Complementary relationship estimation of actual evapotranspiration in extreme cold and arid areas: a case study of the Hotan River Basin, northwest China
Xiaolong Zhang, Bing Shen, Lingmei Huang, Changsen Zhao, Jiqiang Lyu and Quan Quan

ABSTRACT
Application of complementary relationship (CR) approaches using only routine meteorological data is a very convenient method of estimating actual evapotranspiration (ET_a). Reanalysis datasets and remote sensing data provide good tools to overcome the difficulties in obtaining observation data. This study of the Hotan River Basin (HRB) in northwest China serves as a prime example for estimation of ET_a during 2006–2014 by using the modified generalized CR. Based on comparison and analysis, the maximum potential evaporation calculated by the Penman-based equation was adopted. The estimated ET_a rates were verified using a regional water balance method at annual time scales because of the limited available data. The calibration parameter σ was calibrated based on the elevation and underlying surface types. The mean annual ET_a ranged from 2.3 mm to 800 mm during 2006–2014. ET_a rates in the plains regions were higher than those in the mountainous regions. Most of ET_a was concentrated in the months of May to September. A water deficit occurred in the middle and lower regions, while a water surplus occurred in the upper regions. This study not only provided a new concept for calibration, but also a potential solution for different underlying surfaces and time scales.

Key words | complementary relationship, evapotranspiration, extreme cold and arid areas, northwest China, water budget

INTRODUCTION
Actual evapotranspiration (ET_a) is a key variable in the energy, water, and carbon cycles of terrestrial ecosystems (Vinukollu et al. 2011; Ma et al. 2015a; Crago et al. 2016; Aminzadeh & Or 2017; Szilagyi et al. 2017). Accurate estimates of ET_a are needed to address a wide range of problems such as global climate change, water balance computation, agricultural management, and hydrological modeling (Xu & Singh 2005; Crago et al. 2016). Evapotranspiration is the major water consumption pathway in the water budget, accounting for more than 60% of annual precipitation on a global scale (Oki & Kanae 2006) and more than 90% in extreme arid areas (Glenn et al. 2007). ET_a exhibits strong heterogeneity because of the wide spatial variability of precipitation, ground conditions, and vegetation types (Mallick et al. 2015). The harsh natural conditions in extreme cold and arid areas make it difficult to obtain sufficient hydrological and meteorological data in situ. Despite the urgent need for it, estimating ET_a rates and analyzing the temporal and spatial distribution features of ET_a with limited observation data in extremely cold and arid basins is a tremendous challenge.

Although ET_a can be directly observed by the eddy covariance method, weighing lysimeter method, energy balance Bowen ratio method, or the scintillometer method...
(Wang & Dickinson 2012; Ma et al. 2015b), these all require sufficient manpower, materials, and financial resources. Several approaches to the estimation of ET_a have been developed to date, some of which were derived from the land surface energy balance equation using remotely sensed surface temperatures (e.g., Bastiaanssen et al. 1998; Su 2002; Mariotto et al. 2011), while others, such as soil-vegetation-atmosphere transfer models, are physically based methods (e.g., Haverd et al. 2011) and some are derived from the Penman (1948) or Priestley & Taylor (1972) equations (e.g., Monteith 1965; Allen et al. 1998; Monteith & Unsworth 2013). The complementary relationship (CR) between ET_a and potential evaporation (ET_p) was first proposed by Bouchet (1965). Several models based on the CR have been suggested during the past several decades, such as the advection-aridity (AA) model developed by Brutsaert & Stricker (1979), the complementary relationship areal evapotranspiration (CRAE) model of Morton (1985), the Granger model described by Granger & Gray (1989), as well as some nonlinear normalized CR models (Han et al. 2012, 2014; Brutsaert 2015; Crago et al. 2016; Szilagyi et al. 2016, 2017). The CR models are intellectually appealing since they only use routine meteorological data and bypass detailed soil moisture, land cover type, and terrain and vegetation information (Xu & Singh 2005; Ma et al. 2015b; Szilagyi et al. 2016). The CR approaches have been widely applied over different underlying conditions, spatial scales, and temporal scales (e.g., Xu & Singh 2005; Huntington et al. 2011; Wang et al. 2011; Han et al. 2012, 2014; Crago & Qualls 2013; Mallick et al. 2015; Hobbins et al. 2016; McEvoy et al. 2016). However, one criticism of the CR is the lack of definitive derivation and physical constraints (Crago et al. 2016; Szilagyi et al. 2016), although some studies have attempted to rectify this (Szilagyi 2007; Han et al. 2012, 2014; Brutsaert 2015; Aminzadeh et al. 2016; Crago et al. 2016; Szilagyi et al. 2016, 2017). In addition, there is a strong argument between symmetric and asymmetric CR under different settings (Szilagyi 2007; Jaksa et al. 2015; Ma et al. 2015b; Crago et al. 2016). Han et al. (2012) proposed boundary conditions (BCs) in the CR formulation and a new nonlinear function satisfying these BCs. Through comparison of the nonlinear CR developed by Han et al. (2012), the CRAE, and the Penman–Monteith approaches, Ma et al. (2015b) suggested that the nonlinear CR performed well with limited observation data for local calibration of the model parameter values. Moreover, they found that this CR model had an obvious advantage in both theory and practice in that it did not require users to select a symmetric or asymmetric CR relationship. Brutsaert (2015) reformulated the CR as a general polynomial based on strictly physical considerations. Szilagyi et al. (2016) compared the original version of the generalized CR of Brutsaert (2015) with a revised version in which the BCs–(ii) of Brutsaert (2015) was replaced. Furthermore, Crago et al. (2016) elaborated why these BCs–(ii) needed to be replaced, and introduced a new concept, the maximum ET_p (denoted by $E_{p_{\max}}$ in the literature), to normalize ET_p as x_{\min}. They also proposed a new version of the CR based on rescaling, which not only reduced scatter of ET_a estimates, but led to formation of a proposed self-adjusting CR model. Szilagyi et al. (2017) redefined the maximum ET_p as an invariable result of adiabatic drying under near-neutral atmospheric conditions (denoted by $E_{p_{\max}}$ in the literature). $E_{p_{\max}}$ was calculated by the mass-transfer-based method, while $E_{p_{\max}}$ was calculated by the Penman-based equation (Ma & Zhang 2017). How to define the maximum ET_p could be the key to the application of the modified Brutsaert (2015) generalized CR model by Crago et al. (2016) and Szilagyi et al. (2017).

In recent years, the rapid development of satellite remote sensing has led to remote sensing data providing great convenience for spatio-temporal samplings (Singh et al. 2008; Liu et al. 2009). However, reanalysis-based methods (Mesinger et al. 2006; Yang et al. 2010; Lavers et al. 2012) have unique advantages, such as less sensitivity to cloud cover, longer temporal coverage, and better representation of actual conditions for spatially distributed data (Szilagyi et al. 2017). The China Meteorological Forcing Dataset is a reanalysis dataset of surface meteorological and environmental factors developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. Using Princeton reanalysis forcing data, Global Land Data Assimilation System data, Global Energy and Water Exchanges-Surface Radiation Budget data, and Tropical Rainfall Measuring Mission data (3B42) as the background, this dataset also combines China Meteorological Administration station data from 1979 to 2015. The spatial resolution of this dataset is 0.1° and its temporal resolution is 3 h (He & Yang 2011).
The Hotan River Basin (HRB) is located in the hinterland of the Taklimakan Desert of northwest China (the largest desert in China) and at the north side of the Kunlun Mountains (part of the Tibetan Plateau). There are limited observation data available for extreme cold and arid areas of the river basin. In this study, the modified generalized CR framework of Crago et al. (2016), with the maximum ET_p defined by Crago et al. (2016) and Szilagyi et al. (2017), was applied to estimate the daily ET_a rates in the HRB from 2006 to 2013. The China Meteorological Forcing Dataset was used to calculate the CR components and analyze regional water balance, while Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to calculate the net solar radiation (R_n). The daily precipitation data and monthly runoff data were collected to calculate a regional water budget. The objectives of this study were: (i) to analyze the improvement effects of different modified methods and select an appropriate definition of the maximum ET_p according to conditions in the study basin; (ii) to calibrate the local parameter values of the Priestley–Taylor coefficient a and the adjustable parameter σ to estimate daily ET_a rates and validate the annual ET_a by using a regional water balance; and (iii) to evaluate the temporal and spatial distribution variations of ET_a and the water budget in the HRB during 2006–2014.

MODEL AND PARAMETERIZATION

Background of the CR

The CR theory proposed by Bouchet (1965) can be described as follows (Brutsaert & Parlane 1998):

$$ET_p - ET_w = b(ET_w - ET_a),$$

where ET_w is the wet-environment evaporation, and b is a proportionality parameter. The CR postulates that opposite changes exist between ET_a and ET_p, meaning that when soil moisture decreases and the available energy remains constant, the energy would have been consumed by ET_w, while when soil moisture is saturated, $ET_a = ET_p = ET_w$. Note that the symmetric CR postulated by Bouchet (1965) implies b equals unity (Aminzadeh & Or 2017). The AA model or modified AA models with $b = 1$ have achieved good performance (Xu & Singh 2005; Hobbins et al. 2001; Ma et al. 2015b; Szilagyi 2015). Nevertheless, under many conditions reported in the literature, b is considerably larger than 1 (Aminzadeh & Or 2017), and is even thought to be variable (Granger & Gray 1989; Szilagyi 2007; Han et al. 2012).

In the most widely used AA model, ET_p should be estimated using the Penman (1948) equation and ET_w should be estimated using the Priestley–Taylor (1972) equations:

$$ET_p = \frac{\Delta \left(R_n - G\right)}{\Delta + \gamma} + \frac{\gamma f(U)(e_s - e_a)},$$

$$ET_w = \alpha \frac{\Delta \left(R_n - G\right)}{\Delta + \gamma},$$

where Δ is the slope of the saturation vapor pressure curve at the air temperature (kPa °C$^{-1}$); γ is the psychometric constant (kPa °C$^{-1}$); R_n is the net radiation (MJ m$^{-2}$ day$^{-1}$); G is the soil heat flux (MJ m$^{-2}$ day$^{-1}$); λ is the latent heat of vaporization (MJ kg$^{-1}$); e_s is the saturation vapor pressure at air temperature (kPa); e_a is the actual vapor pressure (kPa); (e_s, e_a) is the saturation vapor pressure deficit (kPa); and α is the coefficient with a default value of approximately 1.26, which depends mainly on underlying surface conditions (Brutsaert 2015). In the present study, the values of α were recalculated based on underlying surface conditions. Additionally, $f(U)$ is a function of the mean wind speed at a reference level (mm day$^{-1}$ kPa^{-1}), which is either theoretically or empirically derived. The Penman’s (1948) empirical linear $f(U)$ is commonly used (Brutsaert 1982; Qualls & Gultekin 1997; Xu & Singh 2005):

$$f(U) = 2.6(1 + 0.54U_2),$$

where U_2 is the wind speed (m s$^{-1}$) at a height of 2 m.

As demonstrated by Hobbins et al. (2001) and Ma et al. (2015b), Equation (4) should be replaced with a more appropriate method to accurately estimate ET_p. At daily or longer time scales, atmospheric stability is generally considered to be neutral (Ma et al. 2015b). Brutsaert & Stricker (1979) suggested that the $f(U)$ should be derived through the
Monin–Obukhov similarity theory as follows:

\[f_M(U) = \frac{0.622k^2\rho U_2}{P_a \ln(z - d/\zeta_{om}) \ln(z - d/\zeta_{om})t}, \]

where \(t = 86,400 \text{ s} \); \(k = 0.4 \) is the von Karman constant; \(\rho \) is the density of air (kg m\(^{-3}\)); \(P_a \) is the air pressure (kPa); \(z \) is the measurement height of wind speed and humidity (2 m in this study); \(d \) is the displacement height (m); and \(\zeta_{om} \) and \(d/\zeta_{om} \) are the roughness lengths of momentum and water vapor (m), respectively. \(\zeta_{om} \) and \(d \) are correlated with the effective vegetation height, \(h \) (Guo & Shen 2015). For trees, \(\zeta_{om} = 0.075h \) and \(d = 0.78h \) (Guo & Shen 2015); for cropland and grass, \(\zeta_{om} = 0.123h \) and \(d = 0.67h \) (Allen et al. 1998); for urban and barren land, \(\zeta_{om} = 0.004m \) (Wang et al. 1988; Han et al. 2012). Finally, \(\zeta_{om} \) can typically be expressed as \(\zeta_{om} = 0.14 \zeta_{om} \) (Ryu et al. 2008; Ma et al. 2015b).

Szilagyi & Jozsa (2008) suggested that \(\Delta \) in Equation (3) should be evaluated at the wet environment air temperature (\(T_{ws} \)) rather than air temperature (\(T_a \)). This modification is necessary to estimate \(T_{ws} \) in arid or semiarid regions because of the large difference between \(T_w \) and \(T_a \) (Huntington et al. 2011; Szilagyi 2014). \(T_w \) is generally unknown for water-limited conditions, but can be approximated by the wet environment surface temperature (\(T_{ws} \)) (Huntington et al. 2011). Szilagyi & Jozsa (2008) recommended an implicit equation for \(\Delta \) based on the Bowen ratio (\(B_o \)) for a small wet patch:

\[B_o = \frac{(R_n - G)/(\lambda - \lambda ET_p))}{ET_p} \approx \frac{T_{ws} - T_a}{e_0(T_{ws}) - e_a}, \]

where \(e_0 \) (\(T_{ws} \)) is the saturated vapor pressure at \(T_{ws} \) (K). \(T_{ws} \) can be solved through iterations. Normally, for a small wet surface, \(T_{ws} \) is typically lower than \(T_a \); thus, \(T_{ws} \) calculated by Equation (6) can be taken for \(T_w \). If \(T_{ws} > T_a \), \(T_a \) should be replaced by \(T_{ws} \) (Huntington et al. 2011; Szilagyi 2014; Ma et al. 2015b).

Actual vapor pressure (\(e_a \)) has a good correlation with dew point temperature, relative humidity, specific humidity, dry bulb temperature, or wet bulb temperature. \(e_a \) can be approximated as follows:

\[e_a = \frac{qP_a}{0.622}, \]

where \(q \) is the specific humidity (kg kg\(^{-1}\)).

Utilizing the Surface Energy Balance System method of Su (2002), \(R_n \) was calculated using remote sensing data as an instantaneous value. The daily \(R_n \) values were estimated by implementing the sinusoidal model given by Bisht et al. (2005). The other climate-related parameters, \(G \), \(e_s \), \(\lambda \), \(\Delta \), \(\rho_a \), \(c_p \), and \(y \), were calculated using the method recommended by the Food and Agriculture Organization (Allen et al. 1998).

Generalized CR and theoretical development

The dimensionless form of the AA model with \(ET_p \) is formed from combining Equation (1) with Equations (2) and (3):

\[\frac{ET_a}{ET_p} = \left(1 + \frac{1}{b} \right) \frac{ET_w - 1}{ET_p} \]

Equation (8) generates the dimensionless variables \(y = ET_a/ET_p \) and \(x = ET_w/ET_p \). Values of \(y \) and \(x \) are between 0 and 1. Equation (8) becomes

\[y = \left(1 + \frac{1}{b} \right) x - \frac{1}{b}. \]

Brutsaert (2015) imposed four BCs by setting physical constraints to develop a fourth-order polynomial relationship between \(y \) and \(x \) that was inspired by Han et al. (2012). The four BCs are as follows: (i) \(y = 1 \) at \(x = 1 \); (ii) \(y = 0 \) at \(x = 0 \); (iii) \(dy/dx = 1 \) at \(x = 1 \); and (iv) \(dy/dx = 0 \) at \(x = 0 \). However, Szilagyi et al. (2015) recommended that BCs-ii should be replaced by \(y = 0 \) at \(x = x_{min} \). To calculate \(x_{min} \), Crago et al. (2016) introduced the maximum \(ET_p \) (hereafter \(ET_{pmax} \)) and recommended that \(ET_{pmax} \) be obtained from a small wet surface according to the aerodynamic mass transfer equation, denoted by \(ET_{pds} \) in the present study:

\[ET_{pds} = \frac{q*(T_{ws}) - 0}[k^2\rho U_2]{\ln((x - d)/(\zeta_{om})) \ln((x - d)/(\zeta_{om}))t}, \]

where \(q*(T_{ws}) \) refers to saturated specific humidity at \(T_{ws} \). The specific humidity, \(q = 0 \) at height \(z \). In the present study, \(z = 2 \) m. Substituting Equation (3) into Equation (10), one obtains the following:

\[ET_{pds} = f_M(U)e^*(T_{ws}), \]

where \(e^*(T_{ws}) \) is the saturation vapor pressure at \(T_{ws} \).
As an alternative, $ET_{p_{\text{max}}}$ could also be obtained from
the Penman equation with $e_a = 0$, and the temperature for a
dry surface (denoted by T_{dry}), denoted by $ET_{p_{\text{dry}}}$ in the pre-
sent study, can be obtained according to the definition by
Szilagyi et al. (2017):

$$ET_{p_{\text{dry}}} = \frac{\Delta(T_{\text{dry}})}{\Delta(T_{\text{dry}}) + \gamma} \frac{Rn}{\lambda} + \frac{\gamma}{\Delta(T_{\text{dry}}) + \gamma} f_{m}(U)e^\gamma(T_{\text{dry}}),$$ \hspace{1cm} (12)

where $\Delta(T_{\text{dry}})$ is the slope of the saturation vapor pressure
curve at T_{dry}, and T_{dry} is defined for adiabatic changes as
$T(e_a = 0) = T_{\text{dry}}$. T_{dry} is described in more detail by Szilagyi
(2014) and Szilagyi et al. (2017).

Once $ET_{p_{\text{max}}}$ has been determined by employing
Equation (11) or Equation (12), x_{min} can be obtained using
the formula given by Crago et al. (2016):

$$x_{\text{min}} = \frac{ET_{w}}{ET_{p_{\text{max}}}}.$$ \hspace{1cm} (13)

Crago et al. (2016) suggested that $x = x_{\text{min}}$ is the lower
boundary of the CR, so the CR could be formulated by
rescaling x:

$$X = \frac{x - x_{\text{min}}}{1 - x_{\text{min}}},$$ \hspace{1cm} (14)

Considering the special geographical situation, such as
the significant elevation change or the different underlying
conditions, some flexibility in CR formulations may be
needed (Crago et al. 2016). As recommended by Crago
et al. (2016), a general polynomial function can be sought
in the form of

$$y = a_0 + a_1 X + a_2 X^2 + a_3 X^3.$$ \hspace{1cm} (15)

We might specify four BCs inspired by Brutsaert’s (2015):
(i) $y = 1$ at $X = 1$; (ii) $y = 0$ at $X = 0$; (iii) $dy/dX = 1$ at $X = 1$;
(iv) $dy/dX = \sigma$ at $X = 0$. Equation (15) becomes

$$y = \sigma X + (2 - 2\sigma)X^2 + (\sigma - 1)X^3$$ \hspace{1cm} (16)

containing only one adjustable parameter σ. When $\sigma = 1$,
Equation (16) reduces to $y = X$ as used by Crago et al.

(2016). When $\sigma = 0$, Equation (16) reduces to $y = 2X^2 - X^3$
as used by Szilagyi et al. (2017).

STUDY AREA AND DATA

Study area

The HRB is located in northwest China (77.40°E–81.59°E,
54.84°N–40.44°N), covering an area of 88,753 km2 (draining
to the Xiaota hydrological station) (Figure 1). The HRB is
one of the main headwaters of the Tarim River, which is
the largest inland river in China. The altitude of the HRB
varies between 1,014 m and 6,858 m above sea level (asl)
(Figure 1). The source of the Hotan River is located at the
north side of the Kunlun Mountains, and the lower reaches
pass through the hinterland of the Taklimakan Desert. The
mountainous regions (above 2,000 m asl) are covered with
ice and snow, alpine grasslands, and bare rock (Figure 2),
and are characterized by a frigid arid climate (Zheng et al.
2013). The plains regions (below 2,000 m asl) are mainly cov-
ered with croplands, desert steppes, and desert (Figure 2).
The oasis-desert systems are characterized by a warm tem-
perate arid climate (Zheng et al. 2013). Because of the
colossal irrigation system in the HRB, drainage collects
downstream of the irrigated area, where an oasis-desert tran-
sition area is formed. The Kalakashi River and the
Yulongkashi River are two branches of the Hotan River
that cross the Hotan oasis. There are only two meteorologi-
cal stations in the Hotan oases and five hydrological stations
on the Hotan River (Figure 1). All of these stations are at less
than 2,000 m asl, and there are no stations in the mountain-
ous regions or desert regions of the HRB. Two mountain-
pass hydrological stations, Wuluwati and Tonguziluoke,
are at around 2,000 m asl. The Aigeliya and Tuzhiluke
hydrological stations are at the convergence of the two
branches. The Xiaota hydrological station is at 319 km
downstream of the convergence, which is the single basin
export to the Tarim River (Zhao et al. 2009; Lyu et al. 2015).

Data description

In the present study, 0.1° grid-based meteorological data of
the China Meteorological Forcing Dataset in the HRB

Downloaded from http://iwaponline.com/hr/article-pdf/49/5/1540/483510/in0491540.pdf by guest
during 2006–2014 were used, including mean daily air temperature, mean specific humidity, mean wind speed, precipitation, and 3-hourly mean air temperature. As mentioned in the Introduction, the China Meteorological Forcing Dataset was produced by merging a variety of data sources (He & Yang 2014). This study used 3-hourly mean temperature from this dataset to facilitate the preparation of daily maximum and minimum temperatures. Note that the wind speed in this dataset was at a height of 10 m \(U_{10} \); therefore, \(U_{10} \) values were transformed to \(U_2 \) values via \(U_2 = 0.748 U_{10} \) (Allen et al. 1998). We also used MODIS data at a spatial resolution of 1 km, including MOD11A2 (emissivity, land surface temperature), MCD43B3 (albedo), MCD15A2 (leaf area index), and MCD12Q1 (land cover type). Additionally, digital elevation model (DEM) data of approximately 90 m resolution were collected. The forcing datasets and DEM data were used with the cubic convolution resampling technique to attain the 1 km spatial resolution matching the remotely sensed data. MODIS data collected at 8-day time steps was linearly interpolated to obtain daily values. Spatio-temporal gap filling of missing data during cloudy periods was accomplished through compositing time series data (Cleugh et al. 2007). Moreover, the monthly runoff data from the five hydrological stations were collected to analyze regional water balance.

RESULTS AND ANALYSES

Testing different versions of key parameters

In the above description, \(f_P(U) \) was replaced by \(f_M(U) \), and \(\Delta \) in Equation (3) was evaluated at \(T_w \) rather than at \(T_a \). In this section, the improvement effects of different modified methods were analyzed. In addition, the two definitions of \(ET_{pmax} \) of Crago et al. (2016) and Szilagyi et al. (2017)
The mean values of difference (Δ) was smaller than the mean value of APD between ET$_{p}$ and ET$_{w}$ (denoted by MAE (ET$_{p}$ - ET$_{w}$)), and the MAE between ET$_{rad}$ derived at T$_a$ and that derived at T$_w$ (denoted by MAE (ET$_{rad}$)) can be seen in Figure 4(c) and 4(d). The values of MAE (T$_a$ - T$_w$) in the plains regions were larger than those in the mountainous regions, while those in oasis-desert transition regions were larger than those values in desert and/or oasis regions. The spatial distribution of MAE (ET$_{rad}$) was similar to the distribution of MAE (T$_a$ - T$_w$). The correction of T$_w$ to the estimate of ET$_{rad}$ had a relatively small influence, with the maximum MAE (ET$_{rad}$) value of 32.87 mm (about 3.5% of the ET$_{rad}$ derived at T$_a$).

Figure 4(a) and 4(b) display the spatial distribution of the daily mean T$_a$ and the daily mean T$_w$, respectively. The spatial distribution of the mean absolute error (MAE) between T$_a$ and T$_w$ (denoted by MAE (T$_a$ - T$_w$)), and the MAE between ET$_{rad}$ derived at T$_a$ and that derived at T$_w$ (denoted by MAE (ET$_{rad}$)) can be seen in Figure 4(c) and 4(d). The values of MAE (T$_a$ - T$_w$) in the plains regions were larger than those in the mountainous regions, while those in oasis-desert transition regions were larger than those values in desert and/or oasis regions. The spatial distribution of MAE (ET$_{rad}$) was similar to the distribution of MAE (T$_a$ - T$_w$). The correction of T$_w$ to the estimate of ET$_{rad}$ had a relatively small influence, with the maximum MAE (ET$_{rad}$) value of 32.87 mm (about 3.5% of the ET$_{rad}$ derived at T$_a$).

Figure 5(a) and 5(b) show the spatial distribution of the annual ET$_{pds}$ estimated from Equation (11) and the annual ET$_{pdry}$ estimated from Equation (12), respectively. Figure 5(c) and 5(d) display the spatial distribution of the difference between ET$_{pds}$ and ET$_{p}$ (denoted by ET$_{pds}$ - ET$_{p}$) and the difference between ET$_{pdry}$ and ET$_{p}$ (denoted by ET$_{pdry}$ - ET$_{p}$), respectively. The values of ET$_{pds}$ - ET$_{p}$ in the plains regions were greater than 0, while those in the mountainous regions were less than 0. These results indicated that ET$_{pds}$ was less than ET$_{p}$ in the mountainous regions. According to the basic assumptions of Crago et al. (2016), ET$_{w}$ ≤ ET$_{p}$ ≤ ET$_{pmax}$, and the ET$_{pmax}$ defined by Crago et al. (2016), i.e., ET$_{pds}$ was not applicable in the study basin, especially in the mountainous regions. However, the values of ET$_{pdry}$ - ET$_{p}$ were greater than 0 in the whole basin, with the minimum value of 170.2 mm yr$^{-1}$ in the mountainous regions and the maximum value of 660.2 mm yr$^{-1}$ near Xiaota station in the plains regions. Therefore, ET$_{pmax}$ defined by Szilagyi et al. (2017), i.e., ET$_{pdry}$, should be adopted in the present study.
Calibration and validation

Priestley & Taylor (1972) and subsequent studies have suggested a value of the Priestley–Taylor coefficient α in Equation (3) near 1.26 with a narrow range (e.g., Eichinger et al. 1996; Crago et al. 2010). Hobbins et al. (2001) obtained a value of $\alpha = 1.3177$ using data from 92 basins of the USA. Brutsaert (2005) suggested that α for saturated

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{Spatial distribution of (a) the daily mean wind function derived from Equation (4) ($f_R(U)$) and (b) the daily mean wind function derived from Equation (5) ($f_M(U)$); (c) the APD between $f_R(U)$ and $f_M(U)$ (denoted by $APD_f(U)$) and (d) the APD between ET_p derived from Equation (4) and that derived from Equation (5) (denoted by APD_{ET_p}) in 2011 as an example.}
\end{figure}
surfaces typically falls between 1.20 and 1.30. Xu & Singh (2005) determined \(\alpha \) values for three study regions at 1.18, 1.04, and 1.00. Yang et al. (2008) obtained an average \(\alpha = 1.17 \) with a range of 0.87–1.48 from 108 basins of China, whereas Gao et al. (2012) suggested \(\alpha \) falls between 1 and 1.23 for nine sub-basins of the Haihe River Basin. Similar seasonal variability for \(\alpha \) in the range of 1.1–1.4 was reported for the Asian monsoon (Yang et al. 2013). Brutsaert (2015) and Ma et al. (2015b) used \(\alpha \) near 1.13. The \(\alpha \) value was also reported to be a function of the water content.

Figure 4 | Spatial distribution of (a) the daily mean air temperature \((T_a) \) and (b) the daily mean wet environment air temperature \((T_{ew}) \); (c) the MAE between \(T_a \) and \(T_{ew} \) (denoted by MAE \(\Delta T_a - T_{ew} \)) and (d) the MAE between \(ET_{rad} \) derived at \(T_a \) and that derived at \(T_{ew} \) (denoted by MAE \(\Delta ET_{rad} \)). The year 2011 is used as an example.
of drying soil surfaces, reaching values as low as 0.25 for relatively dry soil surfaces (Aminzadeh & Or 2014). To accommodate the observed range of α, we assume $1 \leq \alpha \leq 1.32$. Szilagyi et al. (2017) proposed a novel approach to obtain the value of α that applied to a calibration-free formulation of the CR. However, their approach to obtain the value of α is unsuitable in extreme cold and arid basins. Due to the lack of measured data, a value of α cannot be accurately determined. However, the fact that $ET_w \leq ET_p$ can estimate the possible maximum

![Figure 5](http://iwaponline.com/hr/article-pdf/49/5/1540/483510/nh0491540.pdf)
value of α, thus, $1 \leq \alpha \leq 1.07$ for the HRB. We assume that a fixed value of α is applicable in the whole basin, even though we agree with the view that α changes over time and underlying surface. Hence, we assume that $\alpha = 1.07$ for the HRB in the present study. In addition, we assume that $ET_a = 0$ when T_e is less than the dew point temperature.

The adjustable parameter σ in Equation (16) was treated as the only calibration parameter. Note that one can deduce from Equation (16) that ET_a rates increase monotonously as the σ value increases. Because measured data for the HRB in extreme cold and arid areas were limited, the calculated results were not verified at daily and monthly time scales. Therefore, the calibration of σ and the validation of ET_a used the regional water balance method at annual time scales.

ET_a estimated from the water balance equation (ET_{wb}) was used as the reference at annual time scales:

$$ET_{wb} = P - R + \Delta W,$$

where P is the annual precipitation; R is the annual runoff; and ΔW denotes the water storage change, which includes groundwater, glacial water, and soil moisture. ΔW was assumed to be 0 at the annual time scale in the present study because the accurate water storage change data were almost impossible to obtain in the HRB, there was not much groundwater extracted for irrigation, and the change of water storage was small in the calibration period (just one year in the present study). Considering the severe spatio-temporal heterogeneity between precipitation and ET_a, the HRB was divided into upper, middle, and lower regions to calibrate the coefficient σ and verify ET_a rates according to the location of hydrological stations (Figure 1).

The year 2011 was chosen to determine the optimal values of α because it was neither too wet nor too dry, while other years were used as the validation period.

Calibration was conducted as follows. First, the coefficient σ in desert or urban regions of the plains regions was determined since precipitation does not produce runoff and is almost completely evaporated (Ma et al. 2014). Second, the coefficient σ in vegetated areas of the plains regions was determined according to the regional water balance method. Third, the coefficient σ in rock bare regions of the mountainous regions was determined. Considering that the daily maximum temperature was less than 0 °C above 5,000 m asl during most of the year, ET_a rates above 5,000 m asl were quite low. As mentioned above, ET_a rates increased monotonously with increasing σ; therefore, we assumed that the values of σ decreased monotonously with increasing elevation. For conveniently calibrating, elevation of the mountainous regions was divided into three parts, and we assumed that the relationship between σ and elevation was linear in each elevation interval. Note that the relationship between σ and elevation might be actually nonlinear. Finally, the coefficient σ in vegetated areas of the mountainous regions was determined using a method similar to that employed for the rock bare regions. The optimal values of σ used for Equation (16) were found (Table 1) by minimizing the sum of absolute errors (MSAE) between ET_{wb} and ET_a. The optimal values of σ were applied to estimate ET_a in the validation period, and the results are listed in Table 2. Note that Zhao et al. (2009) obtained mean annual evapotranspiration (198.78 mm) from year 1954 to 2003 in middle regions. In this study, the mean annual evapotranspiration in middle regions was 209.2 mm which is very close to the results of Zhao et al. (2009).

<table>
<thead>
<tr>
<th>Elevation (m asl)</th>
<th>ET_a (mm)</th>
<th>P (mm)</th>
<th>σ</th>
<th>ET_a (mm)</th>
<th>P (mm)</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td><1,200</td>
<td>1,287.17</td>
<td>81.56</td>
<td>-3.2</td>
<td>1,239.99</td>
<td>83.09</td>
<td>-7</td>
</tr>
<tr>
<td>1,200-2,000</td>
<td>1,560.45</td>
<td>51.89</td>
<td>0.6</td>
<td>1,343.87</td>
<td>82.04</td>
<td>-4.2</td>
</tr>
<tr>
<td>2,000-3,000</td>
<td>1,278.33</td>
<td>161.3</td>
<td>100 – 50*(Elevation/1,000)</td>
<td>1,258.84</td>
<td>148.99</td>
<td>82 – 44*(Elevation/1,000)</td>
</tr>
<tr>
<td>3,000-4,000</td>
<td>1,256.35</td>
<td>182.85</td>
<td>400 – 150*(Elevation/1,000)</td>
<td>1,168.33</td>
<td>188.92</td>
<td>700 – 250*(Elevation/1,000)</td>
</tr>
<tr>
<td>>4,000</td>
<td>1,156.5</td>
<td>196.94</td>
<td>400 – 150*(Elevation/1,000)</td>
<td>1,006.5</td>
<td>196.15</td>
<td>1,300 – 400*(Elevation/1,000)</td>
</tr>
</tbody>
</table>
In general, the mean annual ET_a estimated using the optimal values of α matched well with the mean annual ET_{wb}, which indicates that the MSAE in the validation period was -12.8 mm yr$^{-1}$. However, this does not necessarily indicate that the annual MSAE was also small. Indeed, there was a certain deviation between the annual ET_a and annual ET_{wb}, with the maximum MSAE value of 143.65 mm in 2010.

Spatial and temporal variations in precipitation, ET_a, and water budget

Figure 6 shows the spatial distribution of annual ET_a, and Figure 7 shows the spatial distribution of mean annual precipitation, ET_a, and $P – ET_a$ difference during 2006–2014 in the HRB. The mean annual precipitation ranged from 46.0 mm to 342.0 mm, while the mean annual ET_a ranged from 2.3 mm to 800 mm. The higher precipitation values were in the mountainous regions, indicating that the mean annual precipitation was higher at high elevation. ET_a rates in the plains regions were higher than those in the mountainous regions, with the highest values being observed in croplands and shrublands along the riverside. Perhaps the irrigation or groundwater plays a key role in this issue. Relatively lower ET_a occurred in ice and snow regions, as well as in barren land of the mountainous regions. The difference ($P – ET_a$) reflects water surplus or deficits (Figure 7(c)). The mean annual $P – ET_a$ difference in the mountainous regions was positive (except in alpine grasslands), while it was negative in the plains regions. These findings indicate that a great deal of precipitation and runoff dissipated in the form of ET_a in the plains regions.

Figure 8 shows the monthly mean P, ET_a, and $P – ET_a$ difference from 2006 to 2014 in the upper, middle, and lower regions. As shown in Figure 8(a), most of the P was concentrated in the months of May to September, accounting for 65% (128 mm) of annual P in the upper regions, 61% (66 mm) in the middle regions, and 70% (61 mm) in the lower regions. As shown in Figure 8(b), the variations in ET_a in different regions were similar, following a single peak normal distribution. Most of ET_a was concentrated in the months of May to September, accounting for 89% of the mean annual ET_a (42 mm) in the upper regions, 76% (159 mm) in the middle regions, and 80% (105 mm) in the lower regions. The inter-annual changes in ET_a in winter months were lower than in summer months. As shown in Figure 8(c), a water deficit occurred in the middle and lower regions, and a water surplus occurred in the upper regions. Because the inter-annual changes in P were relatively large, the inter-annual changes in water budget were relatively large as well. Water deficits occurred during most months throughout the year in the middle regions (except January and February). In the lower regions water

Table 2 | Annual precipitation (P), runoff (R), ET_{wb}, ET_a, and MSAE in the upper, middle, and lower regions during 2006–2014

<table>
<thead>
<tr>
<th>Year</th>
<th>P</th>
<th>R</th>
<th>ET_{wb}</th>
<th>ET_a</th>
<th>P</th>
<th>R</th>
<th>ET_{wb}</th>
<th>ET_a</th>
<th>P</th>
<th>R</th>
<th>ET_{wb}</th>
<th>ET_a</th>
<th>MSAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>183.74</td>
<td>137.44</td>
<td>46.30</td>
<td>46.39</td>
<td>104.95</td>
<td>-104.43</td>
<td>209.38</td>
<td>209.95</td>
<td>82.93</td>
<td>-61.14</td>
<td>144.07</td>
<td>144.80</td>
<td>1.39</td>
</tr>
<tr>
<td>2006</td>
<td>225.59</td>
<td>163.72</td>
<td>48.79</td>
<td>48.79</td>
<td>155.87</td>
<td>-94.42</td>
<td>250.30</td>
<td>233.43</td>
<td>78.54</td>
<td>-58.48</td>
<td>137.01</td>
<td>119.13</td>
<td>-47.83</td>
</tr>
<tr>
<td>2007</td>
<td>156.60</td>
<td>117.01</td>
<td>39.59</td>
<td>34.44</td>
<td>79.89</td>
<td>-98.46</td>
<td>178.36</td>
<td>155.87</td>
<td>59.58</td>
<td>-44.53</td>
<td>104.11</td>
<td>95.30</td>
<td>-38.45</td>
</tr>
<tr>
<td>2008</td>
<td>186.53</td>
<td>121.89</td>
<td>64.44</td>
<td>46.42</td>
<td>83.66</td>
<td>-109.21</td>
<td>192.87</td>
<td>166.52</td>
<td>70.15</td>
<td>-33.60</td>
<td>103.75</td>
<td>121.07</td>
<td>-27.05</td>
</tr>
<tr>
<td>2009</td>
<td>123.17</td>
<td>98.29</td>
<td>24.88</td>
<td>38.71</td>
<td>54.80</td>
<td>-87.39</td>
<td>142.19</td>
<td>141.58</td>
<td>67.85</td>
<td>-33.16</td>
<td>101.02</td>
<td>91.45</td>
<td>3.65</td>
</tr>
<tr>
<td>2010</td>
<td>237.17</td>
<td>182.98</td>
<td>54.19</td>
<td>53.55</td>
<td>202.07</td>
<td>-104.12</td>
<td>306.18</td>
<td>257.54</td>
<td>149.00</td>
<td>-96.30</td>
<td>245.30</td>
<td>156.11</td>
<td>-138.47</td>
</tr>
<tr>
<td>2012</td>
<td>204.86</td>
<td>162.99</td>
<td>41.87</td>
<td>62.14</td>
<td>98.46</td>
<td>178.36</td>
<td>155.87</td>
<td>59.58</td>
<td>-44.53</td>
<td>104.11</td>
<td>95.30</td>
<td>-38.45</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td>247.13</td>
<td>201.91</td>
<td>45.22</td>
<td>46.06</td>
<td>113.08</td>
<td>-126.02</td>
<td>239.10</td>
<td>220.79</td>
<td>114.85</td>
<td>-46.82</td>
<td>161.67</td>
<td>151.49</td>
<td>-27.65</td>
</tr>
<tr>
<td>2014</td>
<td>194.09</td>
<td>134.69</td>
<td>59.40</td>
<td>48.20</td>
<td>82.86</td>
<td>-99.11</td>
<td>181.96</td>
<td>199.86</td>
<td>70.53</td>
<td>-41.16</td>
<td>111.69</td>
<td>135.04</td>
<td>30.05</td>
</tr>
<tr>
<td>Mean</td>
<td>196.87</td>
<td>147.94</td>
<td>48.93</td>
<td>47.25</td>
<td>109.70</td>
<td>-103.43</td>
<td>213.13</td>
<td>209.20</td>
<td>87.32</td>
<td>-51.14</td>
<td>138.45</td>
<td>131.26</td>
<td>-12.8</td>
</tr>
</tbody>
</table>

Note that R refers to a ratio of the difference in runoff volume observed between the downstream and upstream hydrological stations to region area; and Mean refers to the mean annual value during the validation period (all in mm yr$^{-1}$).
There is great debate regarding whether proportionality parameter b is constant. Huntington et al. (2011) applied a modified AA model with $b = 1$ to estimate monthly and annual ET_a from arid shrublands of the southwestern USA and obtained quite satisfactory prediction accuracy. Ma et al. (2015b) applied a modified CR-based AA model to
obtain daily ET_a in the alpine steppe of the Tibetan Plateau and believed that a symmetric CR ($b = 1$) contradicted previous research that used default parameter values to claim an asymmetric CR in arid and semiarid regions of the Tibetan Plateau. Sugita et al. (2001) demonstrated that b equals unity only when the underlying surface is smooth enough and soil moisture is sufficient. Furthermore, Ma et al. (2015b) suggested that a strictly symmetric CR is difficult to achieve because the actual wet surface is too small or too large, or there is the influence of some additional heat.
transfer though the bottom or side of pans. Kahler & Brutsaert (2006) also suggested that the asymmetry with ET_p given by pan evaporation was due to the effect of a significant bottom or sidewall effect of pans. However, Szilágyi (2007) and Brutsaert (2015) demonstrated that the asymmetry is the inherent nature rather than the cases. In the present study, Equation (14), proposed by Crago et al. (2016), was used to estimate the ET_a. The present CR model is a self-adjusting CR since b could be obtained for each daily and each grid value as $b = (1 - x_{\text{min}})/x_{\text{min}}$ (Crago et al. 2016). The CR is only linear (symmetric) when $x_{\text{min}} = 0.5$. The definition of variable X defined by Crago et al. (2016) is essentially the same as the definition of Szilágyi et al. (2017). However, the relationship between y and x or X is actually still unspecific. Brutsaert (2015) and Crago et al. (2016) recommended the simple polynomial to add some flexibility in CR formulations, so that its parameters can be calibrated easily. Hence, Equation (16) was adopted in this study.

Two definitions of $ET_{p\text{max}}$ reported by Crago et al. (2016) and Szilágyi et al. (2017) were contrasted above to select an appropriate definition according to conditions in

Figure 8 | Monthly mean (a) precipitation (P), (b) ET_a, and (c) $P - ET_a$ difference from 2006 to 2014 in the upper, middle, and lower regions. The bars indicate the maximum and minimum values of P, ET_a, and $P - ET_a$ difference for the land cover types.
the study basin. The $ET_{p,max}$ defined by Szilagyi et al. (2017) was chosen because of the physically based limits, i.e., $ET_{w} \leq ET_{p} \leq ET_{p,max}$. We found that $ET_{p} - ET_{pds} > 0$ where the elevation is more than approximately 2,300 m asl (not displayed). Because $T_{ws} \approx T_{a}$ in the mountainous regions, one obtains the following:

$$ET_{p} - ET_{pds} = \frac{\Delta}{\Delta + \gamma} \left(\frac{R_{n} - G}{\lambda} - f(U)\varepsilon_{s} \right) - \frac{\Delta}{\Delta + \gamma} f(U)\varepsilon_{a}.$$ \hspace{1cm} (18)

ET_{pds} defined by Crago et al. (2016) is not applicable where $ET_{p} - ET_{pds} > 0$, i.e., $((R_{n} - G)/\lambda) - f(U)\varepsilon_{s} > (\gamma/\Delta)f(U)\varepsilon_{a}$. In the present study, ET_{pds} was unsuitable in the mountainous regions. Applicability of ET_{pds} depends on the combined effect of R_{n}, wind speed, T_{a}, and elevation. Ma & Zhang (2017) thought that the reason of inapplicability of ET_{pds} is mainly due to small wind speed and large available energy. This conclusion is essentially consistent with comments of Ma & Zhang (2017) since the comments had assumed time-invariant T_{ws} and landscape in setting the numerical experiment. Although the values of the wind speed in the mountainous regions are higher than these values in the plains regions, as shown in Figure 3, the available energy and roughness length should play roles in impacting the relationship between ET_{p} and ET_{pds} as well. That is, when ET_{pds} is defined, wind speed is not the only factor that needs to be considered.

In the current study, the HRB was divided into two terrain conditions: the plains regions (below 2,000 m asl) and the mountainous regions (above 2,000 m asl), while the HRB was divided into two underlying surface conditions: vegetated regions and unvegetated regions. Hence, to precisely describe the spatial distribution of ET_{a}, the σ of each condition was recalculated according to the regional water balance and the basic evaporation laws, as mentioned above (Table 1). The underlying surface of the mountainous regions changed with elevation; therefore, a linear function of elevation was used to illustrate the change of σ in the mountainous regions. Note that calibrate σ varies significantly. This may show that this CR method might not be used in extreme cold and arid areas.

Obviously, estimated ET_{a} has some uncertainties. For example, extreme cold and arid areas often have precipitation saved in the form of snow and ice until they melt in subsequent years. This means that ΔW has a greater effect at smaller time scales, but this should not be assumed to be 0. However, in the present study, it had to be assumed to be 0, as explained above. Moreover, over the past few years, the data obtained from the Gravity Recovery and Climate Experiment (GRACE) have notably improved our understanding of water storage change at monthly time scales in large basins globally (Scanlon et al. 2015; Save et al. 2016). However, the area of the HRB makes it unsuitable for analysis because it uses GRACE data. Secondly, there are uncertainties regarding the function relations of σ and elevation in the mountainous regions. A linear function was selected since it was easy to understand and be calibrated; however, this does not mean that linear function is the best relationship between σ and elevation. In addition, the values of σ changed with elevation rather than time. The values of α were also reported to be a function of surface meteorological and environmental factors (Aminzadeh & Or 2014). Obviously, the setting of values of σ can make a significant difference in the calibration parameter α. As noted by Szilagyi et al. (2017), any CR-based method is quite sensitive to the parameter value of α. Finally, the reanalysis dataset and runoff data still had significant uncertainties in extreme cold and arid areas because of the extremely sparse meteorological stations and harsh natural conditions. Although ET_{a} estimated in the mountainous regions remains uncertain and could not be verified at daily and monthly time scales, this study not only provides a new concept for calibration, but also a potential solution for different underlying surfaces and time scales.

CONCLUSIONS

In this study, we used the generalized CR to estimate ET_{a} rates during 2006–2014 at daily time scales in extreme cold and arid areas. The HRB served as a prime example. The China Meteorological Forcing Dataset and MODIS data were used to calculate CR components and to analyze regional water balance. Comparison and analysis revealed that correction of the wind function had more significant effects than correction of T_{ws}. $ET_{p,max}$, defined by Crago et al. (2016), was not applicable in the study basin, especially in the
mountainous regions. Hence, we adopted $ET_{p\,\text{max}}$, defined by Szilagyi et al. (2017). Since available data in the HRB were limited, the validity and accuracy of the calculated ET_a were verified using a regional water balance method at annual time scales. The coefficient α was calibrated based on the elevation and underlying surface types. Mean annual ET_a estimated using optimal values of α matched the mean annual ET_{arb} well, while there was deviation between annual ET_a and annual ET_{arb}. Based on the model estimations, spatial and temporal distributions of ET_a and the water budget in the basin from 2006 to 2014 could offer a reference at monthly or even daily time scales. The mean annual ET_a ranged from 2.3 mm to 800 mm during 2006-2014. ET_a rates in the plains regions were higher than those in the mountainous regions, with the highest values being observed in croplands and shrublands along the riverside. Most of ET_a was concentrated in the months of May to September, accounting for 89% of the mean annual ET_a (42 mm) in the upper regions, 76% (159 mm) in the middle regions, and 80% (105 mm) in the lower regions. A water deficit occurred in the middle and lower regions, and a water surplus occurred in the upper regions. The annual deficit was estimated to be 100 mm in the middle regions and 44 mm in the lower regions. The amount of available water was sufficient to satisfy ET_a in most months in the upper regions, where the mean annual water surplus was 150 mm.

If meteorological stations and in situ flux stations could be established in the mountainous and desert regions in the future, the accuracy of estimated ET_a and water management efficiency could be improved. Moreover, a model-independent calculation of α considering underlying surface conditions and environmental conditions has important implications for a calibration-free CR model. That CR model could be easily applied to all kinds of conditions, including extreme cold and arid areas. However, additional studies should be conducted to further improve the model.

ACKNOWLEDGEMENTS

The forcing datasets used in this study were developed by the Data Assimilation and Modeling Center for Tibetan Multi-spheres, Institute of Tibetan Plateau Research, and Chinese Academy of Sciences (http://westdc.westgis.ac.cn/data/). MODIS data and DEM data were provided by the Geospatial Data Cloud site, Computer Network Information Center, and Chinese Academy of Sciences (http://www.gscloud.cn). This work was supported by the National Natural Science Foundation of China (51509202 and 51679185). We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript. We are grateful to the four anonymous reviewers and the editor whose valuable comments and suggestions led to important revisions.

REFERENCES

He, J. & Yang, K. 2011 China Meteorological Forcing Dataset. Cold and Arid Regions Science Data Center at Lanzhou, China.

First received 1 June 2017; accepted in revised form 16 October 2017. Available online 20 November 2017.