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Determining discharge coefficient of labyrinth and arced

labyrinth weirs using support vector machine

Kiyoumars Roushangar, Mohammad Taghi Alami, Jalal Shiri

and Mahdi Majedi Asl
ABSTRACT
A labyrinth weir is a linear weir folded in plan-view which increases the crest length and the flow rate

for a given channel width and an upstream flow depth. The present study aimed at determining

discharge coefficients of labyrinth and arced labyrinth weirs using support vector machine (SVM)-

based models. A total of 527 laboratory test data of four types of weirs, namely, Normal and Inverted

orientation Labyrinth Weirs in flume (NLW, ILW) and Arced Labyrinth Weirs with and without nappe

Breakers in reservoir (ALW, ALWB), were captured from the published literature and utilized to feed

the SVM-based models. The obtained results revealed the capability of the SVM-based models in

determining discharge coefficients. The results showed that the SVM-based model of arced labyrinth

weir (ALW) produced the most accurate results when three dimensionless parameters, e.g. (HT/P)

head water ratio, (α/θ) angle ratio and (Lc/W ) magnification ratio, were introduced as input

parameters (Root mean square error [RMSE]¼ 0.013 and R2¼ 0.970 for the test stage). Nonetheless,

sensitivity analysis showed that Froude number and head water ratio are the most influential

parameters on discharge coefficients of the labyrinth and arced labyrinth weirs, respectively.
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INTRODUCTION
Labyrinth weirs are linear weirs folded in plan-view to

increase the crest length for a given canal or spillway width.

The flow capacity of a weir is largely influenced by the weir

length, Lc, shape of the crest, and the approaching flow con-

ditions (Figure 1). A labyrinth weir can pass large amounts

of flow discharge at relatively low heads compared to tra-

ditional linear weirs. These weirs are especially well suited

for spillway rehabilitation where dam safety concerns, free-

board limitations, and a revised and larger probable

maximum flow have required modification or replacement

of the spillway (Crookston ). As a result, these weirs

require less free board than linear weirs, which facilitates

flood routing efficiently and allows higher reservoir pool

elevations under base-flow conditions (Crookston ).

Most of the design and performance information on labyrinth
weirs has been developed through physical investigations.

Labyrinthweir hydraulicswasfirstly investigated byGentilini

() when forming triangular weirs by placing a number of

obliqueweirs together. The development of themodern labyr-

inth weir design was begun by Taylor () and continued

later by Hay & Taylor (). In 1985, the Bureau of Recla-

mation established a design method for engineers to use in

the public design and construction of labyrinth weirs (Lux

& Hinchcliff ). Kocahan & Taylor () discussed that,

regardless of the passive control, the labyrinth weir can

pass larger amounts of dischargewhen comparedwith a regu-

lar ogee weir at the beginning of flood events. Crookston &

Tullis () compared the hydraulic performance of a

normal and inverted orientation labyrinth weir in a channel

and found no change in their hydraulic performance.
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Figure 1 | Plan and elevation views of labyrinth weir.
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Christensen () expanded flow characteristics of arced

labyrinth weirs. Seamons () developed geometric vari-

ation and its effect on efficiency and design method

predictions. There is a complex three-dimensional flow over

a labyrinth weir, so it is very difficult to find the exact solution

of the head-discharge relationship using analytical

approaches (Crookston & Tullis ).

As an alternative, artificial intelligence-based models may

be applied to solve such problems. These techniques have

been widely used in recent years as an efficient simulation

tool for modeling nonlinear systems and pattern recognition

of complex problems. Among others, Bagheri et al. () simu-

lated the discharge coefficient of sharp-crested sideweirs using

artificial neural networks (ANNs). Roushangar et al. (a)

applied ANN and genetic programing (GP) for modeling

energy dissipation over stepped spillways. Mohamed &

Oliver () developed a discharge equation for a side weir

using ANN. Roushangar et al. (b) developed a GP-based

model for river total bed material load discharge. The support

vector machine (SVM) technique has been also successfully

employed in various water resources engineering issues,

including bed load transport prediction (Roushangar &

Koosheh ), discharge modeling in a compound open chan-

nel (Parsaie et al. ), estimating removal efficiency of settling

basins (Singh et al. ), estimating suspended sediment con-

centration (Cimen ), extrapolation of sediment rating

curves (Sivapragasam & Muttil ), flood forecasting (Han

et al. ), predicting dissolved oxygen (Li et al. ), ground-

water budget prediction (Gorgij et al. ) and modeling

evapotranspiration (Yin et al. ). Hanbay et al. ()

applied least square-SVM to predict aeration efficiency on
://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
stepped cascades. Baylar et al. () applied least square-

SVM in the prediction of aeration performance of plunging

over-fall jets from weirs. Azamathulla & Chun Wu () used

SVM for computing longitudinal dispersion coefficients in

natural streams. Goel () modeled the aeration of sharp

crested weirs using SVM. Parsaie & Haghiabi () applied

ANN and neuro-fuzzy models to estimate the side weir dis-

charge coefficient. Azamathulla et al. () used the SVM

technique to determine the discharge coefficient of a side

weir. All of the mentioned research confirmed the SVM capa-

bilities in the studied issues. It should however benoted that the

previously published papers have mainly focused on labyrinth

side weir modeling using SVM and other heuristic data driven

models. The purpose of this study is to investigate the perform-

ance of the SVM technique for determining the discharge

coefficient of four types of labyrinth weirs: normal orientation

labyrinthweirs (NLW)and invertedorientation labyrinthweirs

(ILW), in flume; arced labyrinth weirs without nappe breakers

(ALW) and arced labyrinth weirs with nappe breakers

(ALWB), in reservoir. The literature review by the authors

showed that such comprehensive SVM-based comparison

between labyrinth and arced labyrinth weirs in canals and

reservoirs has not been carried out in the existing literature.
MATERIALS AND METHODS

Dimensional analysis

The discharge capacity of a weir refers to the flow rate

which can pass over it under a given upstream head. In
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this study, a common form of the weirs governing state

(Equation 1) was used to quantify the labyrinth weir

head-discharge relationship (Henderson ).

Q ¼ 2
3
Cd

ffiffiffiffiffi
2g

p
LcH

3=2
T (1)

where Lc represents the weir crest length, g denotes the

gravitational acceleration, HT stands for the total head

(HT¼ hþ v2/2 g), and Cd is the dimensionless discharge

coefficient (which represents the weir per-unit length dis-

charge efficiency). This coefficient is an indicator of weir

unit width discharge, referred to as hydraulic efficiency,

for difference configurations.

Cd might be considered as a function of the total head

(HT), gravitational acceleration (g), dynamic viscosity of the

fluid (μ), mass density of the fluid (ρ), surface tension (δ),

number of cycles (N), length of weir crest (Lc), cycle sidewall

angles (α), cycle arced angle (θ), weir thickness (tw), length of

apex geometry (A), total width of weir (W ), width of a single

cycle (w), weir height (P), velocity (V ), and crest shape (sc) as:

Cd ¼ f(v, g, μ, ρ, δ, HT , Lc, W , w, α, θ, A, N, P, tw, sc) (2)

Dimensional analysis may reduce the dimensions of the

input matrix, so would create a low-dimensions space

where the number of the studied parameters is low. In this

study,Cd can be expressed as a function of dimensionless par-

ameters as:

Cd ¼ f(Fr, Re, We, HT=P, α=θ, Lc=W , A=w, w=p, tw=p, sc)

(3)

where Fr, Re and We are Froude number, Reynolds number

and Weber number, respectively.
Figure 2 | A labyrinth weir orientation (a), arced labyrinth weir (b) and (d) and labyrinth weir w
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The American Society of Civil Engineers (ASCE )

committee (Manual 97) states that the effects of surface ten-

sion on spillways are negligible for We �100. The effect of

viscosity in a fully turbulent flow is also very small, so the

effect of Reynolds number will be eliminated in Equation

(3) (Henderson ). Nonetheless, weir thicknesses and

crest shapes were constant for all the tests. Therefore,

Equation (3) is reduced to:

Cd ¼ f(Fr, HT=P, α=θ, Lc=W , A=w, w=p) (4)
Experimental data

Laboratory test data used in this study were those performed

by Christensen () and Seamons () at the Utah Water

Research Laboratory (UWRL) at Utah State University

Campus in Logan. The existing data consist of two exper-

imental sets:

1. Experiments on arced labyrinth weirs and reservoir simu-

lation were conducted in an elevated head box (7.3 m

long, 6.7 m wide and 1.5 m deep) by Christensen ().

After passing over the weirs, the flow drops from a

2.3 m height to a collection channel. There was no struc-

ture to control tail water depth. Christensen () tested

eight arced labyrinth weirs with and without nappe break-

ers and three non-arced labyrinth weirs. A schematic

representation of the studied labyrinth weirs is displayed

in Figure 2. A labyrinth weir layout in which the down-

stream apexes of each cycle follow the arc of a circle is

termed as an arced labyrinth weir (Figure 2(b) and 2(d)).

Christensen () suggested that the nappe breakers

with a triangular cross-section be placed on the down-

stream apexes with the point oriented into the flow, as
ith nappe breakers (c).
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shown in Figure 2(c). Nappe breakers vent the nappe to

atmospheric pressures, improve stability, and present a

potential solution to unstable nappe conditions; however,

the decrease in discharge efficiency for arced labyrinth

weirs should be accounted for in design. In this part,

227 laboratory test data are used for determining the dis-

charge coefficient of the arced labyrinth weir.

2. Experiments on labyrinth weirs and canal simulation

were conducted in a rectangular flume (14.6 m long,

1.2 m wide and 0.9 m deep) by Seamons (). For all

tests, the slope of the flume floor was set as 0.0 (horizon-

tal). Seamons tested 13 labyrinth weirs and selected 300

laboratory test data (for normal and inverted orientation

labyrinth weirs). When the outside apexes of a labyrinth

weir attach to the training wall at the upstream or begin-

ning region of the apron, it is termed a ‘normal

orientation’. The term inverted orientation belongs to

the situations where the apexes attach to the training

wall at the downstream end of the apron.

Table 1 summarizes the variation range of the par-

ameters used in this study.

Support vector machine

The original SVM algorithm was developed by Vapnik

() and the current standard incarnation (soft margin)

was suggested by Cortes & Vapnik (). SVMs are super-

vised learning models with associated learning algorithms
Table 1 | Variation range of parameters in this study

NLW and ILW

Parameters Min Max Values

1 Q(cfs) 0.7 22.5

2 HT/P 0.051 0.835

3 Cd 0.309 0.684

4 W(in) – – 48

5 N – –

6 α(degree) – –

7 θ(degree) – –

8 tw(in) – –

9 P(ft) – – 1,

10 Lc(in) 98.5 214.1
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that analyze data and recognize patterns, and can be used

for classification and regression analysis. Whereas the orig-

inal problem may be stated in a finite dimensional space,

the sets to discriminate are not linearly separable in that

space. Consequently, it was suggested that the original

finite-dimensional space be mapped into a much higher-

dimensional space, probably making the separation easier

in that space. To maintain a reasonable computational

load, the mappings used by SVM schemes are designed to

ensure that dot products may be computed easily in terms

of the parameters in the original space, by describing them

in terms of a kernel function K (x, y) selected to suit the pro-

blem. The hyperplanes in the higher-dimensional space are

defined as the set of points whose dot product with a

vector in that space is constant. The vectors defining the

hyperplanes can be elected to be linear combinations with

parameters αi of images of feature vectors that occur in

the data base. With this election of a hyperplane, the

points in the feature space that are mapped into the hyper-

plane are defined by the relation:
P

i¼1 αik(xi, x)¼
constant, note that if k (x, y) becomes small as y grows

further away from x, each element in the sum measures

the degree of nearness of the test point x to the correspond-

ing data base point xi. In this way, the sum of kernels above

can be used to measure the relative nearness of each test

point to the data points x originating in one or the other

of the sets to be discriminated. Different types of kernels

are presented in Table 2. General information on the SVM

model can be found in, for example, Vapnik ().
ALW and ALWB

of parameters Min Max Values

– 0.984 22.059 –

– 0.094 0.873 –

– 0.409 0.733 –

.41, 45.41 72 142.551 –

2 – – 5, 7, 9

12,15 – – 12, 20

– – – 10, 20, 30

1.45 – – 1

1.25, 1,5 – – 0.666

– 203.5 634 –



Table 2 | Different kernel functions

Function Expression

Linear K (xi, xj) ¼ (xi , xj)

Polynomial K (xi, xj) ¼ ((xi , xj) þ 1)d

Radial basis function K (xi, xj)¼ exp � jjxi � xjjj2
2σ2

 !

Sigmoid K (xi, xj)¼ tanh (� α(xi , xj)þ c)
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Study protocol and models evaluation

Figure 3 illustrates the schematic representation of the study

flowchart. Ten different input combinations for normal and

inverted orientation labyrinth weirs (NLW, ILW) and eight

different input combinations for arced labyrinth weirs with

and without nappe breakers (ALW, ALWB) were examined
Figure 3 | Schematic representation of the study flowchart.
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in the present study (see Table 3). Experimental data were

divided into training and testing parts: 75% of the whole

data were used for training (establishing) the models and

the remaining data (25% of the whole data) were used for

testing, randomly. The performances of the SVM models

were evaluated by the root mean square error (RMSE),

Nash and Sutcliffe coefficient (NS) and coefficient of deter-

mination (R2) criteria:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

(Cd0i � Cdpi)
2

vuut (5)

NS ¼ 1�
PN

i¼1 (Cd0i � Cdpi)
2PN

i¼1 (Cd0i � �Cdo)
2 (6)



Table 3 | Different input combinations applied in the present study

Model Input parameters Model Input parameters

Normal and inverted orientation labyrinth weirs (NLW, ILW)

Model 1 HT/P Model 6 HT/P, Lc/W, A/w

Model 2 HT/P, α Model 7 HT/P, α, w/p

Model 3 HT/P, α, A/w Model 8 HT/P, Lc/W

Model 4 HT/P, α, Lc/W, A/w Model 9 HT/P, α, Lc/W, A/w, w/p, Fr

Model 5 HT/P, α, Lc/W, A/w, w/p Model 10 HT/P, Lc/W, A/w, Fr

Arced labyrinth weirs with and without nappe breakers (ALW, ALWB)

Model 1 HT/P Model 5 HT/P, α/θ, N, Lc/W, P/tw

Model 2 HT/P, α/θ Model 6 HT/P, N, α/θ, P/tw

Model 3 HT/P, α/θ, N Model 7 HT/P, Lc/W, α/θ

Model 4 HT/P, α/θ, N, Lc/W Model 8 HT/P, Lc/W
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R2 ¼
PN

i¼1 (Cdoi � �Cdo)
PN

i¼1 (Cdpi � �Cdp)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 (Cdoi � �Cdo)

2PN
i¼1 (Cdpi � �Cdp)

q 2

2
64

3
75
2

(7)

where Cd0i and Cdpi denote the observed and corresponding

simulated discharge coefficient values at the i-th pattern,

respectively. �Cdo and �Cdp stand for the mean values of the

observed and simulated discharge coefficient values,

respectively. N is the number of data patterns.
Figure 4 | Variation of RMSE and R2 vs. Gamma values for NLW10, ALWB7 input configuration

Table 4 | Sensitivity analysis of SVM model parameters (for ALWB7)

Kernel RTrain RTest γ RTrain RTest

RBF 0.991 0.980 0.1 0.944 0.943

Polynomial 0.916 0.911 1.0 0.960 0.949

Linear 0.834 0.807 5.0 0.981 0.977

Sigmoid 0.854 0.831 10 0.986 0.975

– – – 20 0.982 0.851
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RESULTS AND DISCUSSION

The present study aimed at evaluating the SVM-based models

for determination of the discharge coefficient of normal and

inverted orientation labyrinth weirs in flume (NLW, ILW)

and arced labyrinth weirs with and without nappe breakers

in reservoir (ALW, ALWB). Table 4 shows the results of the

sensitivity analysis for SVM model parameters. Figure 4 illus-

trates the RMSE and R2 values of various Gamma values of
s.

ε RTrain RTest C RTrain RTest

1 0.285 0.238 1 0.902 0.836

0.1 0.981 0.977 10 0.981 0.977

0.01 0.991 0.980 50 0.981 0.977

0.001 0.991 0.977 100 0.981 0.977

– – – 1000 0.981 0.977



Table 5 | The statistical parameters and optimal parameters of SVM model

Train Test

Model R2 DC RMSE R2 DC RMSE c ε γ

Normal labyrinth weirs (NLW)

NLW 1 0.863 0.860 0.030 0.846 0.816 0.031 10 0.01 2

NLW 2 0.902 0.898 0.026 0.883 0.869 0.026 10 0.01 4

NLW 3 0.908 0.904 0.025 0.889 0.872 0.026 10 0.01 20

NLW 4 0.972 0.972 0.013 0.956 0.954 0.015 10 0.01 5

NLW 5 0.990 0.979 0.010 0.986 0.979 0.010 10 0.01 12

NLW 6 0.941 0.937 0.023 0.921 0.910 0.020 10 0.01 16

NLW 7 0.992 0.976 0.011 0.986 0.976 0.011 10 0.01 20

NLW 8 0.978 0.975 0.012 0.970 0.969 0.013 10 0.01 20

NLW 9 0.992 0.977 0.011 0.986 0.977 0.011 10 0.01 9

NLW 10 0.992 0.991 0.007 0.990 0.988 0.007 10 0.01 1

Inverted labyrinth weirs (ILW)

ILW 1 0.900 0.897 0.034 0.868 0.860 0.035 10 0.1 2

ILW 2 0.900 0.898 0.035 0.868 0.860 0.036 10 0.1 2

ILW 3 0.925 0.924 0.031 0.878 0.878 0.035 10 0.1 2

ILW 4 0.919 0.919 0.032 0.878 0.874 0.035 10 0.1 0.1

ILW 5 0.946 0.943 0.026 0.915 0.913 0.029 10 0.1 2

ILW 6 0.921 0.916 0.031 0.930 0.840 0.032 10 0.1 0.5

ILW 7 0.948 0.947 0.020 0.912 0.910 0.026 10 0.1 3.0

ILW 8 0.921 0.921 0.031 0.870 0.869 0.036 10 0.1 3

ILW 9 0.982 0.981 0.015 0.981 0.954 0.025 10 0.1 0.5

ILW 10 0.920 0. 916 0.034 0.872 0.871 0.036 10 0.1 0.5

Arced labyrinth weirs Without nappe breakers (ALW)

ALW 1 0.855 0.853 0.022 0.822 0.803 0.033 100 0.01 4.1

ALW 2 0.960 0.960 0.010 0.952 0.943 0.016 100 0.01 4.1

ALW 3 0.964 0.960 0.012 0.944 0.935 0.015 100 0.01 3.5

ALW 4 0.960 0.958 0.011 0.952 0.944 0.016 100 0.01 2.5

ALW 5 0.986 0.985 0.009 0.958 0.954 0.016 100 0.01 2.5

ALW 6 0.966 0.963 0.011 0.964 0.942 0.014 100 0.01 2.7

ALW 7 0.994 0.993 0.006 0.970 0.967 0.013 100 0.01 4.1

ALW 8 0.944 0.943 0.011 0.942 0.929 0.017 100 0.01 4.1

Arced labyrinth weirs With nappe breakers (ALWB)

ALWB 1 0.749 0.748 0.034 0.746 0.713 0.036 10 0.01 1

ALWB 2 0.929 0.928 0.032 0.915 0.913 0.033 10 0.01 5

ALWB 3 0.952 0.951 0.035 0.833 0.813 0.037 10 0.01 1.2

ALWB 4 0.968 0.961 0.030 0.866 0.852 0.032 10 0.01 3

ALWB 5 0.972 0.970 0.008 0.925 0.886 0.014 10 0.01 2.5

ALWB 6 0.974 0.971 0.030 0.868 0.859 0.031 10 0.01 4

ALWB 7 0.982 0.981 0.006 0.960 0.958 0.010 10 0.01 5

ALWB 8 0.835 0.550 0.034 0.831 0.511 0.040 10 0.01 10
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Figure 5 | Comparison of the observed and simulated discharge coefficient values for: (a) Normal labyrinth weir (input configuration 10), (b) inverted labyrinth weir (input configuration 9).
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the SVMmodel (fed with the NLW10 and ALWB7 input con-

figurations). From the figure it is seen that the error statistics

fluctuate with changing the Gamma values and the lowest
://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
RMSE and highest R2 values are obtained when the Gamma

values are chosen as 1 and 5 for the NLW10 and ALWB7

input combinations, respectively. Very small Gamma values



Figure 6 | Cd vs. HT/P variations for: (a) normal labyrinth weir (input configuration 10), (b) inverted labyrinth weir (input configuration 9).
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would show the risk of overfitting (due to ignoring most of the

support vectors), while its large values increase the complexity

of the model (Han et al. ). A trial and error process was

applied for all the input combinations to determine the opti-

mum values of the SVM parameters.

Normal and inverted orientation labyrinth weirs in

flume (NLW, ILW)

The dimensionless parameters evaluated in this section

were: head water ratio (HT/P), upstream Froude number

(Fr), magnification ratio (Lc/W), sidewall angle (α), apex

ratio (A/w) and cycle width ratio (w/p). To obtain the

appropriate SVM model for determining the discharge

coefficient of normal and inverted orientation labyrinth

weirs, ten different input combinations were developed

(see Table 3). Table 5 sums up the statistical indices of

different SVM models. From the table it is clear that the

input combination 10 (NLW 10) comprising the HT/P,

Lc/W, A/w and Fr dimensionless parameters as input vari-

ables, showed the most accurate results for the normal

orientation labyrinth weir, with the lowest RMSE (0.007

and 0.007), and the highest NS (0.991 and 0.988) and R2

(0.992 and 0.990) values for the train and test stages,
om http://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
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respectively. Attending to the inverted orientation labyrinth

weir, the SVM9 model (fed with ILW 9 input configuration)

comprising the HT/P, α, Lc/W, A/w, w/p and Fr dimension-

less parameters as input vectors gives the most accurate

results with the lowest RMSE (0.015 and 0.025), and the

highest NS (0.981 and 0.954) and R2 (0.982 and 0.981)

values, for the train and test stages, respectively. Analyzing

the results shows that the input combinations which

include the Fr number as an input parameter produce

better results for both the normal and inverted orientation

labyrinth weirs. Figure 5 represents the observed vs. simu-

lated Cd values for optimum SVM models of the normal

and inverted labyrinth weirs in both the train and test

stages. From the figure it is seen that there is a good agree-

ment between the observed and SVM-based simulated Cd

values for both the studied weirs in the train and test

stages. The discharge coefficient, Cd, is also presented as

a function of HT/P for the best model of normal and

inverted orientation labyrinth weirs in Figure 6. From the

figure it can be observed that for the lowest HT/P values

(peak Cd observations), the discrepancy between the

observed and simulated Cd values presents higher magni-

tudes when compared to the higher HT/P values. Analysis

of the differences between the observed and simulated Cd



Figure 7 | Observed vs. predicted discharge coefficient for the best models (model 7) of arced labyrinth weirs: (a) without nappe breakers, and (b) with nappe breakers.
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values in these points (not presented here) shows that there

is good agreement between observed and simulated values

at large values of HT/P, while, large differences can be

detected for HT/P< 0.2 (approximately 4%). This may be

attributed to variation of the observed discharge coefficient

around peak point values.
://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
Arced labyrinth weirs with and without nappe breakers

(ALW, ALWB)

Input parameters used to feed the SVM models in this part

were the head water ratio (HT/P), angle ratio (α/θ), number

of cycles (N), magnification ratio (Lc/W), and relative



Figure 8 | Cd vs. HT/P variations for arced labyrinth weirs (model 7): (a) without nappe breakers, (b) with nappe breakers.
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thickness ratio (P/tw). To evaluate the best combination of

these input parameters for determining the discharge coeffi-

cient of arced labyrinth weirs, eight input combinations were

defined, as have been given in Table 3. The corresponding stat-

istical indices are listed in Table 5. From the table it is clear that

model 7, which includes theHT/P, α/θ and Lc/W as input par-

ameters, presents the lowest RMSE (0.013) and highest

NS (0.967) andR2 (0.970) values for arced labyrinthweirswith-

out nappe breakers, and also shows the lowest RMSE (0.010)

and highest NS (0.958) and R2 (0.960) values for arced labyr-

inth weirs with nappe breakers in the testing stage. Figure 7

illustrates the observed vs. simulated values of Cd for train

and test stages. The values of HT/P were plotted against the

observed and simulated Cd, in Figure 8. As can be seen from
Table 6 | Best models, evaluation criteria and effective parameters

Kind of
labyrinth Best model Effective parameters R2 DC RMSE

NLW Model 10 (HT/P-Lc/W-A/w-
Fr)

0.990 0.9881 0.0077

ILW Model 9 (HT/P-α-Lc/W-A/w-
w/p-Fr)

0.981 0.9536 0.0258

ALW Model 7 (HT/P-Lc/W-α/θ) 0.970 0.9671 0.0130

ALWB Model 7 (HT/P-Lc/W-α/θ) 0.960 0.9589 0.0104

om http://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
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Figures 7 and 8, the discharge coefficients from the SVM tech-

nique are in good agreement with the experimental data.

Maximum error is observed at the low values of HT/P, while

the error decreased at higher HT/P values. From Figure 7 it

is seen that the SVM is trapped in overestimation in prediction

of the discharge coefficient of arced labyrinth weirs without

nappe breakers in the testing stage, and the mean error of

the SVM model is between 1% and 3%. Table 6 summarizes

the optimum SVM-based models of the studied cases.
DATA PROCESSING

Re-construction of input matrix

Figures 6 and 8 show that there is good agreement between

the simulated and observed discharge coefficients at high

values of HT/P, while the largest differences are detected

for HT/P< 0.2. On the other hand, owing to the fact that

the labyrinth weirs are employed for conveying the flow

from upstream to downstream at the maximum discharge

events, the data corresponding toHT/P< 0.2 were eliminated

from the input-target matrix, then the SVM model was re-

established. The results showed that by eliminating these



Table 7 | Data processing results

a) Analysis result of models re-construction

Evaluation criteria in testing stage

Whole data Re-constructed data

Types of labyrinth weirs R2 DC RMSE R2 DC RMSE

NLW (3) 0.889 0.872 0.026 0.954 0.941 0.015

INW (3) 0.878 0.878 0.035 0.940 0.933 0.019

ALW (3) 0.944 0.935 0 .015 0.976 0.971 0.010

ALWB (3) 0.833 0.813 0.037 0.912 0.898 0.023

b) Analysis results of data merging

Evaluation criteria in testing stage

Separate data Merged data

Types of labyrinth weirs R2 DC RMSE R2 DC RMSE

NLW (10) 0.990 0.988 0.007 – – –

INW (9) 0.981 0.953 0.025 – – –

Combination (NLW & INW) (10) – – – 0.915 0.901 0.045

ALW (7) 0.970 0.971 0.013 – – –

ALWB (7) 0.960 0.958 0.010 – – –

Combination (ALW & ALWB) (7) – – – 0.871 0.866 0.052

Figure 9 | Comparison of original and re-constructed SVM statistics.
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data, SVM model accuracies were improved for all labyrinth

weirs models to a great extent (Table 7(a) and Figure 9).

Merging data

In this part of the study, all canal data (227 patterns) (data sets

of normal and inverted orientation labyrinth weirs) as well as
://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
all reservoir data (300 patterns) (arced labyrinth weirs with

and without nappe breakers), were combined separately,

and the SVM models were established using the pooled

data for each category using the previously applied input

combinations. The results of the testing stage are presented

in Table 7(b) and Figure 10. As can be seen from the

table, model 10 shows the most accurate results in canal



Table 8 | Result of sensitivity analysis

Statistical indicators

The best SVM models Input combinations Eliminated variable R2 DC RMSE

NLW 10 HT/P, Lc/W, A/w, Fr – 0.990 0.988 0.007
HT/P, Lc/W, A/w Fr 0.921 0.910 0.020
Lc/W, A/w, Fr HT/P 0.931 0.913 0.019
HT/P, A/w, Fr
HT/P, Lc/W, Fr

Lc/W
A/w

0.964
0.977

0.958
0.961

0.016
0.015

The best SVM model Input combination Eliminated variable R2 DC RMSE

ILW 9 HT/P, α, Lc/W, A/w, w/p, Fr – 0.981 0.954 0.025
HT/P, α, Lc/W, A/w, w/p Fr 0.915 0.913 0.029
α, Lc/W, A/w, w/p, Fr HT/P 0.933 0.915 0.029
HT/P, Lc/W, A/w, w/p, Fr α 0.965 0.960 0.026
HT/P, α, A/w, w/p, Fr Lc/W 0.950 0.942 0.027
HT/P, α, Lc/W, A/w, Fr A/w 0.966 0.960 0.026
HT/P, α, Lc/W, A/w, Fr w/P 0.964 0.958 0.026

The best SVM model Input combination Eliminated variable R2 DC RMSE

ALW 7 HT/P, Lc/W, α/θ – 0.970 0.967 0.013
Lc/W, α/θ HT/P 0.651 0.606 0.098
HT/P, α/θ Lc/W 0.952 0.943 0.016
HT/P, Lc/W α/θ 0.942 0.929 0.017

The best SVM model Input combination Eliminated variable R2 DC RMSE

ALWB 7 HT/P, Lc/W, α/θ – 0.960 0.958 0.010
Lc/W, α/θ HT/P 0.623 0.431 0.107
HT/P, α/θ Lc/W 0.915 0.913 0.033
HT/P, Lc/W α/θ 0.831 0.511 0.040

Figure 10 | Comparing the results of combination data and separated data (testing stage).
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simulations, while model 7 presents the highest accuracy in

the reservoir simulations. The results show that in the case

of data scarcity, pooling the available data might be a promis-

ing approach for determining the discharge coefficient.
SENSITIVITY ANALYSIS

Sensitivity tests have been conducted to determine the rela-

tive significance of each of the independent parameters on

Cd. Consequently, one input parameter was eliminated

each time and the SVM models were re-established and

re-evaluated. The results of this analysis are given in

Table 8. As can be seen from this table, Froude number

(Fr) and head water ratio (HT/P) are the most influential par-

ameters on Cd in normal and inverted orientation labyrinth

weirs, respectively. For arced labyrinth weirs with and with-

out nappe breakers, respectively, head water ratio (HT/P)

and angle ratio (α/θ) have the most significant effect on dis-

charge coefficient.
CONCLUSIONS

The purpose of the present research was to provide new

insights and design information regarding the performance

and operation of normal and inverted orientation and

arced labyrinth weirs, using SVM-based approaches. A

total of 527 laboratory data and three statistical indices

were used to evaluate the models’ accuracies. To obtain

the appropriate SVM model for determining the discharge

coefficient of normal and inverted orientation labyrinth

weirs, ten different input configurations were introduced to

the SVM-based models. In the case of the arced labyrinth

weirs, eight different input configurations were introduced.

The obtained results revealed that there were good agree-

ments between Cd values obtained by the SVM-based

models and the observed Cd values for all labyrinth weirs,

with the largest discrepancy of 4%, which was observed at

low values of HT/P. The results of the sensitivity analysis

showed that the Froude number (Fr) and head water ratio

(HT/P) parameters are the most effective variables on the

labyrinth weirs in canals, while the head water ratio and
://iwaponline.com/hr/article-pdf/49/3/924/234355/nh0490924.pdf
angle ratio (α/θ) are the most effective variables on arced

labyrinth weirs in reservoir, for determining the discharge

coefficient. It should, however, be noted that the efficiency

of the SVM-based models is data sensitive, so further studies

using more laboratory or field data should be carried out to

strengthen the outcomes of the present study.
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