Quantification of uncertainty in Reference Evapotranspiration Climate Change Signals in Belgium
Parisa Hosseinzadehtalaei, Hossein Tabari and Patrick Willems

ABSTRACT
Projections of evapotranspiration form the basis of future runoff and water availability assessment in a climate change context. The scarcity of data or insufficiency of time/funds compels the application of simple reference evapotranspiration (ET₀) methods requiring less meteorological inputs for ET₀ projections which adds uncertainty to the projected changes. This study investigates the bias in ET₀ climate change signals derived from seven simple temperature- and radiation-based methods (Blaney-Criddle, Hargreaves-Samani, Schendel, Makkink, Turc, Jensen-Haise, Tabari) compared with that from the standard Penman-Monteith FAO 56 method on the basis of 12 general circulation model (GCM) outputs from the Coupled Model Intercomparison Project Phase 5 for central Belgium for four future greenhouse gas scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5). The results show the lack of conformity on the amount of ET₀ changes between the simple and standard methods, with biases of over 100% for some simple methods. The uncertainty affiliated with ET₀ methods for monthly ET₀ changes is smaller but of comparable magnitude to GCM uncertainty, which is usually the major source of uncertainty, and larger for daily extreme ET₀ changes. This emphasizes the imperative of addressing the uncertainty associated with ET₀ methods for quantifying the hydrological response to climate change.

Key words | Belgium, climate change signal, Penman-Monteith approach, reference evapotranspiration, simple methods, uncertainty analysis

INTRODUCTION
Evapotranspiration (ET) is a main flux term in the water cycle and an important process in the climate system, thereby playing a key role in water and energy balance. It is also vital for climate change impact studies, drought prediction and monitoring, agricultural water requirement planning and effective management of water resources. Specifically for hydrology, reference ET (ET₀) is a necessary component for computing actual ET for a watershed as a function of soil moisture deficit and a key input parameter for hydrological water-balance models (Bergström et al. 2001; Obeysekera 2013; Tabari & Hosseinzadeh Talae 2014; Meng et al. 2016). ET₀ is, moreover, used to assess the hydrological impact of climate change at catchment scales (Taye et al. 2011; Ntegeka et al. 2014; Vansteenkiste et al. 2014; Rudd & Kay 2016).

Climate change is one of the most critical global problems of our time (IPCC 2007), which may influence watershed hydrology and water availability by changing the patterns of precipitation and ET (King et al. 2015). Future changes in ET rate together with changes in precipitation patterns will affect runoff and water balance and consequently water infrastructure design (Prudhomme & Williamson 2013; Mohor et al. 2015; Koedyk & Kingston 2016).

There are numerous methods to estimate ET₀ based on meteorological data ranging from simple temperature
(e.g., Hargreaves–Samani: Hargreaves & Samani 1985) or radiation (e.g., Jensen–Haise: Jensen & Haise 1965) based methods to complex Penman family methods (e.g., Penman: Penman 1948; Kimberly–Penman: Wright 1982). Among them, the Penman–Monteith FAO 56 (PMF-56) method was strongly recommended by the United Nations Food and Agriculture Organizations (FAO) and the American Society of Civil Engineers (ASCE) as a standard method for \(E_T \) estimation (Allen et al. 1998; ASCE-EWRI 2005), because the PMF-56 method incorporates most of the meteorological variables controlling the ET process. Nevertheless, to simplify the process of \(E_T \) estimation due to limited time and/or budget and in some cases because of unavailability of the full meteorological data required for the standard PMF-56 method, simple, empirical equations have been used in many climate change studies for this purpose (e.g., Immerzeel et al. 2012; Bastola 2013; Lu et al. 2013; Capell et al. 2013; Kopytakovskiy et al. 2015). The simple equations relate \(E_T \) to an easily measured process variable such as temperature and do not consider the effect of ‘advective’ variables (i.e., wind speed and vapor pressure) (Donohue et al. 2010).

However, \(E_T \) is primarily a function of four key weather variables of radiation, wind speed, humidity (or vapor pressure), air temperature and these variables must be considered for a better understanding of \(E_T \) changes under climate change conditions (McVicar et al. 2012). The \(E_T \) changes projected by simple approaches may differ substantially from those by the standard method that may add uncertainty to derived climate change signals (CCS) and future water balance projections (Kingston et al. 2009; Bae et al. 2011; McAfee 2013; Thompson et al. 2014; Wang et al. 2015). Therefore, the existence of potential systematic bias or uncertainty in the derivation of \(E_T \) CCS by using simple \(E_T \) methods needs to be considered. The uncertainty in \(E_T \) CCS by simple methods is, however, largely unknown. This research gap is addressed in this paper. More specifically, the bias in \(E_T \) CCS obtained from seven simple methods (Blaney–Criddle, Hargreaves–Samani, Schendel, Makkink, Turc, Jensen–Haise, Tabari) compared with those from the PMF-56 method as a benchmark is investigated under different time resolutions, i.e., seasonal, monthly and daily.

DATA

The general circulation model-Coupled Model Intercomparison Project Phase 5 (GCM-CMIP5) ensemble considered for this study consists of 12 GCMs (listed in Table S1 with their respective resolution; Table S1 is available with the online version of this paper). All the meteorological data needed for \(E_T \) estimation by the PMF-56 method (which include those needed for seven simple methods) were obtained from 264 CMIP5 GCM runs (44 runs for each of six meteorological variables including maximum, minimum, and mean temperature, radiation, wind speed, and humidity). In fact, all the GCMs providing the complete set of meteorological inputs for \(E_T \) estimation were selected. Although some authors recommend 50-year periods (Bonell & Bruijnzeel 2005), in this study the period 1961–1990 was applied as the control period. This period is recommended by WMO (2007) and commonly applied in climate change studies. The period 2071–2100 was considered as the scenario period. Four 21st century scenarios for future greenhouse gas concentrations including RCP2.6, RCP4.5, RCP6.0, and RCP8.5 were considered, where RCP8.5 represents the highest concentrations and RCP2.6 corresponds to the lowest concentrations (Moss et al. 2010). The analyses were done for the GCM grid cell covering central Belgium.

METHODOLOGY

After extracting all the meteorological data from the GCMs, \(E_T \) is calculated by different methods, that are briefly explained in the next section. Daily \(E_T \) values are averaged to obtain monthly \(E_T \). Afterwards, CCS are derived for both daily and monthly \(E_T \) as the difference between the values for the scenario period (2071–2100) and those for the control period (1961–1990). The changes in daily \(E_T \) are shown by means of box-and-whisker plots for summer and winter seasons. The calculation of these results involves the following steps:

1. For each \(E_T \) model, separate the \(E_T \) results for summer (JJA: June, July, August) and winter (DJF: December, January, February) seasons.
2. Calculate CCS as the difference between the \(ET_o \) values for the scenario (\(ET_oS \)) and control (\(ET_oC \)) periods of each GCM out of the total 12 GCMs:

\[
CCS(g) = ET_o(g) - ET_oC(g) \quad g = 1, 2, 3, \ldots, 12
\] (1)

3. Combine CCS of all GCMs.

4. Calculate climate change signals in percent (\(PCCS(com) \)) by dividing the combined signals obtained from step 3 (\(CCS(com) \)) over the median of all GCMs' \(ET_o \) values for the control period (\(Med_c(com) \)):

\[
PCCS(com) = \frac{CCS(com)}{Med_c(com)}
\] (2)

5. Compute 5%, 25%, 50%, 75%, and 95% percentiles of the signals (%) and show the results in a box-and-whisker plot.

High, mean, and low climate scenarios for monthly or daily \(ET_o \) change are later defined as 95%, 50%, and 5% quantiles of the relative changes. For the monthly \(ET_o \), the changes are considered as such; for the daily \(ET_o \), the changes are considered as changes in the quantiles (percentiles). As the changes in high ET rates are of vital importance for drought monitoring and agricultural water planning and management, the changes in high daily \(ET_o \) quantiles (percentiles) are also investigated.

Once the \(ET_o \) changes for different methods are computed, the uncertainty associated with \(ET_o \) methods is quantified and compared with other uncertainties sources (i.e., GCMs and RCPs). For the uncertainty comparison purpose, it is important to have an equal number of model runs from each scenario to avoid merging model and scenario uncertainty. The GCMs (seven GCMs) providing simulations for RCP2.6 and RCP8.5 are selected for the uncertainty analysis, because only two GCMs have the outputs for all four scenarios. The RCP2.6 and RCP8.5 scenarios are selected to cover the full range of projected concentrations. To determine the uncertainty in \(ET_o \) methods, the median of the \(ET_o \) changes across all GCMs (\(Med_{CCS} \)) is first calculated for each RCP and each \(ET_o \) method:

\[
Med_{CCS} = Median (CCS_1, CCS_2, \ldots, CCS_m)
\] (3)

where CCS refers to the climate change signal and m the number of GCMs (in our case, m = 12). The two medians related to the two RCPs are then averaged for each \(ET_o \) method:

\[
M = \frac{Med_{CCS}(RCP2.6) + Med_{CCS}(RCP8.5)}{2}
\] (4)

Finally, the variance in the average \(ET_o \) change across the eight \(ET_o \) models (seven simple models plus the PMF-56 method) is computed:

\[
Var(M) = \frac{\sum_{i=1}^{n} (M_i - \bar{M})^2}{n - 1}
\] (5)

where n is the number of \(ET_o \) methods (in our case, n = 8). In a similar way, the uncertainties related to GCMs and RCPs are quantified.

\textbf{ET}_o \textit{methods}

In this study, the \(ET_o \) CCS derived from the PMF-56 method are compared with the ones from three temperature-based (i.e., Blaney–Criddle, Hargreaves–Samani and Schendel) and four radiation-based (i.e., Makkink, Turc, Jensen–Haise, and Tabari) methods.

\textbf{PMF-56}

\[
ET_o = \frac{0.408(\Delta(R_n - G) + \gamma) + 2.75}{T_a + 273} \frac{U_2(e_s - e_a)}{1 + 0.34U_2^2}
\] (6)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(R_n \) the net radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(G \) the soil heat flux (MJ m\(^{-2}\) day\(^{-1}\)), \(\gamma \) the psychrometric constant (kPa °C\(^{-1}\)), \(e_s \) the saturation vapor pressure (kPa), \(e_a \) the actual vapor pressure (kPa), \(\Delta \) the slope of the saturation vapor pressure–temperature curve (kPa °C\(^{-1}\)), \(T_a \) the average daily air temperature (°C), and \(U_2 \) the mean daily wind speed at 2 m (m s\(^{-1}\)) (Allen \textit{et al.} 1998).
Blaney–Cridge (Blaney & Cridge 1950)

\[ET_o = a + b[P(0.46T_a + 8.13)] \]

(7)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(P \) the mean annual percentage of daytime hours that can be obtained from Doorenbos & Pruitt (1977), and \(a \) and \(b \) the parameters of the equation. The \(a \) and \(b \) coefficients are computed using regression equations developed by Allen & Pruitt (1998).

Hargreaves–Samani (Hargreaves & Samani 1985)

\[ET_o = 0.0023R_s(T_a + 17.8)\sqrt{T_{\text{max}} - T_{\text{min}}} \]

(8)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(R_s \) the solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(T_a \) the mean air temperature (°C), \(T_{\text{max}} \) the daily maximum temperature (°C), and \(T_{\text{min}} \) the daily minimum temperature (°C). \(R_s \) is estimated for each day of the year by:

\[R_s = \frac{24(60)}{\pi} G_{\text{sc}} d \omega \sin (\phi) \sin (\delta) \]

\[+ \cos (\phi) \cos (\delta) \sin (\omega_0) \]

(9)

where \(R_s \) is the water equivalent of extraterrestrial radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(G_{\text{sc}} \) the solar constant equal to 0.0820 MJ m\(^{-2}\) day\(^{-1}\), \(d \) the relative distance between the Earth and the Sun, \(\omega_0 \) the sunset hour angle (rad), \(\phi \) the latitude (rad), and \(\delta \) the solar declination angle (rad). The coefficient of 0.408 is used for converting MJ m\(^{-2}\) day\(^{-1}\) into mm day\(^{-1}\).

Schendel (Schendel 1967)

\[ET_o = 16.5 \frac{T_a}{RH} \]

(10)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(T_a \) the mean air temperature (°C), and \(RH \) the relative humidity (%).

Jensen–Haise (Jensen & Haise 1965)

\[ET_o = \frac{C_T(T_a - T_x) \times R_s}{\lambda} \]

(11)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(\lambda \) the latent heat of vaporization (cal gr\(^{-1}\)), \(R_s \) the solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(C_T \) a temperature constant equal to 0.025, and \(T_x = -3 \) when \(T_a \) is in degrees Celsius. These coefficients are considered to be constant for a given area.

Makkink (Makkink 1957)

\[ET_o = 0.61 \frac{\Delta \cdot R_s}{\Delta + \gamma \cdot \lambda} - 0.12 \]

(12)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(R_s \) the solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), \(\gamma \) the psychrometric constant (kPa °C\(^{-1}\)), \(\Delta \) the slope of the saturation vapor pressure–temperature curve (kPa °C\(^{-1}\)), and \(\lambda \) the latent heat of vaporization (MJ kg\(^{-1}\)).

Turc (Turc 1961)

\[ET_o = a_T0.013 \frac{T_a}{T_a + 15} \frac{23.8856R_s + 50}{\lambda} \]

(13)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(T_a \) the mean air temperature (°C), \(R_s \) the solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(\lambda \) the latent heat of vaporization (MJ kg\(^{-1}\)). The coefficient \(a_T \) is a humidity-based value which is equal to 1 for the mean daily relative humidity (RH\(_{\text{mean}}\)) greater than or equal to 50%. Otherwise, it is calculated from the following equation:

\[a_T = 1 + \frac{50 - \text{RH}_{\text{mean}}}{70} \]

(14)

Tabari (Tabari et al. 2013)

Tabari et al. (2013) developed a model for \(ET_o \) estimation for humid regions, with \(ET_o \) equal to zero under freezing conditions (\(T_a < 0 \) °C):

\[ET_o = -0.642 + 0.174R_s + 0.0353T_a \]

(15)

where \(ET_o \) is the reference evapotranspiration (mm day\(^{-1}\)), \(R_s \) the solar radiation (MJ m\(^{-2}\) day\(^{-1}\)), and \(T_a \) the mean air temperature (°C).
RESULTS

Future changes in monthly E_{T_0} based on the PMF-56 method and the seven simple methods are shown in Figure 1. As can be seen, simple methods both overestimate and underestimate the changes in monthly E_{T_0} compared with PMF-56 E_{T_0}. For instance, monthly E_{T_0} changes are underestimated by the Hargreaves-Samani method and overestimated by the Blaney-Criddle method. For estimating the deviation of the simple method results from the standard method (PMF-56) results, the ranges of high, mean, and low climate change scenarios by the simple methods are computed (Figure 2). In general, the high scenario is overestimated by the simple methods in winter (DJF), while in summer (JJA) both overestimations and underestimations are found. The overestimation of the changes in winter is generally more obvious for temperature-based methods than for the radiation-based methods. The difference between the deviation of the temperature- and radiation-based methods for the summer season is larger for the mean scenario, at which the radiation-based methods mostly overestimate the E_{T_0} changes for summer but the temperature-based methods underestimate them. For the low scenario, the deviation of simple methods is not noticeable.

Bias in the mean scenario of seasonal E_{T_0} calculated based on the simple E_{T_0} methods is presented in Table 1. As the results indicate, the performance of the simple methods changes seasonally. The Hargreaves-Samani, Makkink, and Tabari methods underestimate the mean scenario and the rest of the methods overestimate it. In winter, the best performance in estimation of the mean scenario for seasonal E_{T_0} is produced by the Hargreaves-Samani, Tabari and Jensen-Haise methods, while the Makkink and Tabari methods perform the best in spring. The mean scenario for summer E_{T_0} is underestimated by most of the simple methods, among which Turc and Schendel show the smallest biases. For autumn, the Tabari and Makkink methods more closely reproduce the PMF-56-driven scenario. Overall, among all the simple methods, Schendel has the worst performance in estimation of monthly and seasonal E_{T_0} changes.

Next to the bias analysis of the simple method results for monthly and seasonal E_{T_0} changes, the analysis is also performed for daily E_{T_0} changes (Figure 3). By considering the mean scenario of the PMF-56 method as reference, the simple E_{T_0} methods totally overestimate the changes in daily E_{T_0} in winter and mostly underestimate these during summer. The range of daily E_{T_0} changes in winter by all the simple methods except the Hargreaves-Samani method is wider than that of the PMF-56 method. In contrast, the range of the simple methods for summer is more or less the same as that of the standard method. The mean climate scenario for daily E_{T_0} percentiles for winter and method. In contrast, the range of the simple methods for summer is more or less the same as that of the standard method. The mean climate scenario for daily E_{T_0} percentiles for winter season makes it an unsuitable choice for E_{T_0} climate change studies in the region. For the summer season, the Jensen-Haise method shows a remarkable overestimation for all E_{T_0} percentiles.

A closer look at the changes in the high E_{T_0} extremes (Figures S1 and S2, available with the online version of this paper) reveals that the E_{T_0} methods (standard and simple methods) agree on the direction of the changes (E_{T_0} increase) in the extremes for both winter and summer seasons, but disagree on the magnitude of the changes. For winter, extreme E_{T_0} increase by the PMF-56 method is less than 1 mm/day, while it goes as high as 1.5 mm/day for the temperature-based methods of Blaney-Criddle and Schendel (Figure S1). The uncertainty is larger for summer when the range of E_{T_0} increase (0–3 mm/day) by the reference method is highly overestimated by some simple methods, e.g., 0–12 mm/day for Schendel and 0–5 mm/day for Blaney-Criddle. Some other simple methods such as Makkink and Tabari show a narrower increase range for summer E_{T_0} extremes (Figure S2). The mean scenario extracted from the results of the Turc and Hargreaves-Samani methods for summer has the lowest bias, while the Hargreaves-Samani and Makkink methods show the lowest bias for the winter season (Figure 5). For the high scenario, the lowest bias for winter (summer) is obtained from the Turc and Jensen-Haise methods (Jensen-Haise and Hargreaves-Samani methods).
Figure 1 | Change in mean monthly ETo calculated based on control (1961–1990) and scenario (2071–2100) CMIP5 GCM runs using all RCP scenarios, highlighting high, mean, and low climate scenarios.
DISCUSSION

The results obtained indicate that the ET₀ change signals projected by the simple methods broadly follow the pattern of those by the PMF-56 method. However, the magnitude of the changes differs substantially between the simple and standard method. The main reason for such difference is the inclusion of more meteorological variables controlling the ET process in the PMF-56 method. Moreover, simple ET₀ approaches with the same meteorological
inputs present different CCS. This difference stems from
the difference in empirical formulation for each approach
and the difference in climatic regions for which they
were originally developed. Let us consider the drawback
of the Hargreaves–Samani method as the most widely
used simple approach in hydrological impact studies of
climate change. First of all, the Hargreaves–Samani
method uses extraterrestrial radiation rather than solar
radiation, implying the use of maximum possible radiation
and neglecting atmospheric transmissivity. The existence of
high moisture content in the atmosphere in humid regions
influences transmissivity or sky clearness and leads to an
increase of the attenuation of solar radiation at the surface
(Fontenot 2004). The other important variable in humid
regions is atmospheric moisture, which is not considered
in the Hargreaves–Samani method. Atmospheric moisture
(directly correlated with vapor pressure) has an indirect
relationship with ET, and in fact, ET decreases as atmos-
pheric moisture increases (McKenney & Rosenberg 1993;
Tabari 2010; Moratiel et al. 2010). These two important fac-
tors result in bias in the estimates of the Hargreaves–
Samani method. The calibration of the method to local
conditions may decrease this bias (Tabari & Hosseinzadeh
Talaei 2011).

The findings show that choosing an alternative method
to the PMF-56 method with less data demand is difficult.
The performance of the simple methods varies remarkably
by time scale and season. Taking the mean scenario into
account, the Hargreaves–Samani, Makkink, Turc and
Tabari methods are the best choices for seasonal and
monthly ET₀ climate change studies in winter, spring,
summer, and autumn, respectively, while the Turc, Jensen–
Haise and Hargreaves–Samani methods perform best for
investigation of the changes in high ET₀ percentiles. This
suggests using different simple methods for different time
scales and seasons in the absence of full meteorological
data for the PMF-56 method application.

In order to investigate the importance of the uncertainty
associated with ET₀ methods, it is compared with GCM
uncertainty which is considered as the main source of
uncertainty in climate change studies (Wilby & Harris 2006; Kay et al. 2009; Chen et al. 2011; Exbrayat et al. 2014) and also that of future greenhouse gas scenarios (RCP). For the monthly ET₀ change and also taking the full range of daily ET₀ change into consideration, the uncertainty in GCMs is larger than that in the ET₀ methods and RCPs (Table 2). For both mentioned cases, the ET₀ uncertainty is of comparable magnitude to the GCM uncertainty. As for the changes in high daily ET₀ percentiles, the uncertainty related to the ET₀ methods is the dominant source of uncertainty for both summer and winter seasons, while RCP has the lowest contribution to the total uncertainty in ET₀ changes.

Generally, the uncertainty analysis shows that the uncertainty in ET₀ methods is noticeable for all the cases considered. This shows the importance of addressing the uncertainty associated with ET₀ methods next to that in GCMs and future greenhouse gas scenarios as is traditionally done.

CONCLUSIONS AND RECOMMENDATIONS

In this study, the difference between the ET₀ CCS derived from the standard PMF-56 method and those from seven simple methods (Blaney–Criddle, Hargreaves–Samani, Schendel, Makkink, Turc, Jensen–Haise, Tabari) was investigated. The meteorological data required for ET₀ estimation by the methods were obtained from 12 CMIP5 GCMs for control (1961–1990) and scenario (2071–2100) periods. The results show that the standard and the simple methods generally agree on ET₀ increase for all time scales, but disagree on the magnitude of the increase. Biases of over 100% are found for CCS extracted from some simple methods such as Turc and Schendel.

A comparison between the uncertainties related to ET₀ methods and GCMs shows that the uncertainty associated with ET₀ methods is of comparable magnitude to GCM uncertainty as the main source of uncertainty, suggesting that the uncertainty in the choice of ET₀ methods must not be neglected in such studies. Use of further advanced methods for ET₀ estimation, which is a function of time scale and season (as the results of this study show), may reduce the uncertainty associated with ET₀ methods. Comparing the ET₀ uncertainty with the other sources of uncertainty, such as GCM boundary conditions, was impossible in this study because of the limited number of GCM runs providing all meteorological inputs for the ET₀ methods. This type of comparison can be made for precipitation as another important input for hydrological modeling in future studies. The uncertainty related to the choice of a downscaling method was not addressed in this study. Thus, further work is needed to assess the degree to which the choice of the statistical method to transfer the climate change signal to the hydrological model inputs, i.e., the downscaling method, contributes to the total uncertainty.

Table 2 | Comparison of the total variance decomposition related to the uncertainty in GCMs, RCPs, and ET₀ methods

<table>
<thead>
<tr>
<th>Uncertainty source</th>
<th>Monthly ET₀ changes</th>
<th>Daily ET₀ percentile changes (full range of percentiles)</th>
<th>Daily ET₀ percentile changes (> 90%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCMs</td>
<td>44</td>
<td>25</td>
<td>DJF 36</td>
</tr>
<tr>
<td>RCPs</td>
<td>28</td>
<td>21</td>
<td>JJA 23</td>
</tr>
<tr>
<td>ET₀ methods</td>
<td>28</td>
<td>54</td>
<td></td>
</tr>
</tbody>
</table>
Moreover, the effect of the different sources of uncertainties affiliated with precipitation and ET₀ may be explored for hydrological impact projections.

To conclude, considering the large bias of the simple ET₀ methods, a fully physically based formulation of ET₀ like the PMF-56 method is recommended for projecting ET CCS. This, moreover, requires that the climate modeling centers produce and provide model outputs for all meteorological variables governing the evaporative process. In the case of data unavailability, the simple methods must be used with caution. The bias in the results of the simple methods depends on the time scale and season, as is shown in this study for central Belgium. This bias obviously may differ for other regions of the world.

ACKNOWLEDGEMENTS

The authors acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, and the climate modeling centers involved for the CMIP5 model outputs.

REFERENCES

WMO 2007 The Role of Climate Normal in a Changing Climate. World Climate Data and Monitoring Programme report WCDMP-No. 61, WMO/TD No. 1377. World Meteorological Organization.

First received 10 May 2016; accepted in revised form 2 September 2016. Available online 8 November 2016