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Assessment of rainfall aggregation and disaggregation

using data-driven models and wavelet decomposition

Sungwon Kim, Ozgur Kisi, Youngmin Seo, Vijay P. Singh and

Chang-Joon Lee
ABSTRACT
The objective of this study is to develop hybrid models by combining data-driven models, including

support vector machines (SVM) and generalized regression neural networks (GRNN), and wavelet

decomposition for aggregation and disaggregation of rainfall. The wavelet-based support vector

machines (WSVM) and wavelet-based generalized regression neural networks (WGRNN) models are

obtained using mother wavelets, including db8, db10, sym8, sym10, coif6, and coif12. The developed

models are evaluated in the Bocheong-stream catchment, an International Hydrological Program

representative catchment, Republic of Korea. WSVM and WGRNN models with mother wavelet db10

yield the best performance as compared with other mother wavelets for estimating areal and

disaggregated rainfalls, respectively. Among 12 rainfall stations, SVM, GRNN, WSVM (db10 and

sym10), and WGRNN (db10 and sym10) models provide the best accuracies for estimating the

disaggregated rainfalls at Samga (No. 7), and the worst accuracies for estimating the disaggregated

rainfalls at Yiweon (No. 11) stations, respectively. Results obtained from this study indicate that the

combination of data-driven models and wavelet decomposition can be a useful tool for estimating

areal and disaggregated rainfalls satisfactorily, and can yield better efficiency than data-driven

models.
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INTRODUCTION
Rainfall modeling is a complex task. The use of conventional

approaches in modeling rainfall time series is far from tri-

vial, since hydrometeorologic processes are complex and

involve various factors, such as landscape and climatic fac-

tors, which are still not well understood (Wu et al. ).

Areal rainfall is the average rainfall over a region and is

estimated by one of the popular methods, such as arithmetic

mean, Thiessen polygon, isohyetal, spline, kriging, and

copula among others (Chow et al. ; Goovaerts ;

AghaKouchak et al. ). The arithmetic mean method is

the simplest one for determining areal rainfall. The Thiessen

polygon method assumes a linear variation in rainfall

between two neighboring stations, and polygons are
constructed which are essentially areal weights. This

method is considered more accurate than the arithmetic

mean method. The isohyetal method involves construction

of isohyets using observed depths at rainfall stations and

assumes a linear variation between two adjacent isohyets

(Chow et al. ; Singh ). The spline method is an

interpolation method that divides interpolation intervals

into small subintervals, and each of these subintervals is

interpolated by using the third-degree polynomial (Apaydin

et al. ; Tait et al. ). The kriging method is an opti-

mal interpolator, based on regression against observed

rainfall values of surrounding rainfall points, weighted

according to spatial covariance values (Goovaerts ; Ly
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et al. ). The copula method can be employed to describe

the dependencies among n random variables on an n dimen-

sional unit cube (uniform). Description of the spatial

dependence structure independent of the marginal distri-

bution is one of the most attractive features of copulas

(Genest et al. ; Zhang & Singh ). In this study, rain-

fall aggregation means the estimation of areal rainfall using

the conventional approaches such as arithmetic mean,

Thiessen polygon, isohyetal, spline, kriging, and copula

methods.

Rainfall disaggregation can be both temporal and

spatial. Temporal rainfall disaggregation entails disaggregat-

ing hourly, daily or longer duration rainfall into shorter time

rainfall, and many techniques for temporal rainfall disaggre-

gation have been proposed (Hershenhorn & Woolhiser

; Ormsbee ; Koutsoyiannis & Xanthopoulos ;

Glasbey et al. ; Connolly et al. ; Olsson ;

Olsson & Berndtsson ; Durrans et al. ; Sivakumar

et al. ; Socolofsky et al. ; Gyasi-Agyei ; Zhang

et al. ; Knoesen & Smithers ). However, relatively

limited research has been reported on spatial rainfall disag-

gregation (Perica & Foufoula-Georgiou ; Venugopal

et al. ; Sharma et al. ) as compared with temporal

rainfall disaggregation.

Data-driven models, including artificial neural networks

(ANNs), neuro-fuzzy, and genetic programming, are compu-

tational methods that have been primarily used for pattern

recognition, classification, and prediction (Haykin ).

During the past decades, various data-driven models have

been developed and applied for temporal rainfall disaggrega-

tion (Burian et al. , ; Burian&Durrans ). Burian

et al. () evaluated ANNs for disaggregation of hourly

rainfall into subhourly time increments. Results have

shown that ANNs are comparable to other disaggregation

methods, and improve the prediction of maximum incremen-

tal rainfall intensity. Burian et al. () investigated the

training performance of various ANNmodels’ characteristics

including data standardization, the geographic location of

training data, quantity of training data, the number of training

iterations, and the number of hidden neurons in ANNs.

Burian &Durrans () examined how the errors in the dis-

aggregated rainfall hyetograph translate to errors in the

prediction of the runoff hydrograph. However, research on

the development and application using data-driven models
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for spatial rainfall disaggregation (Kim & Singh ) has

been limited comparedwith temporal rainfall disaggregation.

Kim& Singh () developed ANNmodels, including multi-

layer perceptron (MLP) and Kohonen self-organizing feature

map (KSOFM), for spatial disaggregation of areal rainfall in

theWi-stream catchment, an International Hydrological Pro-

gram (IHP) representative catchment, Republic of Korea.

Results showed that MLP and KSOFM models could disag-

gregate areal rainfall into individual point rainfall with

spatial concepts successfully.

In recent years, wavelet decomposition and data-driven

models have been combined and successfully implemented

in hydrological applications including rainfall, streamflow,

water stage, evapotranspiration, groundwater, reservoir

inflow, and sediment load, etc. (Wang & Ding ;

Cannas et al. ; Wang et al. ; Adamowski & Sun

; Kisi ; Rajaee ; Tiwari & Chatterjee ; Kisi

& Cimen ; Adamowski & Chan ; Rajaee et al. ;

Adamowski & Prasher ; Nejad & Nourani ;

Okkan ; Wei et al. ; Okkan & Serbes ; Seo

et al. ). The wavelet decomposition is a specific data-pre-

processing method which can analyze a signal in both time

and frequency so that it can overcome the drawbacks of the

conventional Fourier transform method. The wavelet

decomposition permits an effective decomposition of time

series so that the decomposed data increase the perform-

ance of hydrological models by capturing the useful

information at different decomposition levels (Nourani

et al. , ).

Adamowski & Sun () suggested the method based

on combining discrete wavelet transforms and ANNs for

streamflow forecasting in non-perennial rivers. They found

that the WA-ANN models provided more accurate stream-

flow forecasting than the ANN models. Tiwari &

Chatterjee () developed a hybrid wavelet-bootstrap-

ANN (WBANN) model to investigate the potential of wave-

let and bootstrapping techniques for developing an accurate

and reliable ANN model for hourly flood forecasting. They

found that the WBANN model improved the reliability of

flood forecasting with greater confidence. Adamowski &

Prasher () compared support vector regression (SVR)

and wavelet networks (WN) for daily streamflow forecasting

in a mountainous watershed. They found that the best WN

model performed slightly better than the best SVR model.
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Okkan & Serbes () developed different models combin-

ing discrete wavelet transform (DWT) and different data-

driven models, including multiple linear regression (MLR),

feed forward neural networks (FFNN), and least square-

support vector machines (LS-SVM) for reservoir inflow

modeling. They found that the DWT-FFNN model per-

formed better than the other models in terms of mean

square error (MSE) and coefficient of determination (R2).

Nourani et al. () recently reviewed the definition and

advantages of wavelet-based models, as well as the history

and potential future of their application in hydrology to pre-

dict important processes of the hydrologic cycle.

Although there have been investigations using the com-

bination of data-driven models and wavelet decomposition,

their applications for aggregation and disaggregation of rain-

fall has been limited. Mathematical formulas between areal

and individual rainfalls on the catchment cannot be derived

or developed using the conventional methods, including

simple regression analysis. Therefore, the strong nonlinear

behavior in nature, such as aggregation and disaggregation

of rainfall, can be overcome by using the combination of

data-driven models and wavelet decomposition successfully.

The objective of this study, therefore, is to develop and

apply two different hybrid models, wavelet-based support

vector machines (WSVM) and wavelet-based generalized

regression neural networks (WGRNN), for aggregation

and disaggregation of rainfall and evaluate them in the

Bocheong-stream catchment, an IHP representative catch-

ment, Republic of Korea. The paper is organized as

follows: the second part describes the methodology includ-

ing wavelet decomposition, support vector machines

(SVM), generalized regression neural networks (GRNN),

and WSVM and WGRNN, respectively. The third part

describes the study area and data, and the fourth part pre-

sents the results and discussion. Conclusions are presented

in the last part of the paper.
METHODOLOGY

Wavelet decomposition

Wavelet analysis is a multiresolution analysis in time and

frequency domains. The wavelet transform decomposes a
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
time series signal into different resolutions by controlling

scaling and shifting. It provides good localization properties

in both time and frequency domains (Nejad & Nourani

). It also has an advantage in that it has flexibility in

choosing the mother wavelet, which is the transform func-

tion, according to the characteristics of the time series.

The continuous wavelet transform (CWT) of a signal x(t) is

defined as (Mallat ; Nourani et al. ):

CWTΨ
x (τ, s) ¼

1ffiffiffiffiffi
sj jp ðþ∞

�∞
x(t)Ψ� t� τ

s

� �
dt (1)

where s¼ the scale parameter, τ ¼ the translation par-

ameter, *¼ the complex conjugate, and Ψ(t)¼ the mother

wavelet. CWT necessitates a large amount of computation

time and resources, while DWT requires less computation

time and is simpler to implement than CWT. DWT involves

choosing scales and positions, which are called dyadic

scales and positions, based on powers of two. This is

achieved by modifying the wavelet representation as

(Mallat ; Nourani et al. ):

Ψ j,k(t) ¼ 1ffiffiffiffiffiffiffiffi
sj0
��� ���r Ψ

t� kτ0s
j
0

sj0

 !
(2)

where j and k ¼the integers that control the wavelet dilation

and translation, respectively. s0 > 1 is a fixed dilation step,

and τ0 ¼ the location parameter. The most common and

simplest choice for parameters are s0 ¼ 2 and τ0 ¼ 1 (Nour-

ani et al. ). Using the wavelet discretization, the time

scale can be sampled at discrete levels.

A fast DWT algorithm, developed by Mallat (), is

based on four filters, including decomposition low-pass

and high-pass, reconstruction low-pass and high-pass filters.

For practical implementation of Mallat’s algorithm, low-pass

and high-pass filters are used instead of father and mother

wavelets, which are also called scaling and wavelet func-

tions, respectively. The low-pass filter, associated with the

scaling function, allows the analysis of low frequency com-

ponents, while the high-pass filter, associated with the

wavelet function, allows the analysis of high frequency com-

ponents. These filters, used in Mallat’s algorithm, are

determined according to the selection of mother wavelets
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(González-Audícana et al. ). Multiresolution analysis by

Mallat’s algorithm is a procedure to obtain ‘approximations’

and ‘details’ for a given time series signal. An approximation

holds the general trend of the original signal, while a detail

depicts high-frequency components of it. A multilevel

decomposition process (Figure 1) can be achieved, where

the original signal is broken down into lower resolution

components (Catalão et al. ). Detailed information for

Mallat’s algorithm can be found in Nason ().
SVM

SVM models have found wide applications in several areas,

including pattern recognition, regression, multimedia, bio-

informatics, and artificial intelligence. An SVM model is a

new kind of classifier that is motivated by two concepts.

First, transformation of data into a high-dimensional space

can transform complex problems into simpler problems

that can use linear discriminant functions. Second, the

SVM model is motivated by the concept of training, and

uses only those inputs that are near the decision surface

(Principe et al. ; Tripathi et al. ; Vapnik ).

The solution of traditional neural network models may

tend to fall into a local optimal solution, whereas a global

optimum solution is guaranteed for the SVM model

(Haykin ). The current study uses an ε-support vector

regression (ε-SVR) model. It has been successfully applied

for modeling hydrological processes (Tripathi et al. ;

Kim et al. ; a, b). During the ε-SVR model train-

ing performance, the purpose is to find a nonlinear function
Figure 1 | Mallat’s algorithm for two-level decomposition of a signal.
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that minimizes a regularized risk function. This is achieved

for the least value of the desired error criterion (e.g., root

mean square error (RMSE)) for various constant parameters

CC, and ε and various kernel functions with various con-

stant σ values. Detailed information on the SVM model

can be found in Vapnik (), Principe et al. (), Tripathi

et al. (), and Kim et al. (, a, b).

GRNN

GRNN is a neural network model based on the nonlinear

regression theory. The GRNNmodel, as a universal approxi-

mation for smooth functions, is capable of solving any

smooth function approximation problem. The process of

GRNN modeling can solve the problem of local minimum

(Specht ; Sudheer et al. ). GRNN is composed of

four layers: that is, the input layer, the hidden layer, the sum-

mation layer, and the output layer. The input layer, the

hidden layer, and the summation layer neurons are comple-

tely connected, whereas the output layer neuron is

connected only with some of the summation layer neurons.

The summation layer is composed of two types of neurons,

including several summation neurons and one division

neuron. Each output layer neuron is connected to the sum-

mation neuron and division neuron of the summation

layer, and the connection weights are not composed

between the summation layer and the output layer (Specht

; Wasserman ; Tsoukalas & Uhrig ).

GRNN training performance is very different from the

training performance used in the MLP. The training per-

formance between the input and hidden layers is

composed of unsupervised training performance like the

radial basis function (RBF). Thus, it requires a special clus-

tering algorithm such as the K-means or orthogonal least

squares (OLS) algorithms, and the radius of cluster should

be set before the training performance starts. Also, the train-

ing performance between the hidden and the summation

layers is composed of the supervised training performance

based on a minimizing process of the mean square error

for the output value from the hidden layer. Therefore, the

parameters that need to be optimized during the training

performance are centers, widths/spreads, and connection

weights. The RBF is widely used for the transfer function

of the hidden layer (Wasserman ; Tsoukalas & Uhrig



Figure 2 | Flowchart for rainfall aggregation using WSVM and WGRNN.
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; Kim & Kim b). A GRNN model has been success-

fully developed and investigated for hydrological modeling

(Kisi ; Kim & Kim b; Kim et al. ; b).

Detailed information on the GRNN model can be found

in Tsoukalas & Uhrig (), Kim & Kim (b), and

Kim et al. (, b).

WSVM and WGRNN

WSVM is a combination of wavelet decomposition and

SVM, whereas WGRNN is a combination of wavelet

decomposition and GRNN. The wavelet decomposition is

employed to decompose an input time series into approxi-

mation and detail components. The decomposed time

series are used as inputs to SVM and GRNN for WSVM

and WGRNN models, respectively. The application of

WSVM and WGRNN models in hydrology and water

resources can be found from the literature (Kisi ; Kisi

& Cimen , ).

WSVM and WGRNN consist of a two-step algorithm.

The first step corresponds to a multilevel wavelet decompo-

sition. The input data of SVM and GRNN are decomposed

using the wavelet transform. In this study, DWT using Mal-

lat’s algorithm was used for decomposing the time series

signals. The multiresolution analysis by Mallat’s algorithm

generates approximations and details for a given time series

signal. An approximation holds the general trend of the orig-

inal signal, whereas a detail depicts high-frequency

components of it. Therefore, the original signal is broken

down into lower resolution components. For example, two-

level DWT decomposes a signal x(t) into D1, D2, and A2,

where D1 and D2 are details and A2 is an approximation.

D1, D2, and A2 are used as input to SVM and GRNN. The

second step corresponds to training and testing phases

using SVMandGRNN, respectively. Figure 2 shows the flow-

chart for rainfall aggregation using WSVM and WGRNN.
STUDY AREA AND DATA

Data were obtained from the Bocheong-stream catchment.

The catchment, shown in Figure 3, is located at 36 W 160 to

36 W 330 latitude and at 127 W 400 to 127 W 570 longitude. It

has an area of 475.68 km2, a channel length of approximately
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
49.0 km, a channel slope of approximately 0.582%, a shape

factor of approximately 0.166, and a river density of approxi-

mately 0.111. The catchment is short from east to west and

long from south to north. There are 5 river stage stations, 5

groundwater stations, 12 rainfall stations, and 12 evaporation

stations in the catchment (Ministry of Construction & Trans-

portation –). The hydrological data, such as rainfall,

river stage, discharge, and groundwater table, had been

recorded from 1982 to 2007.

To estimate areal rainfall using the Thiessen polygon,

spline and kriging methods in the Bocheong-stream catch-

ment, the hourly rainfall data from 12 rainfall stations,

including Myogeum (No. 1), Cheongsan (No. 2), Neungweol

(No. 3), Jungnyul (No. 4), Kwangi (No. 5), Pyeongon (No. 6),



Figure 3 | Schematic diagram of the Bocheong-stream catchment.
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Samga (No. 7), Songjug (No. 8), Samsan (No. 9), Dongjeong

(No. 10), Yiweon (No. 11), and Annae (No. 12) stations

were used. Only Myogeum (No. 1) and Annae (No. 12)

stations are located outside the Bocheong-stream catch-

ment. Since all stations are spread almost uniformly, the

areal rainfall using the Thiessen polygon, spline and kriging

methods can capture the natural phenomena of individual

rainfall patterns in the catchment. In order for data-driven

models to be able to make generalizations about rainfall, suf-

ficient rainfall data should be available (Kim & Kim a).

Rainfall events must be recorded over 24 hours, including

non-rainfall hours. Twelve rainfall events (events 1–12),

including six floods and six typhoon events, were chosen

from the mid-1980s to the mid-1990s to meet this condition.

Since the kriging method includes considerable variables to

estimate the areal rainfall compared with the Thiessen poly-

gon and spline methods, the areal rainfall estimated using

the kriging method was considered as observed areal

rainfall.
om http://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
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For the data-driven model, data were split into training,

cross-validation, and testing data. The training data were

used for optimizing the connection weights and bias of the

data-driven model, the cross-validation data were used to

select the model variant that provides the best level of gen-

eralization, and the testing data were used to evaluate the

chosen model against unseen data (Dawson & Wilby ;

Izadifar & Elshorbagy ). The cross-validation method

provides a rigorous test of a data-driven model’s skill

(Dawson & Wilby ) and is generally used to overcome

the overfitting problem inherent in the data-driven models

(Haykin ). This technique has often been applied at

the end of training performance in the literature (Smith

; Haykin ) and is also employed for data-driven

model selection (Stone ).

The training data consist of the rainfall events resulting in

river floods, and the cross-validation and testing data consist

of rainfall events when typhoons pass and affect the Republic

of Korea. In all of these applications, 47% of data (events 1, 4,
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7, 9, 11, and 12, N¼ 459 hours) were applied for training,

25%of data (events 5, 8, and 10,N¼ 245 hours) for cross-vali-

dation, and the remaining 28% of data (events 2, 3, and 6,

N¼ 280 hours) for testing. Since floods and typhoons have

occurred frequently during the summer season, the hourly

rainfall data are sufficient to explain the rainfall patterns for

floods and typhoons. However, it can be found that the

data length does not significantly affect the performance of

data-driven models. Tokar & Johnson () indicated that

the data length has less effect than the data quality on the per-

formance of a neural network model. Sivakumar et al. ()

indicated that it is imperative to select good training data

from the available data series. They indicated that the best

way to achieve a good training performance is to include

most of the extreme events, such as very high and very low

values, in the training data.

Table 1 summarizes statistical indices of training, cross-

validation, and testing data. In Table 1, Xmean, Xmax, Xmin,

Sx, Cv, Csx, and SE denote the mean, maximum, minimum,

standard deviation, coefficient of variation, skewness coeffi-

cient and standard error values for training, cross-validation,
Table 1 | Statistical indices of training, cross-validation, testing data

Statistical

Rainfall stations

indices Data No. 1 No. 2 No. 3 No. 4

Xmean Training (N¼ 459) 1.25 1.04 1.13 1.56
Cross-validation (N¼ 245) 1.17 1.19 1.11 1.80
Testing (N¼ 280) 2.10 1.61 1.19 1.66

Xmax Training (N¼ 459) 26.00 30.00 26.50 49.00
Cross-validation (N¼ 245) 18.00 24.50 24.00 38.00
Testing (N¼ 280) 65.00 34.00 21.00 30.00

Xmin Training (N¼ 459) 0.00 0.00 0.00 0.00
Cross-validation (N¼ 245) 0.00 0.00 0.00 0.00
Testing (N¼ 280) 0.00 0.00 0.00 0.00

Sx Training (N¼ 459) 3.85 3.38 3.81 4.71
Cross-validation (N¼ 245) 3.30 3.49 3.55 5.30
Testing (N¼ 280) 6.08 3.78 2.63 3.80

Cv Training (N¼ 459) 3.07 3.26 3.37 3.02
Cross-validation (N¼ 245) 2.81 2.93 3.19 2.95
Testing (N¼ 280) 2.89 2.35 2.21 2.29

Csx Training (N¼ 459) 3.99 4.26 4.50 4.96
Cross-validation (N¼ 245) 3.42 4.01 3.99 3.90
Testing (N¼ 280) 6.32 4.10 3.20 4.08

SE Training (N¼ 459) 0.18 0.16 0.18 0.22
Cross-validation (N¼ 245) 0.21 0.22 0.23 0.34
Testing (N¼ 280) 0.36 0.23 0.16 0.23
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and testing data, respectively. Songjug (No. 8) and Dongjeong

(No. 10) stations show high variation (seeCv values in Table 1)

in training and cross-validation data. Pyeongon (No. 6), Song-

jug (No. 8), Dongjeong (No. 10), and Yiweon (No. 11) stations

show high skewed distributions (see Csx values in Table 1) in

training and cross-validation data.

Table 2 summarizes statistical indices of areal rainfall

data using the Thiessen polygon, spline and kriging

methods. It is seen from Table 2 that the areal rainfall

using three methods shows similar values for training,

cross-validation, and testing data. The estimated rainfall

values were compared with observed ones using five per-

formance evaluation criteria: the correlation coefficient

(CC), RMSE, Nash–Sutcliffe coefficient (NS) (Nash & Sut-

cliffe ; ASCE ), mean absolute error (MAE), and

average performance error (APE). Although CC is one of

the most widely used criteria for calibration and evaluation

of hydrological models with observed data, it alone cannot

discriminate which model is better than others. The stan-

dardization inherent in CC as well as its sensitivity to

outliers yields high CC values, even when the model
No. 5 No. 6 No. 7 No. 8 No. 9 No. 10 No. 11 No. 12

1.38 1.40 1.20 0.91 1.36 0.60 0.97 1.25
1.28 2.65 1.26 0.69 0.96 0.30 1.22 0.69
1.61 1.52 2.18 2.42 1.88 1.51 1.90 2.31

32.00 53.00 34.50 47.00 37.00 23.00 58.00 33.00
17.50 111.00 35.50 44.50 15.00 22.00 42.00 19.00
31.50 25.00 37.00 34.00 24.00 17.00 25.00 69.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4.54 4.42 3.97 4.21 4.31 2.72 3.82 4.34
3.27 9.12 4.29 3.45 2.68 1.91 3.89 2.84
3.52 3.31 4.85 5.19 4.00 3.03 3.92 5.97

3.29 3.15 3.30 4.64 3.17 4.55 3.95 3.48
2.56 3.44 3.40 4.98 2.80 6.44 3.20 4.10
2.19 2.18 2.23 2.15 2.13 2.00 2.07 2.58

4.46 5.62 4.29 6.97 4.81 5.20 9.00 4.46
2.85 7.61 4.56 9.67 3.23 8.81 6.02 4.57
3.89 3.74 3.69 3.11 3.09 3.21 2.88 6.36

0.21 0.21 0.19 0.20 0.20 0.13 0.18 0.20
0.21 0.58 0.27 0.22 0.17 0.12 0.25 0.18
0.21 0.20 0.29 0.31 0.24 0.18 0.23 0.36



Table 2 | Statistical indices of areal rainfall data

Statistical indices

Data Methods Xmean Xmax Xmin Sx Cv Csx SE

Training Thiessen polygon 1.16 20.01 0.00 2.77 2.38 3.22 0.13
Spline 1.16 20.72 0.00 2.83 2.44 3.29 0.13
Kriging 1.17 18.71 0.00 2.76 2.37 3.16 0.13

Cross-validation Thiessen polygon 1.21 17.24 0.00 2.93 2.42 3.31 0.19
Spline 1.16 16.63 0.00 2.77 2.38 3.19 0.18
Kriging 1.19 17.61 0.00 2.94 2.46 3.33 0.19

Testing Thiessen polygon 1.79 18.60 0.00 2.85 1.59 2.41 0.17
Spline 1.80 18.39 0.00 2.87 1.60 2.39 0.17
Kriging 1.82 19.66 0.00 2.95 1.62 2.63 0.18

Table 3 | Mathematical expressions of performance evaluation criteria

Evaluation criteria Equation

CC 1
n

Xn
i¼1

[yi(x)� uy][byi(x)� buy]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiv
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performance is not perfect. Legates & McCabe ()

suggested that various evaluation criteria (e.g., RMSE,

MAE, NS, and APE) must be used to evaluate model per-

formance. Table 3 shows mathematical expressions of

performance evaluation criteria used in this study.
1
n

Pn
i¼1

[yi(x)� uy]
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1

[byi(x)� buy]
2

suut
RMSE ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

Xn
i¼1

[yi(x)� byi(x)]2
s

NS
1�

Pn
i¼1

[yi(x)� byi(x)]2Pn
i¼1

[yi(x)� uy]
2

MAE
1
n

Xn
i¼1

yi(x)� byi(x)j j

APE Pn
i¼1

yi(x)� byi(x)j j
Pn
i¼1

yi(x)
× 100

yi (x)¼ the observed hourly rainfall (mm); byi (x)¼ the estimated hourly rainfall (mm); uy ¼
the mean of observed hourly rainfall (mm); buy ¼ the mean of estimated hourly rainfall

(mm); and n¼ the total number of hourly rainfall values considered.
RESULTS AND DISCUSSION

Rainfall aggregation using data-driven models

The development of an optimal model is a major problem in

data-driven modeling (Kisi ; Kim & Kim b). Since

the number of input–output nodes is problem dependent,

there is no precise way of choosing the optimal number of

hidden nodes. The model structure, therefore, is generally

determined using a trial and error method (Coulibaly et al.

; Makarynskyy et al. ). Conventional data-driven

models adopt one hidden layer for model construction,

since it is well known that one hidden layer is enough to rep-

resent the nonlinear complex relationship (Kumar et al.

; Makarynskyy et al. ). The number of hidden

nodes of data-driven models for rainfall aggregation was

determined using a trial and error approach. Figure 4(a)

shows the developed structure of SVM (12-12-1) comprising

input (12 nodes), hidden (12 nodes), and output (1 node)

layers for estimating areal rainfall in this study. Figure 4(b)

shows the developed structure of GRNN (12-12-2-1) com-

prising input (12 nodes), hidden (12 nodes), summation (1

summation and 1 division node), and output (1 node)

layers for estimating areal rainfall in this study.
om http://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf

er 2021
The input data were decomposed by DWT to develop

and apply WSVM and WGRNN models. The optimal

decomposition level must be selected in advance to deter-

mine the performance of the model in the wavelet

domain. Several researchers have used an empirical

equation to determine the decomposition level (Nourani

et al. ; Tiwari & Chatterjee ; Adamowski &

Chan ; Nejad & Nourani ). In this study, the



Figure 4 | Developed structure for estimating areal rainfall. (a) SVM (12-12-1), (b) GRNN

(12-12-2-1).
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decomposition level was determined using the following

empirical equation (Nourani et al. ):

L ¼ int[ log (N)] (3)

where L¼ the decomposition level, N¼ the number of time

series data, and int[·]¼ the integer-part function. In this

study, two decomposition levels were obtained. Thus,

input times series were decomposed using different mother

wavelets, and details mode (D1, D2), and approximation

mode (A2) for individual input data were obtained for the

training, cross-validation, and testing periods.
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
This study also aims at examining the effects of different

mother wavelets on the efficiency of developed models.

For this purpose, the performance of applied models was

investigated for different mother wavelets, including Daube-

chies-8 (db8), Daubechies-10 (db10), Symmlet-8 (sym8),

Symmlet-10 (sym10), Coiflet-6 (coif6), and Coiflet-12

(coif12). For discrete wavelet analysis, Daubechies wavelets

have been commonly used as mother wavelets, and Symmlets

and Coiflets wavelets have also been applied in hydrologic

wavelet-based studies (Alikhani ; Adamowski & Sun

; Tiwari & Chatterjee ; Nejad&Nourani ; Evren-

dilek ; Santos et al. ). Daubechies, Symmlet, and

Coiflet wavelets provide compact support (Vonesch et al.

; Mathworks ), indicating that the wavelets have

non-zero basis functions over a finite interval, as well as full

scaling and translational orthonormality properties (Popiva-

nov & Miller ; de Artigas et al. ). These features are

important for localizing events in the time-dependent signals

(Popivanov & Miller ). Based on these features, Daube-

chies, Symmlet, and Coiflet wavelets were selected as

mother wavelets in this study. Figure 5 shows an example of

the original time series and sub-time series (D1, D2, and A2)

decomposed using db10 wavelet for the training period.

Selection of effectivewavelet components is important for

model performance. Previous studies selected effective wave-

let components using the CC between wavelet components

and observed values (Alikhani ; Tiwari & Chatterjee

; Kisi & Cimen ). The effective wavelet components

have also been selected using other methods, including Mal-

low’s Cp (Okkan ; Okkan & Serbes ), CC, mutual

information, Shannon entropy (Khanghah et al. ), and

self-organizing map (Nourani et al. ). Several researchers

also used all decomposed components as effective wavelet

components (Adamowski & Sun ; Adamowski & Chan

; Kisi ; Adamowski & Prasher ).

To construct new input time series from the wavelet

components, several methods have been used, including

summing the effective components (Partal & Cigizoglu

; Alikhani ; Kisi ; Kisi & Cimen ), summing

the components for different levels (Adamowski & Chan

; Adamowski & Prasher ), using all components

for different levels without summing the components (Ada-

mowski & Sun ; Kisi ), and using only effective

components without summing them (Okkan ). Based



Figure 5 | Original and decomposed time series (D1, D2, and A2) using db10 wavelet for training period. (a) Original time series, (b) D1, (c) D2, (d) A2.
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on the modeling strategies, one SVM, one GRNN, six

WSVM, and six WGRNN models were developed for the

rainfall aggregation.
om http://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf

er 2021
Table 4 summarizes statistical results for rainfall aggre-

gation models during the testing performance. It is clear

from Table 4 that all the models generally perform well.



Table 4 | Performance statistics for spatial aggregation of areal rainfall models during the

testing performance

Evaluation criteria

Models CC RMSE (mm) NS MAE (mm) APE (%)

SVM 0.950 0.958 0.895 0.516 31.347

WSVM_db8 0.967 0.770 0.932 0.486 29.493

WSVM_db10 0.972 0.711 0.942 0.437 25.546

WSVM_sym8 0.954 0.914 0.905 0.508 29.771

WSVM_sym10 0.962 0.881 0.913 0.486 28.843

WSVM_coif6 0.952 0.941 0.901 0.515 30.766

WSVM_coif12 0.955 0.924 0.903 0.510 30.889

GRNN 0.891 1.460 0.756 0.905 56.532

WRNNN_db8 0.935 1.119 0.858 0.525 34.540

WGRNN_db10 0.944 1.052 0.874 0.460 27.765

WGRNN_sym8 0.903 1.350 0.792 0.821 51.078

WGRNN_sym10 0.919 1.190 0.838 0.682 42.136

WGRNN_coif6 0.899 1.393 0.778 0.885 54.276

WGRNN_coif12 0.904 1.338 0.796 0.771 47.550
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Comparison of SVM and WSVM models with different

mother wavelets indicates that the results of WSVM

models are better than those of the SVM model. Compari-

son of GRNN and WGRNN models with different mother

wavelets also indicates that the results of WGRNN models

are better than those of the GRNN model. Furthermore, it

can be found from Table 4 that the results of SVM and

WSVM are better than those of the GRNN and WGRNN

with respect to different mother wavelets, respectively. Com-

parison of different mother wavelets reveals that db10 yields

the best accuracy for the rainfall aggregation for the WSVM

and WGRNN models. This indicates that wavelet decompo-

sition using mother wavelet, db10, can improve the

performance of SVM and GRNN models as compared

with the other mother wavelets. These results are consistent

with those reported by Seo et al. ().

Figure 6(a)–6(d) compare observed and estimated areal

rainfall for testing data using the SVM and WSVM models

with different mother wavelets, including db10, sym10,

and coif12. It is clear from the fit-line equations that the

SVM and WSVM models with different mother wavelets

perform well with high correlations. It is clear from Figure 6

that the WSVM model with mother wavelet db10 shows the

best accuracy. Figure 7(a)–7(d) compare observed and
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
estimated areal rainfall for testing data using the GRNN

and WGRNN models with different mother wavelets,

including db10, sym10, and coif12. It is clear from the fit-

line equations that the WGRNNmodel with mother wavelet

db10 performs better than the other models. Comparison of

SVM and GRNN models given in Figures 6 and 7 clearly

reveals that the SVM and WSVM models are better than

the GRNN and WGRNN models for estimating areal rain-

fall, respectively.

Disaggregation of areal rainfall using data-driven

models

In this section, the WSVM and WGRNN models, which

yielded the best performance for estimating areal rainfall,

including SVM and GRNN, were used for disaggregating

the areal rainfall. Therefore, the WSVM and WGRNN

models with mother wavelets db10 and sym10 were used in

this study. Only two performance evaluation criteria (CC

and RMSE) were applied for disaggregating the areal rainfall.

The number of hidden nodes of data-driven models for disag-

gregating the areal rainfall was also determined using a trial

and error approach. Figure 8(a) shows the developed struc-

ture of SVM (1-12-12), comprising input (1 node), hidden

(12 nodes), and output (12 nodes) layers for estimating the

disaggregated rainfall in this study. Figure 8(b) shows the

developed structure of GRNN (1-12-13-12), comprising

input (1 node), hidden (12 nodes), summation (12 summation

and 1 division nodes), and output (12 nodes) layers for esti-

mating the disaggregated rainfall in this study.

Figure 9(a) and 9(b) show the influence of individual

rainfall stations with respect to the performance evaluation

criteria (CC and RMSE) of SVM and WSVM models during

the test period. SVM andWSVMmodels were generally sen-

sitive to individual rainfall stations, as seen from large

fluctuations. The disaggregated rainfall for individual rain-

fall stations yielded very different performance based on

evaluation criteria (CC and RMSE). For Samga (No. 7)

station, the values of CC and RMSE are 0.786 and

2.22 mm for the SVM model, 0.827 and 2.04 mm for the

WSVM model with mother wavelet db10, and 0.811 and

2.16 mm for the WSVM model with mother wavelet

sym10, respectively. For Yiweon (No. 11) station, the

values of CC and RMSE are 0.411 and 5.58 mm for the



Figure 6 | Comparison of observed and estimated areal rainfalls using SVM and WSVM.
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SVM model, 0.532 and 4.83 mm for the WSVM model with

mother wavelet db10, 0.478 and 5.35 mm for the WSVM

model with mother wavelet sym10, respectively. Figure 9(a)

and 9(b) clearly show that the disaggregated rainfalls at

Samga (No. 7) and Yiweon (No. 11) stations yield the best

and worst accuracies among the 12 rainfall stations for the

SVM and WSVM models. Results show that the SVM and

WSVM models are capable of disaggregating the areal rain-

fall into individual point rainfall. The reliability of

disaggregating the areal rainfall on individual rainfall

stations, however, shows much difference. From Figure 9(a)

and 9(b), it can be judged that the WSVM model with

mother wavelet db10 is an optimal model for disaggregating

the areal rainfall.
om http://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
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Figure 10(a) and 10(b) show the influence of individual

rainfall stations on the performance evaluation criteria (CC

and RMSE) of the GRNN and WGRNN models during the

test period. Here also, the GRNN and WGRNN models

were generally sensitive to individual rainfall stations, as

seen from large fluctuations. The disaggregated rainfall

for individual rainfall stations yielded very different per-

formance based on evaluation criteria (CC and RMSE).

For Samga (No. 7) station, the values of CC and RMSE

are 0.679 and 2.32 mm for the GRNN model, 0.718 and

2.14 mm for the WGRNN model with mother wavelet

db10, and 0.691 and 2.29 mm for the WGRNN model

with mother wavelet sym10, respectively. For Yiweon

(No. 11) station, the values of CC and RMSE are 0.303



Figure 7 | Comparison of observed and estimated areal rainfalls using GRNN and WGRNN.
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and 5.67 mm for the GRNN model, 0.396 and 4.97 mm for

the WGRNN model with mother wavelet db10, 0.372 and

5.48 mm for the WGRNN model with mother wavelet

sym10, respectively. Figure 10(a) and 10(b) show that the

disaggregated rainfalls at Samga (No. 7) and Yiweon (No.

11) stations yield the best and worst accuracies among

the 12 rainfall stations for the GRNN and WGRNN

models. Results show that the GRNN and WGRNN

models are capable of disaggregating the areal rainfall

into individual point rainfall. The reliability of disaggregat-

ing the areal rainfall on individual rainfall stations,

however, shows much difference. From Figure 10(a) and

10(b), it can be judged that the WGRNN model with

mother wavelet db10 is an optimal model for disaggregat-

ing the areal rainfall.
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
The specific rainfall stations (e.g., No. 6, No. 8, No.

10, and No. 11), which have high skewed distributions

in training and cross-validation data, did not generally

show satisfactory results in the performance evaluation

criteria (CC and RMSE (mm)) of SVM and GRNN

models. However, wavelet composition techniques can

overcome the weakness of SVM and GRNN models effec-

tively. It can be found from this observation that data

quality can affect the performances of data-driven

models. This is in agreement with Tokar & Johnson

() and Sivakumar et al. (). Comparison of SVM

and GRNN models indicates that the results of the SVM

model are better than those of the GRNN model for dis-

aggregating the areal rainfall. Also, comparison of

WSVM and WGRNN models with mother wavelets



Figure 9 | Influence of individual rainfall stations for SVM and WSVMmodels (test period).

Figure 8 | Developed structure for estimating spatial disaggregated rainfall.
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db10 and sym10 indicates that the results of the WSVM

model with mother wavelets db10 and sym10 are better

than those of the WGRNN model with mother wavelets

db10 and sym10 for disaggregating the areal rainfall,

respectively.
om http://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf

er 2021
CONCLUSIONS

This study develops and evaluates the combination of wave-

let decomposition and data-driven models for aggregation

and disaggregation of rainfall in the Bocheong-stream catch-

ment, an IHP representative catchment, Republic of Korea.

The SVM and GRNN models are used to estimate areal

rainfall and individual point rainfall. Wavelet decompo-

sition is employed and sub-components are used as input

to SVM and GRNN to obtain WSVM and WGRNN

models, respectively. Comparison of SVM and WSVM

models with different mother wavelets indicates that the

results of WSVM models with different mother wavelets

are better than those of the SVM model. Comparison of

GRNN and WGRNN models with different mother



Figure 10 | Influence of individual rainfall stations for GRNN and WGRNN models (test

period).
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wavelets indicates that the results of WGRNN models with

different mother wavelets are better than those of the

GRNN model.

The WSVM models with mother wavelet db10 yield the

best performance for rainfall aggregation among SVM and

WSVM models with different mother wavelet models.

The WGRNN models with mother wavelet db10 yield the

best performance for rainfall aggregation among GRNN

and WGRNN models with different mother wavelet

models.

The SVM, GRNN, WSVM (db10 and sym10), and

WGRNN (db10 and sym10) models are used for estimating

the disaggregated rainfall. The SVM, GRNN, WSVM (db10

and sym10) and WGRNN (db10 and sym10) models are
://iwaponline.com/hr/article-pdf/48/1/99/367220/nh0480099.pdf
generally found to be sensitive to individual rainfall stations.

The disaggregated rainfall at Samga (No. 7) yields the best

results among the 12 rainfall stations for the SVM, GRNN,

WSVM, and WGRNN models. The disaggregated rainfall

at Yiweon (No. 11) station yields the worst results among

the 12 rainfall stations for the SVM, GRNN, WSVM, and

WGRNN models.

Comparison of the SVM and GRNN models indicates

that the results of the SVM model are better than those of

the GRNN model for disaggregating the areal rainfall. Com-

parison of the WSVM and WGRNN models with mother

wavelets db10 and sym10 indicates that the results of the

WSVM model with mother wavelets db10 and sym10 are

better than those of the WGRNN model with mother wave-

lets db10 and sym10 for disaggregating the areal rainfall,

respectively. The WSVM and WGRNN models with

mother wavelet db10 are found to be optimal models for dis-

aggregating the areal rainfall in this study.
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