptability and accuracy of different soft

computing methods for hydrological series forecasting,

especially for highly nonlinear water level forecasting. In the

present work, the RF model was first utilized for forecasting

water level fluctuations and then compared with commonly

usedANN,SVR, and a linearmodel (LM) in termsof accuracy.

Poyang Lake, the largest freshwater lake in China, is fed

by five main tributaries and is connected to the Yangtze

River, whose blocking effect (even intrusion) greatly affects

water level variations in the lake. In recent decades, intensi-

fied global climate changes and anthropogenic activities

have greatly altered Poyang Lake’s water regime to some

extent (Guo et al. ), with more frequent occurrence of

floods and droughts, which take on a trend of sharp trans-

formation (Guo et al. ; Li & Zhang ). Building a

dam has been proposed in the downstream area of the lake

to alleviate severe droughts and flood risk in Poyang Lake

(Huang et al. ). A few researchers have studied Poyang

Lake water level forecasting (Jiang & Huang ; Lan ;

Li et al. ). However, few have taken into account the

effects of both time lag and the previous hydrological status

of the lake. The time lag effect was proved to be important

for hydrological series forecasting (Aqil et al. ; Chau &

Wu ; Bao et al. ). Chau & Wu () found notable

differences at 1-, 2-, and 3-day ahead by using partial autocor-

relation for daily rainfall prediction using an ANN model.

Cross-correlation has been used to determine lag times of pre-

cipitation and discharge (Yoon et al. ; Li et al. ). The

trial-and-error method was also utilized to obtain the most

sensitive time lag (Hipni et al. ). Therefore, an accurate

water level forecasting model that considers the previous

hydrological status and the time lag effect is required to pro-

vide suggestions for the development and management of

water resources. Such a model can also help identify the

main factors that influence water levels in Poyang Lake.

The specific objectives for this paper were: (1) to deter-

mine a model of highest accuracy by comparing RF with

ANN, SVR, and the LM model, and incorporating discharge

from lake catchment tributaries and the Yangtze River, the
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time lag effect and the previous hydrological status for water

level forecasting; and (2) to explore the relative importance

of each predictor for different water level stations within the

lake. The proposed model provides a useful tool for water

resource management and for identifying the major influen-

cing factors for lake water level fluctuations.
MATERIALS AND METHODS

Study area

Poyang Lake is located at 115 W470–116 W450E and 28 W220–

29 W450N on the southern bank of the Yangtze River,
Figure 1 | Location of study area and hydrological stations.

s://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
which is the second largest river in the world (Figure 1). It

is fed primarily by five tributaries: the Gan, Fu, Xin, Rao,

and Xiu Rivers, and is freely connected with the Yangtze

River at Hukou. It has a subtropical monsoon climate with

an average annual temperature of 17.6 WC and a mean

annual precipitation of 1,450–1,550 mm, which is mostly

concentrated in summer, leading to considerable intra-

annual water level variations. As the streamflow varies by

season, the surface area of Poyang Lake can fluctuate greatly

from less than 1,000 km2 in the dry season to approximately

4,000 km2 during the rainy season (Shankman et al. ),

when it can be described as ‘flooding like sea, while

drying like thread’. Poyang Lake has an angular surface

from south to north, with five representative hydrological



72 B. Li et al. | Using random forests for water level forecasting in Poyang Lake, China Hydrology Research | 47.S1 | 2016

Downloaded fr
by guest
on 23 Septemb
stations in different parts: Hukou, Xingzi, Duchang, Kang-

shan, and Tangyin (from north to south) (Figure 1).

Data collection

As shown in Figure 1, Jiujiang station is the closest represen-

tative of the Yangtze River to affect water level variations

within the lake. Meanwhile, given the missing discharge

data in Jiujiang station prior to 1988, Hankou station was

chosen to be a substitute in the model, as it has significant

correlation with Jiujiang station (correlation coefficient¼
0.995). The data applied in this study include the following:

(1) daily discharge observations of six hydrological stations

in the lake’s catchment and the Yangtze River from 1955

to 2012, namely, Waizhou (wz), Hushan (hs), Dufengkeng

(dfk), Lijiadu (ljd), Meigang (mg), and Wanjiabu (wjb)

stations of the upstream tributaries (the Gan, Fu, Xin, Rao,

and Xiu Rivers) and Hankou station of the Yangtze River

(Table 1); and (2) daily water level observations of five

gauge stations within the lake, namely, Hukou, Xingzi,

Duchang, Tangyin, and Kangshan stations (from north to

south). Observation at Tangyin station started in 1962;

thus, only the 1962–2012 data were considered from this

station. The observations on water level and discharge
Table 1 | Characteristics of input and output data used in this study

Inputs and
outputs Stations Duration

Drainage areaa

(104 km2)

Gan River Waizhou 1955–2012 8.12

Fu River Lijiadu 1955–2012 1.58

Xin River Meigang 1955–2012 1.55

Rao River

Chang River Dufengkeng 1955–2012 1.5

Lean River Hushan 1955–2012

Xiu River

Liao River Wanjiabu 1955–2012 1.48

Yangtze River Hankou 1955–2012 –

Poyang Lake Hukou 1955–2012 –

Xingzi 1955–2012 –

Duchang 1955–2012 –

Tangyin 1962–2012 –

Kangshan 1955–2012 –

aData are from the study on Poyang Lake (the Editorial Committee of ‘Study on Poyang

Lake’ 1987).
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were obtained from the Hydrological Bureau of Jiangxi Pro-

vince. Figure 1 shows the locations of these hydrological

stations.

Soft computing methods

RF model

The RF model employs the strategy of a random selection of

a subset of m predictors to grow a binary tree, where each

tree is grown on a bootstrap sample of the training set (Brei-

man ) (Figure 2). This algorithm is an extension of

bagging, and a competitor to boosting (Polikar et al. ).

Regression trees imply no assumptions of distribution of

data (Francke et al. ). For each tree, the response data

were grouped into two descendant nodes to maximize hom-

ogeneity, and the best binary split was selected. Each

descendant node of the selected split was treated similarly

to the original node, and the process continued recursively

until a stop criterion was met. All the trees were grown to

their maximum sizes, and final predictions were obtained

from the averaged results (Breiman ). In RF modeling,

three parameters need to be specified: (1) the number of

trees to grow in the forests (ntree), which is the most impor-

tant parameter of RF; (2) the number of randomly selected

predictor variables at each node (mtry); and (3) the minimal

number of observations at the terminal nodes of the trees

(nodesize). The default number of trees was 500, although

more stable results for estimating variable importance
Figure 2 | Demonstration of the RF methodology (Malekipirbazari & Aksakalli 2015).
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could be achieved with a higher number of trees (Were et al.

). As well, the importance of each predictor is measured

by increased mean squared errors (MSEs) as the predictors

were excluded one by one from RF models. The relative

importance of each predictor is determined from 100 runs

of the RF models and normalized to 100% to provide a

simple basis for comparison in different stations. In this

paper, 500 parameter sets including ntree, mtry, and nodesize

for the RF model were tried and the one with the highest

accuracy was selected.
Figure 3 | Demonstration of the SVR methodology (Yoon et al. 2011).
SVR model

SVR is a forecasting model based on the structural risk mini-

mization principle, and aims at minimizing a bound on the

generalization error (Smola & Schölkopf ; Vapnik

). Several advantages of SVR are its improved generaliz-

ation ability, unique and globally optimal architectures, and

the ability to be rapidly trained (Lan ). One of the high-

lights of SVR is flexibility, depending on different types of

kernel function such as the linear, polynomial, and radial

basis function (RBF) kernel (Lan ). The linear kernel

is a special case of RBF, and RBF can better handle the

case when the relationship between inputs and outputs is

nonlinear (Lin et al. ). Moreover, the RBF kernel

involves fewer numerical difficulties than the polynomial

kernel, which has more hyperparameters than the RBF

kernel (Lin et al. ). Hence, the commonly used RBF

kernel is adopted in the present study. The input data are

projected using the RBF kernel to hyperspace, where a com-

plex nonlinear relationship can be simply presented and

solved (Yoon et al. ; Wei ) (Figure 3). Given the train-

ing data x1,y1
� �

, � � � x1nynð Þ� �
, where xi and yi are the input

and output data, respectively. The goal of ε-SVR is to deter-

mine a function f(x) that has the most ε deviation from the

input data and that is as flat as possible (Smola & Schölkopf

). The formula of the RBF kernel is:

f(x, w) ¼
Xn
j¼1

wj exp (� γ x� xj
�� ��2),

where γ is a parameter and vector xj is the input of the train-

ing data. The unknown vector of w is determined to
s://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
minimize the function:

min
w∈R

� � �1
2

wk k2þC �
Xn
i¼1

max ( yij j � f(xi, w)� ε, 0)

where C (cost) >0 controls the tradeoff between the flatness

of f(x), and deviations greater than ε are tolerated.

An internationally recognized uniform method for SVM

parameter optimization has not been established. This study

adopted the most commonly used method, in which γ, C

and ε are calibrated in a certain range by grid search in R

statistical environment. Similarly, 500 pairs of parameters

were tried and the set with the best performance was

selected.
ANN model

The ANN model was initially formed as a simplified model

parallel to the ‘biological’ model. It simulates the character-

istics of the human neural network to deal with distributed

parallel information. A common ANN architecture consists

of input, hidden, and output layers with node activation func-

tions (Hsu et al. ) (Figure 4). ANNswith one hidden layer

are commonly used in hydrologic modeling (Dawson &

Wilby ). Although numerous ANN algorithms have

been proposed, such as Elman recurrent, RBF, and Hopfield

neural networks (Kecman ), the error back-propagation

algorithm (BPA) introduced by Rumelhart et al. () may

be the most commonly applied algorithm, which adjusts the

connecting weights in the direction where the error



Figure 4 | Demonstration of the ANN methodology (Were et al. 2015).
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performance function decreasesmost rapidly tominimize the

training error (Sulaiman et al. ; Trichakis et al. ).

Through iterative propagation of errors back to the network,

the differences between the output and target are consistently

sent to the learning process, to automatically adjust and read-

just the connection weights between the elements, until a

desirable network output is achieved (Dawson & Wilby

; Trichakis et al. ; Were et al. ). In the present

study, a multilayer perception network with one hidden

layer using the BPA learning algorithm was trained to estab-

lish the ANN model. The activation function consists of a

log-sigmoid function in the hidden layer and a linear function

in the output layer. The input is normalized by subtracting

each column of the data set by its mean value, and divided

by the standard deviation. Furthermore, a trial-and-error

method based on performance value from the training stage

was applied to determine the optimal hidden nodes (size),

learning rate, and momentum. Similar to the RF model, 500

parameter sets were generated and tested to determine the

optimal parameter set. The set with the smallest hidden neur-

ons giving the best performance was chosen.
Model training and evaluation

Input–output scenarios

For all of the soft computing methods regarded in this study,

the daily discharge observations of the seven hydrological

stations were used as input variables, and the water level of

the five gauge stations within Poyang Lake was chosen as

output in each model. These specific variables were selected

based on the unique hydrological processes of Poyang Lake,
om https://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
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in which water level variations are mainly influenced by dis-

charge from catchment and the Yangtze River. In addition,

describing the hydrological processes through a nonlinear

model is necessary (Chen et al. ). For simplicity, the

daily water level forecasting of Hukou station was used as

an example for evaluating the performance of RF, SVR,

ANN, and LM. Furthermore, to examine the effect of time

lag and previous lakewater level on forecasting performance,

three input scenarios were developed: (1) the current daily

discharge from the seven hydrological stations of the

Poyang Lake tributaries and the Yangtze River; (2) the daily

discharge of the seven stations between day (t) and (t-5);

and (3) on the basis of scenario 2, the average lake water

level over the previous week (wl7) was incorporated. The

trial-and-error method was then used and the time lag with

the highest accuracy of water level forecasting for Poyang

Lake was determined as most sensitive.

Performance evaluation

The popular v-fold cross-validation, which provides a good

trade-off between model over-fitting and under-fitting, was

employed to evaluate the performance of the candidate

models (Yoon et al. ; Hipni et al. ). The entire data

sets (daily records from 1955 to 2012) were randomly parti-

tioned into v equal-sized subsets. During each modeling

process, one of the partitions was used for validation,

while the others were used for training. Furthermore, the

modeling process was repeated v times, and the perform-

ance metrics were averaged to achieve the final

performance. In reference to similar studies, using a v of 5,

10, and 20 could result in slightly different error estimates,

which are often not significant (Feng et al. ; El-Shafie

& Noureldin ; Hipni et al. ). Therefore, five-fold

cross-validation is used to evaluate the performance of the

models regarded in this work to reduce computing time.

Among several criteria that are commonly used for model

performance evaluation, such as the root mean square error

(RMSE), coefficient of determination (R2),mean absolute rela-

tive error, Nash–Sutcliffe efficiency coefficient (NSCE), and

Akaike information criterion, RMSE, R2, and NSCE were

selected in this study (Lin et al. ; Ghorbani et al. ;

Lan ). RMSE measures the residual value between the

measured and forecasted lake water level, and records in real
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units of the water level. R2 measures the degree of colinearity

between the observed and predicted values. It also describes

the proportion of the total variance in the observed data that

can be explained by the model. The NSCE is a popular index

to assess the predictive power of hydrological models. In this

work, the NSCE was used for evaluating the sensitivities of

each parameter set. An RMSE value of 0, R2 and NSCE

value of 1 are pursued in the best forecast models. The for-

mulas for RMSE, R2, and NSCE are listed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
1

(yi � ~yi)
2=n

vuut

R2 ¼
Xn
i¼1

ðyi � �yiÞð~yi � �~yiÞ
� 	2

=
Xn
i¼1

ðyi � �yÞ
2 Xn

i¼1

ð~yi � �~yiÞ
2

" #

NSCE ¼ 1�
Xn
i¼1

(yi � ~yi)
2=

Xn
i¼1

(yi � �y)2

where yi is the observed water level, ~yi is the forecasted water

level, and �yi indicates the average water level.

The terms ‘training’ and ‘testing’ of soft computing

models correspond to the calibration and validation of phys-

ically based hydrodynamic model. Data preparation and

analysis were conducted using Microsoft Excel 2007 and R

3.1.3. Specifically, we have used the implementation and

optimization of RF, ANN, and SVR available in the ‘random-

Forests’, ‘e1071’, and ‘nnet’ package, respectively, in R

statistical environment (Team ). The model parameter

sensitivity analysis was conducted by generating 500 model

parameter sets for each model. The model performance was

estimated using here the NSCE value for each parameter set.
RESULTS AND DISCUSSION

Comparison of the models for daily water level

forecasting

Figure 5 shows the relationship between measured water

level and those predicted by the RF, SVR, ANN, and LM

using five-fold cross-validation. The RF simulation results
s://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
exhibit tighter data distribution with better linearity than its

counterparts concerned, not only in the training stage

(R2¼ 0.993) but also in the testing stage (R2¼ 0.965). The

high value of R2 in the testing period implies that the RF

model is the most efficient for water level forecasting. In

addition, ANN and SVR models have similar performance

in the testing stage (R2¼ 0.953), the LM is also applied

where the distribution of the data are exponential and far

from linear (RMSE¼ 1.19 m). In general, all the soft comput-

ing methods displayed desirable performances with respect

to RMSE and R2, which indicated that the models were

fully trainedwith the 58-year data to provide satisfactory fore-

casting. In addition, the RMSEs of the ANN and RF models

were found to vary with the number of trees and units in

the hidden layer (Figure 6); RF regression had a relatively

low RMSE for the testing stage (minimum of 0.7 m) and

especially for the training stage (minimum of 0.32 m). More-

over, the RMSE was stable for each neuron in the hidden

layers (Figure 6), which indicated that the five-fold cross-vali-

dation can provide a good trade-off between over-fitting and

under-fitting (Huang et al. ). The RF regression perform-

ance was also stable when the number of trees reached 30.

Therefore, RF was chosen to further establish the daily

water level forecasting model for the three scenarios.

Effect of time lag on daily water level forecasting

In this subsection, a series of time lags is selected to predict

daily water level using RF and five-fold cross-validation

under scenario 2 for each station. For simplicity, only the

performance during the testing stage is displayed (Table 2).

The models with a time lag of 4 days for both the Yangtze

River (Hankou station) and the catchment tributaries exhib-

ited the best performance, with the lowest RMSE values of

0.51, 0.55, 0.56, and 0.46 m for Hukou, Xingzi, Duchang,

and Tangyin, respectively. Thus, the time lag of discharge

from the tributaries and the Yangtze River has a substantial

influence on water level variations. The inflow for different

intervals of time has significant influence on the predicted

flow/water level (Aqil et al. ). The R(t-3)T(t-3) time lag

of the Kangshan station was obtained, which slightly outper-

forms the time lag of R(t-4)T(t-4) (Table 2). Simply put, the R

(t-4)T(t-4) time lag was chosen for the forecasting model of

all the five gauge stations in scenarios 2 and 3.
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Figure 6 | Comparison of RF and ANN for RMSE variations and model stabilization.

Table 2 | The performance evaluation for scenario 2 using RF and five-fold cross-validation for daily water level forecasting

Hukou Xingzi Duchang Tangyin Kangshan

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

R(t)T(t-1) 0.69 0.967 0.71 0.957 0.69 0.943 0.58 0.938 0.52 0.917

R(t)T(t-2) 0.67 0.968 0.69 0.959 0.68 0.945 0.57 0.940 0.52 0.918

R(t)T(t-3) 0.66 0.969 0.68 0.96 0.68 0.946 0.56 0.941 0.52 0.916

R(t)T(t-4) 0.66 0.97 0.68 0.961 0.67 0.946 0.57 0.940 0.54 0.913

R(t)T(t-5) 0.65 0.971 0.68 0.96 0.68 0.945 0.57 0.939 0.55 0.908

R(t-1)T(t-1) 0.62 0.973 0.66 0.963 0.66 0.948 0.54 0.946 0.50 0.926

R(t-1)T(t-2) 0.62 0.974 0.64 0.965 0.65 0.950 0.53 0.947 0.49 0.927

R(t-1)T(t-3) 0.61 0.974 0.64 0.965 0.64 0.951 0.53 0.948 0.50 0.925

R(t-1)T(t-4) 0.60 0.975 0.64 0.965 0.64 0.951 0.54 0.946 0.51 0.920

R(t-1)T(t-5) 0.60 0.975 0.60 0.975 0.65 0.950 0.55 0.944 0.53 0.916

R(t-2)T(t-2) 0.57 0.978 0.60 0.969 0.61 0.956 0.50 0.954 0.46 0.935

R(t-2)T(t-3) 0.56 0.978 0.60 0.97 0.60 0.957 0.50 0.954 0.47 0.932

R(t-2)T(t-4) 0.56 0.978 0.60 0.969 0.61 0.955 0.51 0.952 0.49 0.927

R(t-2)T(t-5) 0.56 0.978 0.61 0.968 0.63 0.953 0.52 0.949 0.51 0.921

R(t-3)T(t-3) 0.53 0.981 0.57 0.973 0.57 0.961 0.47 0.959 0.45 0.938

R(t-3)T(t-4) 0.53 0.98 0.57 0.972 0.59 0.960 0.48 0.957 0.47 0.933

R(t-3)T(t-5) 0.54 0.98 0.59 0.97 0.60 0.957 0.50 0.953 0.49 0.926

R(t-4)T(t-4) 0.51 0.982 0.55 0.974 0.56 0.963 0.46 0.961 0.46 0.937

R(t-4)T(t-5) 0.53 0.98 0.58 0.972 0.59 0.959 0.49 0.956 0.48 0.930

R(t-5)T(t-5) 0.53 0.981 0.56 0.973 0.57 0.961 0.47 0.959 0.47 0.933

R and T represent the Yangtze River and tributaries, respectively, and the lowest RMSE and highest R2 are in bold font.
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Effect of input scenarios on daily water level forecasting

Scenario 3 produced the best results among all the three

scenarios for all five hydrological stations (Table 3). For

the training stage, the values of R2 are close to 1 for all

five stations. Although scenario 3 has the highest R2, only

a slight difference is observed among the three scenarios.

By contrast, RMSE decreased from scenario 1 (0.29 m on

average) to scenario 3 (0.14 m on average). The forecasting

precision in the testing stage is relatively lower than the

training stage. Similarly, R2 increased, whereas RMSE

decreased from scenario 1 to scenario 3, with an average

RMSE of 0.25 m. Thus, scenario 3 utilizes more information

from the input data, indicating that the time lag effect of

water level responses to discharge, and previous water

level, should be incorporated in establishing a water level

forecasting model. The RMSE decreased by 63.8%, 64.4%,

60.6%, 64.4%, and 54.7% in Hukou, Xingzi, Duchang,

Tangyin, and Kangshan, respectively, from scenario 1 to

scenario 3. Nevertheless, when previous water level data

are missing, scenario 2 can also attain a desirable level of

precision (Table 3). In addition, for the five hydrological

stations within Poyang Lake, the R2 values slightly

decreased from north to south (i.e., longer distance from
Table 3 | Performance of RF in the training and testing sets using five-fold cross-validation

Output water level

Stage Metrics Hukou Xingz

Scenario 1

Training R2 0.994 0.992
RMSE 0.31 0.32

Testing R2 0.966 0.955
RMSE 0.69 0.73

Scenario 2

Training R2 0.996 0.995
RMSE 0.23 0.24

Testing R2 0.982 0.974
RMSE 0.51 0.55

Scenario 3

Training R2 0.999 0.999
RMSE 0.11 0.11

Testing R2 0.996 0.994
RMSE 0.25 0.26

Lowest RMSE and highest R2 are in bold font.

om https://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
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the Yangtze River) (Table 2). Kangshan has the lowest

level of forecasting precision, which indicates that the dis-

charge of the Yangtze River greatly affects the water level

within the lake and its effect gradually decreases in the

upstream direction. Similar results were obtained by

Li et al. () using the back-propagation neural network.

Thus, scenario 3 is considered the best among the three

scenarios for all five water level stations. In other words,

the RF algorithm and five-fold cross-validation comprise

the best model to forecast the daily water level in Poyang

Lake, when the inputs include the 4-day time lag of the

Yangtze River, the daily discharge of the tributaries, and

the previous water level within the lake.

Source of uncertainty

RF, SVR, and ANN models for forecasting water level fluc-

tuations were compared based on continuous measured

data quality controlled by the Hydrological Bureau of

Jiangxi Province. The models were calibrated with five-fold

cross-validation data in order to reduce the uncertainty. In

addition, the training/testing data set represents relatively

real-time hydrological processes in lake water level fluctu-

ations, which incorporated the influence of lake catchment
i Duchang Tangyin Kangshan

0.989 0.988 0.984
0.32 0.26 0.24

0.94 0.935 0.914
0.71 0.59 0.53

0.993 0.993 0.988
0.25 0.2 0.2

0.963 0.961 0.937
0.56 0.46 0.36

0.998 0.998 0.997
0.13 0.09 0.11

0.991 0.992 0.983
0.28 0.21 0.24
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tributaries, the Yangtze River discharge, the time lag effect

and the previous water level, to ensure that the model

‘gives the right answers for the right reasons’ (Kirchner

). Furthermore, efforts were made to increase the over-

all goodness of fit of each model by calibrating optimal

parameters. For example, selection of hidden neurons and

learning rate was based on a trial-and-error optimization

process in the ANN model. Grid search cross-validation

was implemented to determine optimal C and γ in the

SVR model. Moreover, the present work established a

water level forecasting model in a specific location, thereby

reducing the spatial fluctuation in the output, which conse-

quently reduces the uncertainty (Kourgialas et al. ).

However, although the soft computing methods in the pre-

sent study have desirable forecasting precision, they only
Figure 7 | Variability of model performance (NSCE value) for 500 pairs of parameter sets in th

s://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
consider streamflow conditions. The main uncertainty may

be attributed to the influence of meteorological factors

(e.g., precipitation and evaporation) and local inflows on

lake water level variations. Thus, the employed models

may have limitations when applied to simulate water level

variations under possible climate change scenarios (Pana-

goulia ). Nevertheless, the proposed model can be

used to provide management schemes under streamflow

simulation scenarios (e.g., flood control and drought relief

for the Poyang Lake region), specifically, through the com-

bined discharge dispatch of upstream reservoirs and the

Three Gorges Dam upstream of the Yangtze River to regu-

late proper water level variations within the lake.

Figure 7 shows the variability of model performance

(NSCE value) for 500 parameter sets of RF, ANN, and
e sensitivity analysis.



Figure 8 | Relative importance of each predictor as determined from 100 runs of RF models for five water level stations. wz, Waizhou station; mg, Meigang station; wjb, Wanjiabu station

(Xiu River); dfk, Dufengkeng station; hankou, Hankou station; ljd, Lijiadu station; hs, Hushan station; wl7, water level of previous 7 days.
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SVR model. In this work, it can be seen that the overall

sensitivities of the model parameter in each model were

low. It is greatly different from the similar analysis of

ANN and SVR parameters for groundwater level predic-

tion in a coastal aquifer (Yoon et al. ), which

indicated the models concerned here were fully trained

by a large size data set. The model performance showed

a relative parallel box plot for each parameter. However,

it can be seen that the ANN based on the BPA algorithm

is the most stable one. The model uncertainty decreased

substantially when the mtry of the RF model reached 2,

and then become stable. Moreover, Figure 7 also shows a

remarkable difference among the prediction performance

of the RF, ANN, and SVR models, with a best to worst

order of RF, ANN, and SVR (P< 0.01).

Relative importance of the predictor variables

In this subsection, models are established for the five

hydrological stations within Poyang Lake using the RF

model, and five-fold cross-validation under scenario 3.

As shown in Figure 8, for each station the previous

lake water level (wl7) is the most important predictor

for Poyang Lake, with a mean relative importance of

18%. Moreover, the effect of discharge from Hankou

station is also considerable (mean relative importance

at 12.4%), especially for Hukou and Xingzi water level

stations in the Poyang Lake–Yangtze River waterway.

This is mainly because the water level variation in the

lake is contributed to by both the lake inflow and the

Yangtze River, of which the blocking (even intrusion)

and pulling effects of the Yangtze River on the outflows

from Poyang Lake greatly influence the inter–intra

water level fluctuations (Shankman et al. ; Dai

et al. ). Moreover, the extent of the effect of backflow

from the Yangtze River is mainly concentrated in the

northern part of Poyang Lake (Cui et al. ). The

remarkable effect of the Yangtze River discharge on the

water level of Poyang Lake has also been reported by

Li et al. () and Jiang & Huang (). Additionally,

for central and southern water level stations in the

lake, important predictors were discharges from

Hushan and Dufengkeng stations (Rao River) and dis-

charges from Lijiadu station (Fu River) according to
s://iwaponline.com/hr/article-pdf/366925/nh047s10069.pdf
their mean values. This finding implies that these vari-

ables are the primary indicators representing the

temporal variability of the daily water level. However,

the relative importance of stations varies during different

runs, especially for Lijiadu station from the Fu River

(Figure 8), because the influence of the upstream tribu-

taries and Yangtze River on lake water level variation

may change during different seasons. For example, the

water levels at Duchang and Xingzi are predominated

by the Yangtze River discharge when the lake level is

higher than 14.5 m, but the water level begins to be

affected by catchment inflow when the lake level is

lower than 14.5 m (Ye et al. ).
CONCLUSIONS

This study aimed to determine the most efficient model by

comparing RF with SVR, ANN, and LM, and incorporating

the time lag effect as well as previous hydrological status for

forecasting the water level within lake stations.

Results demonstrated that for daily water level fore-

casting, the RF model can obtain more reliable and

accurate forecasting results than ANN, SVR, and LM in

terms of RMSE and R2. The best forecasting performance

was obtained by incorporating input data with 4-day time

lag of discharge from catchment tributaries and the

Yangtze River, as well as the water level over the previous

week, with RMSEs of 0.25, 026, 0.28, 0.21, and 0.24 m for

Hukou, Xingzi, Duchang, Tangyin, and Kangshan,

respectively.

In addition, variable importance analysis was

implemented for each water level station using the most

accurate RF model and scenario 3. Results indicated that

the previous water level was the most efficient predictor

for water level forecasting. Moreover, the discharge from

the Yangtze River also has a fundamental effect on water

level variations.

Nevertheless, meteorological factors are not included in

this study, thereby unavoidably introducing uncertainty to

real-time water level forecasting. Future work should fully

consider the complex hydrological and hydrodynamic pro-

cesses of Poyang Lake.
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