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Long-term streamflow forecasting using SWAT through

the integration of the random forests precipitation

generator: case study of Danjiangkou Reservoir

Zhongmin Liang, Tiantian Tang, Binquan Li, Tian Liu, Jun Wang

and Yiming Hu
ABSTRACT
Long-term streamflow forecasting is of great significance to the optimal management of water

resources. However, the forecast lead time of long-term streamflow forecasting is relatively long and

the forecasted precipitation within the forecast lead time has inherent uncertainty, so long-term

streamflow forecasting has major challenges. In this paper, a hybrid forecasting model is developed

to improve accuracy of long-term streamflow forecasting by combining random forests (RF) and the

Soil and Water Assessment Tool (SWAT). The RF model is used to forecast monthly precipitation

which is further downscaled to a daily dataset according to the hydrological similarity principle for

use in the SWAT model of the Danjiangkou Reservoir basin, China. Performance of this hybrid model

is compared to that of seasonal autoregressive (SAR (P)) model. Results show the RF precipitation

generator yields accurate predictions at the monthly scale and the hybrid model produces

acceptable streamflow series in long-term forecasting cases. In addition, the comparison shows that

in the Danjiangkou Reservoir basin, the hybrid model performs better than the SAR (P) model, with

average Nash–Sutcliffe efficiency (NSE) values of 0.94 and 0.51, which is better when it is closer to

1. This study provides a method of improving accuracy of long-term streamflow forecasting.
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INTRODUCTION
Early and accurate long-term streamflow forecasting is of

great significance to the optimal management and effective

utilization of water resources (Pagano et al. ; Seo et al.

). Scheduling schemes for efficient water uses should

be developed to ensure the safety of water conservancy pro-

jects and economic benefits (Xiao et al. ). However,

with the extension of the forecasting lead time, the uncer-

tainty of forecasted climatic inputs (e.g., precipitation)

increases, and the accuracy of streamflow forecasting

decreases considerably. Recently, various methods have

been developed to improve the accuracy of long-term

streamflow forecasting. Zhou et al. () developed a
wavelet predictor-corrector model for the simulation and

prediction of monthly discharge time series at Yichang

station on the Yangtze River. Westra et al. () used inde-

pendent component analysis for seasonal runoff forecasting.

Wang et al. () presented a model for forecasting seaso-

nal runoff based on Bayesian joint probability (BJP).

Pagano et al. () used Z-score regression to predict the

seasonal runoff volume. Yu et al. () established the rain-

fall–runoff correlation model and applied it to the short-term

flood forecast system in Danjiangkou Reservoir which used

the correction technique based on the variable forgetting

factor recursive least square algorithm to correct the flow
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process of the forecast in real time. Ran et al. () estab-

lished a forecast model based on the theory of weighted

average and least-square method in Danjiangkou Reservoir.

Feng et al. () presented correlation between the monthly

runoff in Danjiangkou Reservoir and the North Pacific sea

surface temperature, the northern hemisphere 100 and 500

hPa height fields and the 74 circulation characteristic

values in the previous year, and selected the stable meteoro-

logical factors with high correlation as the key factors. Then,

they established a monthly runoff forecast model by means

of the stepwise regression methods. This model was

employed to simulate the monthly runoff of Danjiangkou

Reservoir during 1957–2000 and to predict it during 2001–

2006. Valipour et al. () used the autoregressive moving

average (ARMA) and autoregressive integrated moving aver-

age (ARIMA) models to forecast monthly discharge. Terzi &

Ergin () forecasted monthly runoff using an autoregres-

sive (AR) model. Huang et al. () investigated a

modified model for monthly runoff forecasting that com-

bined empirical mode decomposition and a support vector

machine. Wang et al. (a) combined an artificial neural

network (ANN) model and ensemble empirical mode

decomposition (EEMD) to forecast medium- and long-term

runoff time series. Zhang et al. () proposed the CEREF

model to forecast annual runoff, and the results suggested

that the CEREF model performed better than other

methods.

Streamflow is a spatial and temporal hydrological

response to precipitation. The volume of precipitation deter-

mines the change in streamflow and the associated

hydrograph. In streamflow forecasting, the prediction of pre-

cipitation during the forecast lead time is significant;

however, it is not considered in many models, which can

result in unsatisfactory forecasting results. This issue may

be overcome using numerical weather prediction (NWP)

products. NWP products can provide forecasts of future pre-

cipitation. Thus, precipitation during the forecast lead time

can be treated as an influential factor when forecasting

streamflow (Gobena & Gan ; Bennett et al. ; Shi

et al. ; Yu et al. ). Generally, NWP products provide

a certain degree of accuracy for precipitation forecasting

over 7–10 days. Nevertheless, the length of the forecast

lead time must be further expanded to meet the require-

ments of production.
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This paper aims to improve the accuracy of long-term

streamflow forecasting and to develop a hybrid model. The

hybrid model is based on a statistical model: random forests

(RF), that forecasts precipitation series. These series are then

used as input to the hydrological model, which is used to

forecast monthly streamflow with a relatively long forecast

lead time. We utilized a teleconnection analysis of precipi-

tation and meteorological factors to screen the forecast

factors and construct a RF model for forecasting monthly

precipitation. Then, the forecasted monthly precipitation

was used to screen the typical year through a hydrological

similarity measure, and the forecasted monthly precipitation

was downscaled into daily precipitation by the ratios of the

forecasted year and typical year. The daily precipitation

series was used as input of the Soil and Water Assessment

Tool (SWAT) distributed hydrological model streamflow

forecasting. In the past few decades, RF methods have

been widely used in many engineering applications, includ-

ing hydrology. Dhungel et al. () used an RF model to

predict site-specific changes in flow regime classes with

downscaled climate projections. He et al. () used an

adaptable RF for spatial precipitation downscaling. Wang

et al. (b) proposed a flood hazard risk assessment

model based on RF. Additionally, RF was used to predict

nitrate concentrations in shallow groundwater in the Cen-

tral Valley (Nolan et al. ). Booker & Woods ()

found that the RF method provided the best estimates of

all hydrological indexes except average flow. Moreover, an

RF model was used to predict base flow electrical conduc-

tivity (Olson & Hawkins ). Zhao et al. ()

introduced an RF model for selecting a predictor set from

measured runoff and predicted seasonal low flow in the

upper Yangtze. Carlisle et al. () used natural watershed

characteristics to predict the value of each runoff metric

using an RF approach.

The remainder of this paper is organized as follows. The

next section introduces the study area and the data used.

This is followed by a section describing in detail the RF

and SWAT methods, as well as demonstrating the processes

of model construction. Then, the results of model calibration

and verification are presented and also a comparison of the

results of the hybrid model and seasonal autoregressive

model (SAR (P)) model. The final section states the

conclusions.



1515 Z. Liang et al. | Long-term streamflow forecasting using SWAT Hydrology Research | 49.5 | 2018

Downloaded from http
by guest
on 04 December 2023
STUDY AREA AND DATA

Study area

TheDanjiangkou basin, with an area of 95,217 km2, is located

in the upper reaches of the Han River in the Yangtze River

basin, China. The basin accounts for 60% of the catchment

area of the Han River basin (Figure 1). The terrain is mainly

mountainous valleys, high mountains, and hills, and it ranges

from high in the northwest to low in the southeast in a horse-

shoe shape with the opening to the east. There are many

water conservancy projects in the basin, and the Danjiangkou

Reservoir is themiddle routewater sourceproject of the South-

to-NorthWater Transfer Project ofChina. The reservoir’s com-

prehensive functions include flood control, water supply,

power generation, irrigation, shipping, and aquaculture. Accu-

rate medium- and long-term streamflow forecasting in the

basin is the technical basis for the scientific water resources
Figure 1 | Map of the Danjiangkou basin.

://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
management of the basin and the south-to-north water diver-

sion. The annual average temperature is 15–17 �C, and the

average evaporation in the basin is 900–1,500 mm. The aver-

age annual precipitation is approximately 700–1,100 mm,

and more than 80% occurs from May to October.

Data

The hydrometerological data we used are monthly precipi-

tation series from 1981 to 2013, provided by the Bureau of

Hydrology and values of daily average rainfall, temperature,

wind speed, solar radiation and relative humidity from 1995

to 2011 from seven meteorological stations at Ankang,

Foping, Xixia, Shangzhou, Shiquan, Hanzhong and

Zhenan (Figure 1). Atmospheric circulation data consisting

of monthly mean values of 74 atmospheric circulation

indexes (ACI) from 1980 to 2012 were downloaded from

the National Climate Center, China. Sea surface temperature



Figure 2 | Land use data.
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(SST) data and 500 HPa geopotential height field (500Hpa)

data, both consisting of monthly mean values from 1980 to

2012, were provided by the National Centers for Environ-

mental Prediction, USA. The spatial grid resolution of SST

is 2� × 2�, and the range spans from 52.5�N to 12.5�S and
Figure 3 | Soil data.
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from 117.5�E to 77.5�W. The spatial grid resolution of

500Hpa is 2.5� × 2.5�, and the range spans from 80�N to

10�S and from 0�E to 360�E. The spatial and attribute data

we used are digital elevation model (DEM), land use data

in 2005 (Figure 2) and soil data in 1995 (Figure 3).
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METHODOLOGY

Random forests

Principle of random forests

RF (Breiman ) is a machine learning algorithm that

combines bagging and ensemble learning theory (Breiman

a) with the random subspace method (Ho ). RF is

a classifier consisting of a collection of tree-structured classi-

fiers: h(x, Θk), k ¼ 1, . . .f g, where Θkf g are independent and
identically distributed random vectors and each tree casts a

unit vote for the most popular class of input x (Breiman

). The method utilizes bootstrap re-sampling technology

to sample the original data and generate a number of train-

ing samples, each of which randomly selects the feature

attributes through random subspace methods to construct

the decision tree. Finally, the optimal result is obtained by

a voting or averaging method. Previous studies have found

that RF can effectively overcome the problems of noise

and over fitting, and it provides high precision for prediction

(Wang et al. b).

The main technological aspects of RF are as follows:

1. Bootstrap re-sampling technology (Breiman a) and

out-of-band (OOB) error estimation: Different training

samples are obtained from the original samples through

bootstrap re-sampling. The size of the original sample is

assumed to be N. Repeat sampling with replacement is

performed, and the size of the training samples is also

N. The probability that each sample is not included is

(1� 1=N)N . This probability is 0.368 in the case that

N is sufficiently large. Thus, approximately 37% of the

original samples are not included and are considered

OOB data. These data can be used to estimate the error

of each decision tree, and the average value can be

used to calculate the generalization error of the RF. The

study found that OOB estimation had the same accuracy

as the test set with the same sample size (Breiman b).

2. Decision tree and random subspace theory: A decision

tree algorithm is a top-down recursive method, and con-

clusions are obtained at the leaf nodes of the decision

tree (Breiman et al. ). A key step in the decision

tree is to select the attributes of node splitting. Based
://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
on the random subspace theory, a subset of attributes is

extracted from all attributes with equal probability.

Then, the Gini impurity level index is used to select an

optimal attribute from the subset to split the node (Zhu

& Pierskalla ).

Model construction

Step 1: The causal relationship between precipitation and

hydrometeorological factors is established based on the cor-

relation coefficient method D¼ {{ × i,yi), × I ε X, yi ε Y,i ¼
1,2,…N}, which is used to selected M forecast factors.

These factors are used to construct the training sample set

together with the precipitation series, where X is the M-

dimensional explanatory variable vector composed of pre-

dictors, Y is the target variable of the precipitation series

and N is the sample capacity.

Step 2: k training sample subsets are randomly taken

from the training sample set D through bootstrap re-

sampling, and the size of the training sample subset is N.

Step 3: k decision trees are constructed for the k train-

ing sample subsets. According to the random subspace

theory, m indexes (generally, m ¼ ffiffiffiffiffi
M

p
) are randomly

selected from the M indexes based on the node attribute

values of the decision trees. Then, the optimal value is

selected based on the Gini impurity level, and this value is

the final node attribute value. Liu et al. () found that

for most data sets, when the number of trees is 100, the

RF accuracy can meet the requirements of the method.

Thus, k in this research is selected as 100.

Step 4: Each decision tree is executed based on top-

down recursive growth to obtain a predicted flow value.

The results of k decision trees are then voted on to obtain

the ultimate classification (regression) results, namely, the

final predicted value of precipitation.

The main structure of the model is shown in Figure 4.
Soil and water assessment tool

Introduction of SWAT

SWAT is a distributed hydrological model developed by the

United States Department of Agriculture (USDA). It has

been used to predict the influence of long-term land



Figure 4 | The main structure of the random forest algorithm.
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management measures on various soil types, land uses, and

management conditions over large areas of complex water-

shed affected by runoff, sediment loading, and nutrient

flow loss. To diminish the influence of the underlying water-

shed surface and the space-time variability of climate factors

on the runoff simulation of the model, SWAT divides a river

basin into multiple sub-basins. Additionally, the sub-basins

are subdivided into different hydrologic response units

(HRU) according to the type of soil and land use. The calcu-

lation of runoff yield after basin subdivision can improve the

accuracy of runoff simulation. The ability of SWAT to pre-

dict streamflow has been widely verified around the world

(Arnold et al. ; Chanasyk et al. ; Bouraoui et al.

; Jayakrishnan et al. ). Notably, it has yielded high

accuracy for long-term simulations of yearly and monthly

mean streamflow (Chen et al. ; Li et al. ; Lin et al.

). Therefore, SWAT can be used for medium- to long-

term monthly mean streamflow prediction.
SWAT model construction

Step 1: Input basin DEM data. Using ArcGIS spatial analy-

sis tools to analyse the flow directions in the basin, the

cumulants of confluences are calculated and sub-basins

(15 in this case) defined, as shown in Figure 5.
om http://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
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Step 2: Input the land use data and soil data. The land

use and soil are classified according to the database in

SWAT and the re-classification index table to define gradi-

ents. Then, the hydrological response units in the basin are

determined.

Step 3: Load the precipitation station and meteorologi-

cal station data. The corresponding precipitation and

meteorological data are read according to the index name

of each station to complete the construction of the model.
Hydrological similarity measure

Predicted precipitation from the RF model is provided at a

monthly time step, while SWAT uses daily inputs. Therefore,

monthly precipitation data are downscaled to daily series

according to a hydrological similarity measure in this study.

Based on similarity principle, a Euclidean distance metric

function, which measures the difference between predicted

and observed monthly precipitation vectors, is constructed:

Dik k ¼ X
⇀
�Y

⇀
i

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X12
j

(xj � yi,j)
2

vuut (1)

where, X
⇀

¼ (x1, x2, . . . , x12) and Y
⇀

i ¼ (yi,1, yi,2, . . . , yi,12) are

the predicted and observed monthly precipitation vectors,

respectively. Dik k is the Euclidean distance between the



Figure 5 | Sub-basins of the study area.
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predicted and the observed values in the ith year, and

i ¼ 1 ∼ n, n is the total number of years.

According to the principle of minimum distance, the

most similar historical data series are selected to predict

monthly precipitation, and the ratio of observed to predicted

precipitation can be calculated. Furthermore, monthly pre-

cipitation can be downscaled to obtain the predicted daily

precipitation at each station. Additionally, historical meteor-

ological data are used as input data in the SWAT model to

calculate the daily evaporation capacity.
Evaluation measures

To evaluate the forecasting ability of the models, the simu-

lation accuracy of each monthly forecast model is

summarized. The coefficient of correlation (R), relative

error (RE), mean absolute percentage error (MAPE) and

Nash–Sutcliffe efficiency (NSE) are used as evaluation

measures. They are defined as follows:

1. Coefficient of correlation (R):

R ¼ (1=N)
PN

i¼1 (Qo(i)�Qo)(Qf(i)�Qf)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=N)

PN
i¼1 (Qo(i)�Qo)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1=N)
PN

i¼1 (Qf(i)�Qf)
2

q

(2)
://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
2. Relative error (RE):

RE ¼Qf(i)�Qo(i)
Qo(i)

× 100% (3)

3. Mean absolute percentage error (MAPE):

MAPE ¼ 1
N

XN
i¼1

(Qo(i)�Qf(i)
Qo(i)

����
���� × 100% (4)

4. Nash–Sutcliffe efficiency (NSE):

NSE ¼ 1�
PN

i¼1 (Qo(i)�Qf(i))
2

PN
i¼1 (Qo(i)�Qo)

2 (5)

where Qo(i) and Qf(i) are the observed and simulated

streamflow series, respectively; Qo and Qf are the mean

observed and simulated streamflow series, respectively;

and N is the length of the time series considered.
RESULTS AND DISCUSSION

Screening of predictors

The key predictors of monthly precipitation forecasts are

selected from the 74 atmospheric circulation factors, the



1520 Z. Liang et al. | Long-term streamflow forecasting using SWAT Hydrology Research | 49.5 | 2018

Downloaded fr
by guest
on 04 Decemb
North Pacific Ocean temperature field and the 500 HPa

height field and further used to construct the RF model. A

correlation analysis between these potential predictors

(1980–2012) and monthly precipitation (1981–2013) is con-

ducted to select the key influential predictors (at a

significance level of 0.05) in each month of a year. Table 1

shows the selected predictors of precipitation in August as

an example.
Forecasting model of monthly mean precipitation based

on RF

The calibration and validation periods of the RF model are

from 1981 to 2008 and 2009 to 2011, respectively.

Figure 6(a) and 6(b) illustrate the comparison of simu-

lated and observed monthly precipitation during the

calibration and verification periods, respectively. The figures

show that the RF precipitation generator results exhibit good

agreement with the observations, with R2 values of 0.92 and

0.93 in the calibration and validation periods, respectively.

In addition, when the values of observed precipitation are

high, the simulated values are generally smaller than the
Table 1 | Selected precipitation predictors in August in the Danjiangkou basin

Number Predictor R Description (previous yea

1 ACI_2_26 0.526 The subtropical high r

2 ACI _7_36 0.485 North Atlantic subtro

3 ACI _2_56 �0.483 Northern hemisphere

4 ACI _3_64 �0.472 Asian meridional circ

5 ACI _11_63 �0.453 Asian zonal circulatio

6 500 hpa_1_17.42 0.531 500 Hpa in January at

7 500 hpa_11_5.46 0.528 500 Hpa in Novembe

8 500 hpa_5_26.66 0.526 500 Hpa in May at (2

9 500 hpa_3_15.136 �0.520 500 Hpa in March at

10 500 hpa_8_17.69 0.518 500 Hpa in August at

11 SST_7_17.10 0.512 SST in July at (17.10)

12 SST_5_21.33 0.510 SST in May at (21.33)

13 SST_10_7.60 �0.507 SST in October at (7.6

14 SST_9_6.59 �0.487 SST in September at (

15 SST_8_5.58 �0.474 SST in August at (5.58

Note: ACI_2_26 reflects that the forecasted factor is the 26th factor (the subtropical high ridge lin

the forecasted year.
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observed values. At other times, these values are roughly dis-

tributed near the 1:1 line.

Moreover, according to the accuracy requirement of the

quantitative prediction of medium- and long-term precipi-

tation in the Standard for Hydrological Information and

Hydrological Forecasting in China (GB/T22482-2008), a

20% variation in the amplitude in multiple years is taken

as the permissible error, and the qualified rate (QR) is

calculated.

The values of RE for simulated and observed precipi-

tation from 1981 to 2008 are shown in Figure 7. The R,

MAPE, NSE and QR values of the predictive simulation

model from 1981 to 2008 are summarized, and the results

are shown in Table 2.

Figure 7 shows that the values of RE in November and

December are relatively large, and those in other months

are comparatively well distributed. From the results of the

four evaluation measures, the monthly rainfall forecasting

model based on the RF model provides good simulation

results. The correlation coefficient is above 0.9 in all 12

months, and the mean value is 0.94. The MAPE values in

January, February, November and December are relatively

large, potentially because the observed rainfall amount is
r)

idge line in India (65 E–95 E) in February

pical high on the north side of North America (110 W–60 E) in July

polar vortex centre (JW) in February

ulation index (IM, 60 E–150 E) in March

n index (IZ, 60 E–150 E) in November

(17.42)

r at (5.46)

6.66)

(15.136)

(17.69)

0)

6.59)

)

e in India (65E–95E)) of the 74 atmospheric circulation factors in February one year before



Figure 6 | Observed and simulated precipitation in the calibration and validation periods.
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low during the non-flood season, and a slight difference

between the simulated precipitation and observed precipi-

tation will lead to a significant RE. However, the QR in

January, February, November and December are 92.9%,

82.1%, 96.4% and 89.3%. Moreover, the NSE coefficients

are all above 0.7 and roughly meet the accuracy
Figure 7 | RE of observed and simulated precipitation in the calibration period.

://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
requirements. Excluding January, February, November and

December, the average value of MAPE is 21.35% in the

other eight months, and the average NSE coefficient is

greater than 0.75. Based on the proportion of the simulation

results that meet the acceptance criteria to the total number

of simulations, the QR is above 90%.



Table 2 | Values of evaluation measures from 1981 to 2008

Month R MAPE (%) NSE QR (%)

1 0.90 39.14 0.71 92.9

2 0.97 45.99 0.80 82.1

3 0.94 19.28 0.80 89.3

4 0.95 18.28 0.80 89.3

5 0.96 15.06 0.78 92.9

6 0.95 32.64 0.82 89.3

7 0.96 16.36 0.71 89.3

8 0.95 22.54 0.76 92.9

9 0.92 21.66 0.72 96.4

10 0.91 24.98 0.65 96.4

11 0.96 57.84 0.83 96.4

12 0.97 80.72 0.80 89.3
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In addition, the RE is summarized, and a 20% variation

in amplitude in multiple years is taken as the permissible

error, deemed the accuracy assessment (AA), from 2009 to

2011. Values of RE and AA in the verification period are

summarized in Table 3.

Based on the accuracy of the statistical results in the

three-year validation period, 9 of the 12 months in 2009

meet the precision requirements. Additionally, 9 of the 12
Table 3 | Values of RE and AA from 2009 to 2011

Month

2009 2010 2011

RE (%) AA RE (%) AA RE (%) AA

1 204.14 Y 1082.01 N 209.14 N

2 �21.41 Y 35.37 Y 3.04 Y

3 �26.44 Y �12.68 Y 32.53 Y

4 �6.18 Y �6.59 Y 74.24 Y

5 �31.34 N �4.41 Y �26.79 N

6 15.24 Y �17.87 Y �27.45 Y

7 3.01 Y �28.60 N �16.41 Y

8 �28.84 N �6.06 Y �5.58 Y

9 �12.69 Y �10.85 Y �38.24 N

10 33.62 Y 21.09 Y �1.60 Y

11 �43.41 N 172.80 N �46.41 N

12 3.67 Y �7.24 Y 50.99 Y

Note: If the absolute error between the simulated and observed values is less than the per-

missible error, AA is labelled as ‘Y’. If the absolute error between the simulated and

observed values is greater than the permissible error, AA is labelled as ‘N’.

om http://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
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months in 2010 and 8 of the 12 months in 2011 meet the

accuracy requirements. Notably, the values of RE in January

are relatively large in these three years. However, the overall

accuracy is satisfactory.

Monthly streamflow forecasting using SWAT

In streamflow forecasting, numerous factors affect stream-

flow generation and routing. The calibration parameters

should be related to surface water, soil water, groundwater

and the flow process. Considering the above factors and

combined with the parameter sensitivity analysis module

of the model, the parameter sensitivity order is obtained

through the LH-OAT sensitivity analysis method (Griensven

et al. ). The SUFI-2 algorithm in SWAT-CUP is utilized

to calibrate and verify the parameters. The calibration

period is from 1995 to 2008, and the validation period is

from 2010 to 2011. The initial range of parameter cali-

bration and the final calibration results are shown in

Table 4.

Table 4 also shows the parameter sensitivity order. The

surface runoff lag time coefficient (SURLAG) is the most

sensitive parameter, as shown in Table 4. In fact,

SURLAG is related to variations in basin parameters. The

SCS runoff curve number (CN2) is another notably sensitive

parameter. It is a direct index of variation in infiltration. In

addition, other parameters are also considered sensitive

based on evaluation. These parameters include the baseflow

factor (ALPHA_BF), threshold water depth in the shallow

aquifer for return flow to occur (GWQMN), groundwater

delay time (GW_DELAY), groundwater revap coefficient

(GW_REVAP) and threshold water depth in the shallow

aquifer for revap (REVAPMN), which are related to vari-

ations in groundwater parameters. Additionally, the soil

saturated hydraulic conductivity (SOL_K), volume weight

of the soil (SOL_BD) and available water content of the

soil (SOL_AWC) are related to changes in soil parameters.

The calibration results exhibit good agreement with the

observed monthly streamflow (Figure 8), and most RE

values are small. However, RE is generally high in January

and February. Figure 8 also shows a comparison between

observed and simulated monthly streamflow in the vali-

dation period. It suggests that the simulated streamflow is

generally larger than the observations.



Table 4 | Results of parameter calibration using the SWAT model

Parameter Description Optimal value Range Rank

SURLAG Surface runoff lag time coefficient 18.132 (0.05, 24) 1

CN2 SCS runoff curve number 0.155 (� 0.2, 0.2) 2

SOL_K Soil saturated hydraulic conductivity 0.648 (� 0.8, 0.8) 3

SOL_BD Volume weight of soil 0.521 (� 0.5, 0.6) 4

SOL_AWC Available water content of soil �0.131 (� 0.2, 0.4) 5

GW_DELAY Groundwater delay time (days) 115.833 (0, 500) 6

ALPHA_BF Baseflow factor (days) 0.598 (0, 1) 7

GWQMN Threshold water depth in the shallow aquifer for return flow to occur (mm) 925.000 (0, 5000) 8

GW_REVAP Groundwater revap. coefficient 0.050 (0.02, 0.2) 9

REVAPMN Threshold water depth in the shallow aquifer for revap. (mm) 745.000 (0, 1000) 10

ALPHA_BNK Bank regulation base flow factor 0.622 (0, 1) 11

CH_N2 Manning coefficient of the main channel 0.155 (0, 0.3) 12

CH_K2 Channel effective hydraulic conductivity (mm/h) 0.170 (� 0.01, 0.3) 13

CH_N1 Manning coefficient of branches 8.057 (0.01, 30) 14

CH_K1 Effective permeability coefficient of tributary alluvium (mm/h) 214.500 (0, 300) 15

LAT_TTIME Lateral flow time 8.100 (0, 180) 16

CANMX Maximum canopy water storage 19.500 (0, 100) 17

ESCO Soil evaporation compensation factor 0.259 (0.01, 1) 18

EPCO Plant transpiration compensation coefficient 0.480 (0, 1) 19

1523 Z. Liang et al. | Long-term streamflow forecasting using SWAT Hydrology Research | 49.5 | 2018

Downloaded from http
by guest
on 04 December 2023
Statistical analyses of the accuracy of the calibration

period sequence and the accuracy of the validation period

sequence (discussed in the preceding section) are con-

ducted, and the specific results are shown in Table 5.

During the calibration period, the R, MAPE and NSE

values are 0.96, 27.02% and 0.87, respectively. Then, the

values of R, MAPE and NSE slightly decrease to 0.94,

31.02% and 0.83, respectively, in the validation period.

These statistics indicate that the model accuracy in the cali-

bration period is slightly superior to the accuracy in the
Figure 8 | Observed and simulated monthly streamflow in the calibration period and validatio

://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
validation period. Overall, the model provided acceptable

accuracy in both the calibration and verification periods,

with R values greater than 0.9 and NSE values above 0.8.

Comparison of the hybrid model and SAR (P)

First, we set the monthly precipitation data predicted by the

RF model in 2012 as X
⇀

¼ (x1, x2, . . . , x12) and the histori-

cally observed monthly precipitation data series as

Y
⇀

i ¼ (yi,1, yi,2, . . . , yi,12). Then, we calculate the Euclidean
n period.



Table 5 | Values of the evaluation measures in the calibration period and validation period

Accuracy indexes

Calibration period Validation period

R MAPE (%) NSE R MAPE (%) NSE

0.96 27.02 0.87 0.94 31.02 0.83

Table 6 | Values of evaluation indicators for the hybrid model and SAR (P) model

R MAPE (%) NSE

Hybrid model 0.97 26.49 0.94

SAR (P) 0.78 74.44 0.51
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distance Dik k. The monthly precipitation series in 1972 are

selected by calculating the minimum distance min Dik k
between the predicted monthly precipitation vectors and

historically observed monthly precipitation vectors. The

values in 1972 are the most similar to those predicted in

2012. Next, the ratios of observed monthly precipitation in

1972 to predicted precipitation in 2012 are calculated.

According to the ratios of each month, the daily rainfall at

each precipitation station in 1972 is downscaled to obtain

the predicted daily rainfall at seven meteorological stations

(Hanzhong, Foping, Shangzhou, Zhenan, Xishan, Shiquan

and Ankang) required in the SWAT model in 2012. Mean-

while, other meteorological data in 1972 are used as the

input data in the 2012 SWAT model to calculate the daily

evaporation capacity. Finally, the results of the hybrid

model are compared with those of the widely used SAR

model in the study basin.

The simulated and observed precipitation and values of

R, MAPE and NSE are obtained and are shown in Figure 9.

The results show that there is no significant difference

between the simulated and observed precipitation. In

addition, the values of R, MAPE and NSE are 0.98,

55.28% and 0.92, respectively, which indicates that the pre-

cipitation forecasts are accurate.
Figure 9 | Simulated and observed monthly precipitation in 2012.
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Table 6 illustrates that the hybrid model provides better

precision than, and generally outperforms, the SAR (P)

model. The R and NSE values of the hybrid model are

0.97 and 0.94, respectively, while the corresponding values

for the SAR (P) model are 0.19 and 0.43, respectively. Mean-

while, MAPE is 26.49% and 47.95% for the hybrid model

and SAR (P) model, respectively.

The comparison suggests that the hybrid model provides

a better fit of monthly streamflow based on the observations

compared to that of the SAR (P) model, except in the first two

months (January and February). In these two months, the

SAR (P) model has higher RE values of 11.65% and

44.64%, respectively, while the corresponding values for the

hybrid model are �39.3% and �51.51%. However, the accu-

racy of SAR (P) in the next ten months decreases because it

uses the rolling forecast method with the extended forecast

lead time. Due to the lack of observed data, the SAR (P)

model predicts streamflow values using the P-month data

prior to the forecasting month; thus, bias gradually accumu-

lates and progressively decreases the forecasting accuracy.

Moreover, Table 7 shows that, based on the 20% cri-

terion of qualified values, 9 of 12 months meet the

requirements, and the QR of the hybrid model reaches

75%. However, the QR of the SAR (P) model is only 50%.



Table 7 | Values of runoff and AA for the hybrid model and SAR (P) model in 2012

Month

Hybrid model SAR (P)
Streamflow (m³/s)

AA

Streamflow (m³/s)

AAObserved Simulated Observed Simulated

1 515 313 N 515 575 Y

2 477 231 N 477 690 N

3 572 459 Y 572 1,160 N

4 469 330 Y 469 1,050 N

5 1,119 925 Y 1,119 1,840 N

6 599 547 Y 599 1,260 N

7 2,750 2,357 Y 2,750 1,900 Y

8 1,508 1,841 Y 1,508 925 Y

9 2,802 2,840 Y 2,802 2,000 Y

10 560 738 Y 560 1,290 Y

11 369 467 Y 369 710 Y

12 384 171 N 384 826 N
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CONCLUSION

In this study, a hybrid model that combined SWAT and RF

precipitation generator is developed to forecast long-term

streamflow. First, the RF model is used to forecast monthly

rainfall. Then, the SWAT model is constructed to forecast

monthly streamflow in the Danjiangkou Reservoir basin.

According to the hydrological similarity principle, the pre-

cipitation data generated by the RF model are downscaled

and used as input data in the SWAT model to forecast

monthly streamflow in 2012. These forecasted results are

then compared to those of the SAR (P) model. The specific

findings of this study are as follows:

1. An RF model is constructed based on observed monthly

precipitation series from 1981 to 2008 and 15 predictors,

which are selected using the correlation coefficient

method. The RF model possesses a satisfactory capability

in forecasting monthly mean rainfall in the Danjiangkou

River basin. For example, during the calibration period,

the values of R in 12 months are all above 0.9, and the

NSE values are generally greater than 0.7. Thus, these

values meet the standard accuracy requirements. For

the entire forecasting sequence, the QR is above 90%.

In addition, the QR reaches 70% in the verification
://iwaponline.com/hr/article-pdf/49/5/1513/483299/nh0491513.pdf
period. The results show that the forecasting model of

monthly mean rainfall is suitable for studies in the

chosen river basin.

2. A SWAT model is constructed to forecast monthly

streamflow. The SUFI-2 algorithm is applied in the

SWAT-CUP software to calibrate the SWAT model.

According to the results of model calibration and vali-

dation, the values of R, MAPE and NSE are 0.96,

27.02% and 0.87, respectively, in the calibration period

and 0.94, 31.02% and 0.83 in the validation period. In

general, the SWAT model exhibits good performance in

forecasting monthly streamflow.

3. The RF model is used to forecast monthly precipitation in

2012, and the predicted values are compared with observa-

tional data to determine the accuracy of the forecasting

model. Then, the Euclidean distance between simulated

monthly mean rainfall and observed rainfall is calculated

to select a typical precipitation year based on a hydrologi-

cal similarity principle analysis. Daily precipitation data

from seven meteorological stations are obtained by scaling

using a proportionality coefficient. These data are used as

input data in the SWAT model to forecast monthly mean

runoff in 2012. The hybrid model obtains R, MAPE and

NSE values of 0.97, 26.49% and 0.94, respectively, and

the QR reaches 75%. Comparatively, R, MAPE and NSE

values of 0.78, 74.44% and 0.51 are obtained using the

SAR model. The results of the comparison and analysis

demonstrate that the hybrid model is more accurate and

applicable in the Danjiangkou basin.

4. By analysing important meteorological factors, we fore-

cast monthly rainfall and monthly mean runoff in

combination with a distributed hydrological model.

Accurate, reliable and stable precipitation forecasting is

the key to the model, which has a direct bearing on the

accuracy of runoff forecasting. Therefore, methods of

improving the accuracy of precipitation forecasting

must be investigated.
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