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Effects of revegetation on soil moisture under different

precipitation gradients in the Loess Plateau, China

Fei Tian, Xiaoming Feng, Lu Zhang, Bojie Fu, Shuai Wang, Yihe Lv

and Pei Wang
ABSTRACT
Revegetation can alter catchment water balance and result in soil desiccation. Large-scale

revegetation took place in the Loess Plateau of China to control soil erosion and improve

environmental conditions. However, the dynamic nature of soil moisture in response to revegetation

under different climatic conditions is still unclear mainly due to lack of long-term in situ observations.

To overcome this challenge, a biophysically based ecohydrological model (WAVES) was used to

examine the effects of revegetation on soil moisture. Results showed that trees consumemore water

(100% of precipitation) than shrub (97.6%) and grass (98.3%), and therefore are more likely to result in

soil desiccation. No runoff occurred under the tree scenario, while for shrub and grass, runoff

accounted for 2.4% and 1.7% of precipitation, respectively. In areas with mean annual precipitation

(MAP) less than 400 mm, tree planting resulted in soil water deficit, while in areas with MAP

exceeding 600 mm, no soil water deficit occurred. Within this MAP range (400<MAP< 600 mm),

this could lead to soil water deficit during dry years. Extending this analysis to the entire Loess

Plateau, 40% of the region will face reduced soil moisture when converting cropland to trees.
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INTRODUCTION
China experienced severe droughts in 1997 and serious

floods in 1998, causing serious economic and environmental

damage. In the wake of these disasters, the Chinese govern-

ment took unprecedented conservation measures (Xu &

Cao ), one of which was the Grain for Green Program

(GGP, also known as the Conversion of Cropland to Forest

and Grassland Program) introduced in 1999 to protect the
degraded environment (Zhang et al. ). The objective of

this program was to convert cropland to plantations and

grassland on steep slopes by compensating farmers with sub-

sidies. The ‘Grain for Green’ Program aimed to achieve a

target of converting 146,700 km2 of cropland to plantations

by 2010 and total planned investment exceeded US$40 bil-

lion (SFA ). Although the project was designed to

address environmental issues (e.g. climate change, droughts,

water crisis) in China, it could set up a good example for other

nations to achieve both socioeconomic and environmental

sustainability through revegetation strategies. The success of

the ‘Grain for Green’ Program has important global impli-

cations (Liu & Diamond ).
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The focus of this research was the Loess Plateau, which

is the largest highly erodible area on earth (Peng ),

where the pilot phases of the GGP were implemented.

Many studies have reported positive effects of GGP on the

Loess Plateau. For example, Xin et al. () and Cao

et al. () concluded that vegetation cover on the Loess

Plateau exhibited an overall ascending tendency during

the period 1998–2005. Feng et al. () documented that

recovery of vegetation was effective in controlling soil ero-

sion. However, recent studies have also raised concerns

about the possibility of water scarcity and soil desiccation

following revegetation in water limited areas and this can

affect the sustainability of further development of GGP

(Wang et al. a, b). Feng et al. () detected that

water yield in 38% of the Loess Plateau has decreased as

a result of land cover change alone. Deep soil layers in

the Loess Plateau are regarded as ‘soil reservoir’ with high

water-holding capacity, which could sufficiently mitigate

drought and supply the necessary water for plant growth.

This function has been threatened by afforestation due to

increased evapotranspiration (Chen et al. b). Based

on in situ measurements, studies showed clearly that affor-

estation can lead to soil desiccation (Li et al. ; Wang

et al. a, b; Zhang et al. ). For example, Yang

() discussed the formation of dry soil layer and indicated

that soil desiccation is the negative effect of afforestation.

Cao et al. () indicated that soil water content in an

afforestation plot at depths of 0 to 1.0 m and 1.0 to 2.0 m,

were 63.2% and 42.8% lower than in the abandoned plots,

respectively. Wang et al. () showed that plantations

had depleted soil moisture below 2 m, as a result they rely

on present year precipitation for transpiration. Li et al.

() reported that average soil moisture in a 0–10 m soil

profile of the forestland was lower than that of nearby grass-

land. Fan et al. () conducted a field study of the soil

water balance under different land use patterns and discov-

ered that trees may reduce soil moisture, but after trees were

removed, soil water was replenished. Yang () detected a

response of soil moisture to land use and afforestation at a

depth of 2 m, and showed that the deep soil moisture

decreased more than 35% after land use conversion, and a

soil moisture deficit appeared, and high planting density

was found to be the main reason for the severe soil moisture

deficit. However, there are few studies about long-term
s://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
inter-annual changes in soil moisture under different veg-

etation types due to the lack of long-term in situ

observation and simulation, the dynamic mechanism of

water consumption of vegetation related to soil desiccation

is still unknown. Quantitative analysis is needed for further

research especially on a basis of the long term relationship

of water supply and demand (Xu ; Jung et al. ). San-

karan et al. () reported that trees are unlikely to form

closed-canopy woodland with less than 650 mm of precipi-

tation, and afforestation could result in soil moisture

deficit especially in water limited semi-arid regions, how-

ever it is still not clear how revegetation will affect soil

moisture under different precipitation gradients in the

Loess Plateau.

In this study, an ecohydrological model (WAVES) was

used to evaluate the effect of revegetation on soil moisture

dynamics in the Loess Plateau. One advantage of the

WAVES model (Zhang et al. ) is that it properly rep-

resents the soil moisture dynamics by dynamically linking

hydrological processes with vegetation growth at the spatial

scale so that it can accurately simulate development of LAI,

canopy transpiration, rooting dynamics and soil water stress

on both transpiration and growth at the plot or catchment

scale (Cheng et al. ). The WAVES model has been suc-

cessfully tested against field observation of soil water

content, groundwater, and evapotranspiration especially in

Australia and China (Salama et al. ; Wang et al. ;

Crosbie et al. ; McCallum et al. ; Cheng et al.

). On the Loess Plateau of China, the model also

showed good performance in evaluating water use effi-

ciency, and soil water content (Kang et al. ).

The objective of this study was twofold: (1) to evaluate

the effects of revegetation on soil moisture on the Loess Pla-

teau; (2) to investigate whether revegetation in given

precipitation conditions could result in long-term soil moist-

ure reduction.
MATERIAL AND METHODS

Study area

The study was in the Yangjuangou catchment (36 W420N,

109W310E), which is located in the central part of the Loess
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Plateau in northern Shannxi Province of China (Figure 1). It

covers an area of 2.02 km2, and at elevations ranging from

1,000 to 1,300 m. The area has a mean annual precipitation

(MAP) of 535 mm with precipitation ranging from 338 to

785 mm, and a mean temperature of 9.7 WC (1980–2010).

The peak rainfall occurred in the period of June to Septem-

ber, and a dry season is characterized during spring and

early summer, the growing season usually ranges from

April to October.

The parent material of the soil is loess with a depth of

50–200 m depending on topography. The loess in this

region has a porosity of about 50%, the gravimetric field

capacity and wilting percentage of soil water are 20–24%,

and 3–6%, respectively (Yang & Shao ). Average soil

water content in the topsoil (0–100 cm) ranges from 7% to

13% and details of the study catchment can be found in

Wang et al. ().

The catchment experienced major land use change.

Before 1999, cropland accounted for 29.6% of the total

catchment area. After implementation of the GGP, the crop-

land on steep slopes were gradually abandoned and
Figure 1 | Land use type and location of Yangjuangou catchment in the Loess Plateau, China. F

and S4 - crop). Please refer to the online version of this paper to see this figure in

om https://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf

er 2018
converted to trees, shrubs, and grass with only 0.11% of

the cropland remaining (Liu et al. ).

Field measurements and data collection

Four typical land cover types with similar slope positions

(upper position), aspects (west), and slope degrees (25 W)

were considered. Soil samples were collected for particle size

and bulk density measurements. The plant cover and height

were also measured. The planted tree was R. pseudoacacia,

the shrub was S. pubescens, the grass site was dominated by

beard Andropogon, and the main crop was corn (Zea mays).

Soil moisture and weather data were measured with six

S-SMC-M005 and six S-SMC-M006 soil moisture and temp-

erature sensors fixed on H21 Soil Moisture and Temp

Logger Systems. The soil moisture sensors were installed at

six depths: 10, 20, 40, 60, 80 and 100 cm below the ground

surface. The soil moisture sensor is capable of measuring

volumetric saturation values of 0–100%, with an accuracy

of ±1.0% and a resolution of 0.1%. Soil moisture data were

collected by a HOBO weather station logger every 10 min,
our different experiment sites are located in the red circle (S1 - tree, S2 - shrub, S3 - grass,

colour: http://dx.doi.org/10.2166/nh.2016.022.

http://dx.doi.org/10.2166/nh.2016.022


Table 1 | Soil layering, texture, depths, and Broadbridge-White parameters for each soil

used in the Yangjuangou catchment

Layer Texture Depth (cm)
Ks
(m/d)

θs
(m3/m3)

θr
(cm3/cm3) λc (m) C

1 Silt loam 0–40 0.10 0.20 0.07 0.25 1.20

2 Sandy loam 40–80 0.30 0.21 0.08 0.30 1.10

3 Loam 80–300 0.80 0.21 0.11 0.30 1.05

Ks is the saturated hydraulic conductivity; θs and θr are the saturated and air-dry volu-

metric water contents, respectively; λc is a capillary length scale related to sorptivity;

and C is a shape parameter for the soil moisture characteristic.
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while other meteorological variables (air temperature, rela-

tive humidity, and wind velocity at a height of 2 m above

the ground) were recorded every 30 min.

Model application

WAVES (Dawes & Hatton ; Zhang et al. ) is a one-

dimensional process-based model that simulates the process

of water, energy, and solute movement in soil–plant–atmos-

phere continuum on a daily time step. It integrates soil,

canopy-atmosphere with a consistent level of process detail,

thus the model is well suited to investigations of hydrological

and ecological responses to changes in landmanagement and

climate variation. It is particularly used in soil water analysis

by Yang et al. () and Kang et al. (). Detailed descrip-

tions of which can be found in Zhang & Dawes ().

WAVES requires three data sets as inputs: meteorologi-

cal data, soil parameters, and vegetation parameters.

Meteorological data

The meteorological data needed to run the WAVES model

included daily maximum and minimum temperature, daily

average vapor pressure deficit, daily rainfall, daily rainfall dur-

ation, and daily solar radiation. Daily rainfall, maximum and

minimum temperature was observed in the field experiment.

The daily vapor pressure deficit was calculated from the

observeddaily relativehumidity byusing the followingequation

provided by FAO in report No. 56 (Richard et al. ):

e0 ¼ 0:6108 exp
17:27T

T þ 237:3

� �
(1)

where e0 is the saturated vapor pressure (kpa) and T is the daily

average temperature (WC). The vapor pressure deficit is calcu-

lated by multiplying the saturated vapor pressure by (1 minus

the relative humidity). The daily solar radiation was estimated

according to daily temperaturemeasurements following Thorn-

ton & Running ().

Soil and vegetation parameters

Soil water movement is simulated with the Richards

equation (Richards ), and the BW soil model
s://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
(Broadbridge & White ) was used to generate values

of soil water potential, water content, and hydraulic conduc-

tivity to allow WAVES model to simulate the movement of

soil water with the Richards equation. Table 1 shows the

BW soil parameters used in this research, which includes

hydraulic conductivity Ks (m/d), saturated water content

θs (m3/m3), water content at the wilting point θr (cm3/

cm3), capillary length scale λc (m), and characteristic soil

water retention curve, C. Some soil physical parameters

were determined from available databases on the basis of

soil texture at the field sites. Soil hydraulic conductivity,

water content at the wilting point and saturated water con-

tent were obtained from Kang et al. (). In this

research, the soil was divided into three layers of different

thickness for all vegetation species, the dominant soil type

of each layer was quite different (Table 1). The vegetation

parameters were obtained from the WAVES user manual

(Dawes et al. ). We listed the optimal parameters of

different vegetation types, when vegetation conversions

occur, we will fix the soil parameters, and then change the

vegetation parameters according to Table 2.
Model calibration

Soil and vegetation parameters were adjusted manually in

order to achieve good agreement between the simulated

and measured soil moisture values in the period of June

25, 2011 to September 15, 2011 (Tables 1 and 2). Analysis

was carried out to assess the agreement between simulated

and observed values based on the mean error (ME), and

relative error (RE). The performance of the WAVES model

was assessed on the bases of coefficient of determination

(R2) for simple linear regression between simulated and



Table 2 | Vegetation parameters used in the WAVES model in the Yangjuangou catchment

Vegetation types

No. Parameter Unit Source references Tree Grass Shrub Crop

1 1 minus albedo of the canopy – Brutsaert () 0.85 0.85 0.85 0.80

2 1 minus albedo of the soil – Brutsaert () 0.85 0.85 0.85 0.80

3 Rainfall interception coefficient m d�1 LAI�1 Vertessy et al. () 0.001 0.002 0.001 0.001

4 Light extinction coefficient – Monteith & Unsworth
()

�0.45 �0.85 �0.45 �0.70

5 Maximum carbon simulation rate kg C�2 d�1 Collatz et al. () 0.2 0.035 0.04 0.04

6 Slope parameter for the conductance model – Leuning () 0.9 0.9 0.9 1.0

7 Maximum plant available soil water potential m Hillel () �200 �150 �200 �300

8 IRM weighting of water – Wu et al. () 2.1 2.0 2.1 1.5

9 IRM weighting of nutrients – Wu et al. () 0.5 0.5 0.5 0.5

10 Ratio of stomatal to mesophyll conductance – – 0.2 0.8 0.8 0.8

11 Temperature when the growth is 1/2 of
optimum

WC Farquhar et al. () 15 20 20 20

12 Temperature when the growth is optimum WC Farquhar et al. () 25 30 25 25

13 Year day of germination D – 100 100 100 100

14 Degree-daylight hours for growth WChr Charles-Edwards () 30,000 30,000 30,000 30,000

15 Saturation light intensity μmoles m�2 d�1 Wu et al. () 1,200 1,800 1,800 1,800

16 Maximum rooting depth M Hatton et al. () 1.0 1.0 1.0 1.0

17 Specific leaf area LAI kg C�1 Charles-Edwards () 50 24 40 30

18 Leaf respiration coefficient kg C kg C�1 Running & Coughlan () 0.001 0.0002 0.0001 0.0015

19 Stem respiration coefficient kg C kg C�1 Running & Coughlan () 0.0006 �1 �1 �1

20 Root respiration coefficient kg C kg C�1 Running & Coughlan () 0.0001 0.0001 0.0001 0.0002

21 Leaf mortality rate fraction of C d�1 Running & Coughlan () 0.0005 0.005 0.0065 0.00045

22 Above-ground partitioning factor – Running & Gower () 0.3 0.4 0.6 0.6

23 Salt sensitivity factor – – 1.0 1.0 1.0 1.0

24 Aerodynamic resistance s d�1 Brutsaert () 15 30 20 20

25 Crop harvest index – – 0.001 0 0 0

26 Crop harvest factor – – 0.001 0 0 0
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observed values. Significance was based on a 95% confi-

dence level. ME was evaluated using the following equation:

ME ¼ 1
n

Xn
i¼1

sim ið Þ �
Xn
i¼1

obs ið Þ
 !

(2)

where sim(i) and obs(i) are simulated and observed soil

moisture (cm3/cm3) at the ith point, respectively, and n is

the number of observations.
om https://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf

er 2018
Relative error was calculated as:

RE ¼ (obs(i)� sim(i))
obs(i)

� �
× 100% (3)

where RE is the relative error, and sim(i) and obs(i) are

simulated and observed soil moisture (cm3/cm3). The smal-

ler the RE, the better the result.
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Scenario design

Effects of vegetation on soil moisture were evaluated by con-

sidering different vegetation change scenarios: cropland to

shrub, cropland to grass, and cropland to trees. In the simu-

lations, daily meteorological data in the period of 1980 to

2010 were used. Changes in average soil moisture over

3 m soil layer under three scenarios were compared at seaso-

nal and annual scales.
Figure 3 | The scatter plot for the simulated and observed soil moisture under four

different vegetation categories in the 1.0 m layer at Yangjuangou catchment

for the period of 25th June to 15th September 2011.
RESULTS

Calibration of the WAVES model

The WAVES model was calibrated against daily soil moist-

ure measurements. Simulated daily soil moisture in the

1.0 m layer under four different vegetation covers showed

good agreement with observed values (Figure 2). ME of

soil moisture simulation with optimal parameters (see

Tables 1 and 2) was 0.005, 0.002, 0.008, and 0.005 cm3/cm3

for trees, grass, shrub, and crop, respectively. Estimates of

soil moisture from the WAVES model are also plotted

against the field measurements in Figure 3. Most data

points were closely distributed around the 1:1 line, with a

highly significant (P< 0.05) correlation coefficient of 0.92.

The average relative error in the soil moisture for the four

vegetation types was only 1%, indicating that the WAVES

model generally exhibits a good performance in the study
Figure 2 | Comparisons between simulated and observed soil moisture of four different

vegetation categories in the 1.0 m layer at Yangjuangou catchment for the

period of 25th June to 15th September 2011.

s://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
area. These results indicate that the WAVES model is

capable of estimating soil moisture on the Loess Plateau

across different vegetation types.
Changes in seasonal water balance under different

vegetation scenarios

Monthly variation of precipitation, simulated interception,

evapotranspiration, and runoff under the different vegetation

covers are shown in Figure 4. During the winter period and

early spring, vegetation coverage was low, interception and

evapotranspirationwereminimal for all vegetation scenarios.

During the growing season (from June to September), under

the tree planting scenario, no runoff occurred, evapotran-

spiration and interception accounted for 88.8% and 19.8%

of precipitation, respectively, i.e. the sum of evapotranspira-

tion and interception was greater than precipitation,

therefore soil water deficit appeared. However, under the

shrub, grass, and crop scenarios, interception accounted for

17%, 14%, and 13% of precipitation, respectively, and evapo-

transpiration accounted for 68%, 69%, and 68% of

precipitation, respectively. Runoff accounted for 2.5%,

1.4%, and 1.0% of precipitation, respectively, and no soil

water deficit occurred.

Besides, seasonal changes in interception and evapo-

transpiration in the four vegetation covers are apparent



Figure 4 | Monthly variation of interception, evapotranspiration, runoff and precipitation under difference vegetation characteristics at Yangjuangou catchment from 1980 to 2010 based

on the WAVES simulation.
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and they responded positively to precipitation (Figure 4).

When vegetation germination began, monthly interception

and transpiration were generally low (0.05 mm–2.4 mm and

0.45 mm–2.6 mm, respectively). Most of interception and

transpiration occurred during the growing season (i.e.

77–92% of interception and 73–85% of transpiration).
Figure 5 | Variation of annual average interception, evapotranspiration, and runoff under

different vegetation characteristics at Yangjuangou catchment from 1980 to

2010 based on the WAVES simulation.
Average annual water balance under different

vegetation scenarios

Variations of annual average interception, evapotranspiration,

and runoff under different vegetation scenarios are shown in

Figure 5. On average (1980–2010) the simulated annual inter-

ception for shrub, grass, crop, and trees was 75, 84, 67, and

85.5, respectively, accounting for 14.2%, 15.9%, 12.7%, and

16.2% of MAP, respectively. The corresponding annual aver-

age evapotranspiration was 441, 436, 456, and 443 mm,
om https://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf

er 2018
respectively. The ratio of evapotranspiration (ET) to precipi-

tation was 83.4%, 82.4%, 86.3%, and 83.8%, respectively.

The sum of ET and interception represents about 97.6–99%
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of precipitation for shrub, grass, and crop. Simulated runoff

was 12.7, 9.0 and 5.3 mm, accounting for 2.4%, 1.7%, and

1% of precipitation, respectively. Under the forest scenario,

the sum of evapotranspiration and interception was equal to

precipitation therefore no runoff was generated.

Soil moisture response under different precipitation

regime

Annual soil water storage when cropland was planted to trees

during 1980–2010 is clearly presented in Figure 6. For the

first dry year (in 1980) of tree planting with MAP of 481 mm,

soil water deficit occurred and the deficit amount was about

180 mm. In a wet year, rainfall may recharge soil water store,

thus the soil water deficit will disappear. The dry years and

wet years appeared interactively, therefore the soil water deficit

occurred according to the low and high precipitation amount.

In Yangjuangou catchment, soil water deficit occurred in 15

of 30 years, and it ranges from 8 mm in 1984 (MAP¼
513 mm) to 106 mm in 1995 (MAP¼ 359 mm), which indi-

cated that soil desiccation was a general problem during the

cropland converting to tree stage. Under the scenario of con-

verting cropland to shrub and grass, soil water deficit
Figure 6 | Annual evapotranspiration and changes of soil water storage (S) in abandoned crop

s://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
occurred some years in the period of the simulation (1980–

2010), however, the soil water deficit amount was far less

than the forest scenario. Besides, the slope of the linear fit of

forest was larger than that of grass and shrub, indicating that

soil water deficit was more serious under the forest scenario.

We further evaluated relationships of MAP and the soil

water deficit for trees from 1980 to 2010 (Figure 7). Results

suggest that in areas with MAP less than 400 mm, tree plant-

ing could result in serious soil water deficit and soil

desiccation. While in areas with the MAP exceeding

600 mm, no soil water deficit could occur. Availability of

soil water seems to be sufficient to sustain tree growth,

and soil water surplus was a general phenomenon. Within

this MAP range (400<MAP< 600 mm), tree planting

could lead to soil water deficit during dry years.
DISCUSSION

Implication for upscaling

Comparing with other models for investigating the processes

of soil water dynamics, the WAVES model strikes a good
land to three scenarios from1980 to 2010 based on the WAVES simulation.



Figure 7 | Changes in soil water deficit as a function of MAP in the last 30 years at

Yangjuangou catchment (Roman numerals I, II, and III represent the three

precipitation gradients: I: MAP< 400 mm; II: 400 mm<MAP< 600 mm; III:

MAP> 600 mm).
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balance between complexity and accuracy of prediction in

water, energy and carbon processes. This is the first study

to evaluate changes in long-term soil water storage under

different vegetation scenarios on the Loess Plateau of China.

The successful application of the WAVES model to the

Yangjuangou catchment suggests that the model is capable

of representing hydrological processes on the Loess Plateau.

According to the methodology presented for assessing the

average changes in groundwater recharge under a future cli-

mate in the Murray-Darling Basin, Australia (Crosbie et al.

), the output of the WAVES modelling in our research

can be used to produce regression equations between average

rainfall, average annual evapotranspiration, and soil moist-

ure for each combination of soil type, vegetation, and

climate. Using the set of regression equations and the set of

annual average rainfall rasters for each climate scenario, a

series of annual average evapotranspiration, and soil moist-

ure rasters could be developed to the whole Loess Plateau

for historical and different future climate scenarios. There-

fore this research could be considered for upscaling to the

whole Loess Plateau region, and then the effects of revegeta-

tion on soil moisture at regional scale can be examined.
Effects of revegetation on water budget

Miralles et al. () detected global canopy interception

from satellite observations, and found that interception is

responsible for the evaporation of approximately 13% of

the total incoming rainfall over broadleaf evergreen forests,

19% in broadleaf deciduous forests, and 22% in needle leaf

forests. In arid and semi-arid region where most rainfall
om https://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
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occurs in low frequency, interception by canopy can

amount to more than 10% of the annual rainfall. In this

research, the simulated interception of shrub, grass, crop,

and trees is approximately 14.2%, 15.9%, 12.7%, and

16.2%, respectively. Our results are consistent with previous

studies, and fells within the scope (10–23%) of previous cal-

culations for different vegetation interception losses (Wang

et al. a, b). Clearly rainfall interception is a signifi-

cant component of the water budget and quantifying the

magnitude of rainfall interception is essential if we are to

understand the future impact of afforestation on the water

budget.

On average the simulated ratio of evapotranspiration to

precipitation was 83.4%, 82.4%, 86.3%, and 83.8% for

shrub, grass, crop, and trees, respectively. Evapotranspira-

tion loss fell in the scope (62–87%) for the corresponding

vegetation type on the Loess Plateau (Wei et al. ),

although our results showed a little higher evapotranspira-

tion for trees compared with other studies showing

evapotranspiration loss of 76% (Wang et al. ). However,

both studies indicated that interception and evapotranspira-

tion were the major pathway of water loss, accounting for

over 97% of the precipitation for shrub and grass. Therefore

interception and evapotranspiration are important in water

flux and have the major impact on soil moisture (Good &

Caylor ). Aligned with Bellot et al. () and Kyushik

et al. () conclusion that evapotranspiration is a main

cause of depletion of soil moisture, our research also

found that evapotranspiration and interception accounted

for 100% of precipitation during cropland abandonment to

trees for the last 30 years, which indicates that all water

from precipitation evaporated, and the soil water storage

was depleted, soil water deficit occurred in this scenario,

and no runoff was produced. While for shrub and grass,

runoff accounted for 2.4%, and 1.7% of precipitation,

respectively. The runoff ratio produced by our WAVES-

based simulation was relatively comparable with previous

research in the same catchment (Liu et al. ), which

reported a ratio of about 1.55%, and 1.57%. Excluding

errors produced in the process of field observation and

model simulation, the difference of runoff may be attributed

to vegetation morphology and structure, which can change

the characteristics of rainfall that reaches the soil surface

(Lorens & Domingo ).
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The characteristics of water loss from the soil profile

were also detected in previous studies at Changwu (annual

precipitation of 584 mm) and Wuqi County (annual precipi-

tation of 451 mm) of the Loess Plateau (Li ).

Furthermore, Chen et al. (a) showed that the soil moist-

ure deficit could become serious in dry and normal years.

Our study demonstrated that it is necessary to maintain infil-

tration or reduce evapotranspiration by, for example,

selecting appropriate vegetation types in order to avoid

soil water deficit.

Implication for ‘Grain for Green’ program

Our analysis showed that revegetation could alter water bud-

gets in water-limited areas, thus causing soil water deficit.

Furthermore, soil water deficit is highly temporally varied,

thus reliable long-term observation and simulation of soil

moisture is needed. For the Loess Plateau, the average

annual precipitation ranges from 300 mm in the northwest

to 750 mm in the southeast. By extending our analysis on

the effect of precipitation conditions on soil moisture

(Figure 7) to the entire Loess Plateau, it suggested that

40% of the region with MAP of less than 400 mm (Figure 8)

will face the reduced soil moisture when converting crop-

land to trees, and consequently limiting tree growth. About

10% of the region with MAP more than 600 mm showed

soil water surplus and soil water seems sufficient to sustain

tree growth. While other 50% of Loess Plateau (400<
Figure 8 | MAP in the last 30 years on the Loess Plateau (Roman numerals I, II, and III

represented the three precipitation gradients: I: MAP< 400 mm; II: 400 mm<
MAP< 600 mm; III: MAP> 600 mm).

s://iwaponline.com/hr/article-pdf/48/5/1378/365435/nh0481378.pdf
MAP< 600 mm) will face reduced soil moisture in the dry

years. This is in accordance with previous studies conducted

at plot or catchment scale on the Loess Plateau (Zhang et al.

; Chen et al. a).

Revegetation such as afforestation on the Loess Plateau

resulted in an increase in vegetation cover (Xin et al. ),

an improvement in soil nutrient levels (Wang et al. a,

b), and in controlling soil erosion (Feng et al. ).

Implementation of afforestation at large scale throughout

the arid and semi-arid region, ignoring differences in climate

and hydrology, in the end reduced soil moisture, therefore

soil water availability was not sufficient to sustain forests

in many areas (Wang et al. a, b; Zheng et al. ),

ultimately affecting forest survival (Cao et al. ). Hydrolo-

gical response to vegetation restoration varied across the

Loess Plateau and, as it has a strong north-south gradient

in precipitation and terrain, afforestation remains challen-

ging (Feng et al. ). There are a number of factors that

can affect afforestation and the impact on soil moisture

and these include precipitation (Wang et al. ; Liu &

Shao ), planting density and productivity (Chen et al.

a, b; Yang et al. ). Therefore different veg-

etation conditions (i.e. structure, density, growth age, and

species of vegetation), water balance pattern, ecosystem-car-

rying capacity must be carefully considered and should be

given more attention (Sankaran et al. ).
CONCLUSIONS

We investigated the effects of vegetation characteristics on

soil moisture reduction under different precipitation con-

ditions on the Loess Plateau in North Western China. In

order to quantify their long-term effects on soil water

dynamics, the WAVES model was applied for the 1980–

2010 period, and three revegetation scenarios were con-

sidered. The following conclusions can be drawn from this

study.

The simulated soil moisture at the daily scale showed

good agreement with observed values with relative error of

only 1%, indicating that the WAVES model generally exhi-

bits a good performance.

As simulated interception ratios of shrub, grass, crop,

and trees are about 14.2%, 15.9%, 12.7%, and 16.2%,



1388 F. Tian et al. | Effects of revegetation on soil moisture under different precipitation gradients Hydrology Research | 48.5 | 2017

Downloaded fr
by guest
on 16 Novemb
respectively, clearly rainfall interception is a significant com-

ponent of the water budget. Quantifying the magnitude of

rainfall interception is essential if we are to understand

future impact of afforestation on the water budget.

Trees consume more water (100% of precipitation) than

grass (97.6%) and shrubs (98.3%), and therefore no runoff is

generated, and thus more likely to result in soil desiccation.

Areas with MAP less than 400 mm afforestation could

result in serious soil water deficit; in areas with the MAP

exceeding 600 mm, no soil water deficit would occur;

within this MAP range (400<MAP< 600 mm), tree plant-

ing could lead to soil water deficit during dry years. About

40% of the Loess Plateau has MAP of less than 400 mm

where plantation development will face reduced soil moist-

ure. About 10% of Loess Plateau with MAP more than

600 mm showed soil water surplus and soil water seems suf-

ficient to sustain tree growth. The other 50% of Loess

Plateau (400<MAP< 600 mm) will face reduced soil moist-

ure in dry years under the tree planting scenario.
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