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A dynamic river network method for the prediction

of floods using a parsimonious rainfall-runoff model

Aynalem Tassachew Tsegaw, Thomas Skaugen, Knut Alfredsen

and Tone M. Muthanna
ABSTRACT
Floods are one of the major climate-related hazards and cause casualties and substantial damage.

Accurate and timely flood forecasting and design flood estimation are important to protect lives and

property. The Distance Distribution Dynamic (DDD) is a parsimonious rainfall-runoff model which is

being used for flood forecasting at the Norwegian flood forecasting service. The model, like many

other models, underestimates floods in many cases. To improve the flood peak prediction, we

propose a dynamic river network method into the model. The method is applied for 15 catchments in

Norway and tested on 91 flood peaks. The performance of DDD in terms of KGE and BIAS is identical

with and without dynamic river network, but the relative error (RE) and mean absolute relative error

(MARE) of the simulated flood peaks are improved significantly with the method. The 0.75 and 0.25

quantiles of the RE are reduced from 41% to 23% and from 22% to 1%, respectively. The MARE is

reduced from 32.9% to 15.7%. The study results also show that the critical support area is smaller in

steep and bare mountain catchments than flat and forested catchments.
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INTRODUCTION
Floods are one of the major climate-related hazards and

cause casualties and substantial damage on a global

scale every year (Hirabayashi et al. ; Blaikie et al. ;

Winsemius et al. ). Floods usually cause damage to agri-

cultural land, infrastructure and buildings (Razi et al. ).

Flood peak is one of the most important variables to be

estimated as its magnitude and duration are responsible

for the damage (Formetta et al. ; Gao et al. ).

An accurate estimate of flood peak is a critical requirement

for proposing appropriate flood damage mitigation
measures in order to reduce social and economic costs

(Plate ).

The common hydrological tools for flood risk manage-

ment are flood forecasting models and models used to

estimate design floods (Plate ). The design flood, where

the magnitude of the flood is associated with a return

period and hence a level of risk, is important in the planning,

design and operation of hydraulic structures and for protec-

tion of human life and property (Rahman et al. ; Reis

& Stedinger ; Smithers ). Methods to estimate

design floods are generally classified into three: (a) statistical

flood frequency analysis; (b) event-based simulation; and

(c) derived flood frequency simulation (Filipova et al. ).

Derived flood frequency analysis, using continuous

rainfall-runoff models, is increasing in use for design flood

mailto:aynalem.t.tasachew@ntnu.no
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.2166/nh.2019.003&domain=pdf&date_stamp=2019-08-26


147 A. T. Tsegaw et al. | A dynamic river network method for flood peak prediction Hydrology Research | 51.2 | 2020

Downloaded from http
by guest
on 03 February 2023
estimation (Cameron et al. ; Calver & Lamb ;

Boughton & Droop ; Eschenbach et al. ). A

rainfall-runoff model can be used to simulate several flow

values under different conditions for extending and enhan-

cing the observed flow record (Filipova et al. ). A

stochastic weather generator is used to simulate long syn-

thetic series of rainfall and temperature input data for the

continuous simulation method. The long series of flow

data derived from the simulation is then used to estimate

the required return periods, usually using plotting positions

(Camici et al. ; Haberlandt & Radtke ). There is a

growing interest in continuous simulation method of flood

estimation as an alternative to event-based method, and

internationally the trend is to adopt the continuous

method (Lamb & Kay ; Chetty & Smithers ;

Pathiraja et al. ). The main advantages of the

continuous simulation models are their ability to represent

the antecedent moisture condition in the catchment and

their capability to model future land use and climate

changes impacts on the flood peaks (Brocca et al. ;

Smithers et al. ). The other reason for using the continu-

ous simulation approach is that precipitation records are

more widely available and tend to have longer periods of

records than stream flow data (Blazkova & Beven ).

Continuous simulation can avoid the base flow estimation

problem in the event-based method and avoid any need to

associate return period of the flood with specific design

precipitation because the frequency analysis of floods can

be done directly.

Rainfall-runoff models are simplified representations of

a complex physical system and therefore carry a certain

amount of uncertainty in their applications (Bourdin et al.

). The performance of rainfall-runoff models depend

on several factors which include the quality of precipitation

input data and an appropriate model structure capable of

simulating floods (Collier ). Therefore, the structure

and performance of the rainfall-runoff models should be

evaluated and improved for their capability in simulating

flood peaks before using them in design flood estimation

and flood forecasting.

There are several ways to classify rainfall-runoff models

(Singh ). Rainfall-runoff models can be classified into

lumped and distributed models. Lumped models consider

the whole catchment as a single unit with state variables
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
that represent the average of the catchment (Beven b).

Distributed models make prediction at distributed locations,

i.e., by discretizing the catchment into a number of elements

with state variables representing local averages (Singh &

Frevert ). When a rainfall-runoff model is used for

design flood estimation, the model could underestimate

the design flood. Thomas () evaluated floods estimated

by continuous simulation methods on 50 small streams in

Oklahoma, and the result showed that the flood peaks

were consistently underestimated. Pathiraja et al. ()

used 45 catchments in the Murray–Darling basin in

Australia to estimate design floods using the Australian

water balance model. They found that the model underesti-

mates the floods from 5% to 30% depending on how

reasonably the antecedent moisture condition is simulated.

The forecast of floods requires an accurate understanding

of catchment characteristics and a precise determination

of catchment’s initial conditions before flooding (Rusjan

et al. ).

There is a link between catchment morphology and a

hydrologic response of a catchment (Rodríguez-Iturbe &

Valdés ; D’Odorico & Rigon ; Rigon et al. ).

Gupta et al. () pointed out that the Geomorphic

Instantaneous Unit Hydrograph (GIUH) is equivalent to

the probability density function of travel times, f(t), from

any point in the catchment to the outlet. This permits the

formulation of hydrologic response through the geomorpho-

logic width function, W(x). The GIUH and W(x) concepts

represent the dependency of peak flows on the geomorpho-

logical properties of a catchment and provide a quantitative

prediction of peak flows for engineering application

(Rinaldo et al. ; Rinaldo et al. ; D’Odorico &

Rigon ; Rigon et al. ). The form and extent of the

stream network reflect the characteristics of the hillslope

(Willgoose et al. ). The stream reflects the ground

water dynamics and is often termed as perennial, intermit-

tent and ephemeral streams (Dingman ; Bencala et al.

). Dynamic expansions and contractions of stream

networks play an important role for hydrologic processes

since they connect different parts of the catchment to

the outlet (Nhim ). Stream networks in a catchment

expand and contract as the catchment wets and dries,

both seasonally and in response to individual precipitation

events, and this dynamic of stream networks gives an
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important information to the pattern and process of runoff

generation (Godsey & Kirchner ; Ward et al. ).

The mean of the distribution of distances from a point in

the catchment to the nearest river reach (Dm) and the drai-

nage density (Dd) are among the indexes used to describe

a stream network. Horton () defined the traditional Dd

as the sum of lengths (L) of all streams in a catchment

divided by the catchment area (A). The Dm reflects the

spatial characteristics that affect the formation of streams

and the response time of a catchment for a particular

stream network (Wharton ; Tucker et al. ; Di

Lazzaro et al. ; Skaugen & Onof ). The mean

distance one has to walk from a random location in a

hillslope before encountering a stream, Dm is related to

the traditional definition of Dd (Horton ; Tucker et al.

; Di Lazzaro et al. ).

Dm ≈
1

2Dd
(1)

Chorley & Morgan () showed that the maximum

flow is related to Dm. Day () studied two catchments of

New England (NSW, Australia) and found that theDm is cor-

related with discharge. In these two catchments, the Dm was

found to decrease for an increase in discharge, indicating that

the stream network expands during the flooding events.

During the expansion and contraction of streams, the critical

supporting area (Ac), which is the area needed to initiate and

maintain streams, shows variations within a catchment and is

an important variable for assessing geomorphometric charac-

teristics (e.g. Dm) (Papageorgaki & Nalbantis ). The

relationship between Dd and Ac follows an inverse power

law (Moglen et al. ) as shown in Equation (2):

Dd ¼ kA�n
c (2)

where k and n are positive numbers. If we insert the value of

Dd from Equation (2) into Equation (1), we will get a power

relationship between Dm and Ac as shown in Equation (3):

Dm ¼ aAb
c (3)

where a ¼ 1=2k and b ¼ n.
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
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The Distance Distributions Dynamics (DDD) model is a

parsimonious continuous rainfall-runoff model with a small

number of calibration parameters recently developed by

Skaugen & Onof (). Many of the model parameters can

be estimated from catchment topography using geographic

information system (GIS) and recession characteristics.

DDD is a semi-distributed model, i.e., lumped in model

parameters and distributed input data (precipitation and

temperature). The calibration and validation results for

41 small rural unregulated catchments in Norway (area

<50 km2) with hourly data showed that the DDD model, in

most cases, underestimated flood peaks (Tsegaw et al. ).

In the runoff dynamics of the DDD model, there is a single

static river network forming the basis for the dynamics of

water routing through the hillslopes and in the river network

(Skaugen & Onof ). However, studies show that the river

network has a dynamical nature, being more dense during

high flows than at low or medium flows (Godsey & Kirchner

). The primary objective of this study is to investigate

whether including a dynamic river network model into the

DDD model will improve flood prediction in small rural

catchments (area <50 km2). The secondary objective is to

improve the understanding of the stream development for

different vegetation covers, catchment slopes and climate.

The secondary objective helps us to assess whether there is

a potential to relate a calibration parameter of the dynamic

river network routine with the environmental factors so

that there is a possibility for regionalizing the parameter.
METHODOLOGY

Study catchments and data

Fifteen gauged small rural catchments, which show signifi-

cant underestimation of peak floods during the calibration

and validation of 41 small catchments located in Norway

(Tsegaw et al. ), are used in this study for testing the

dynamic river network method. The catchments are selected

from the Norwegian Water Resources and Energy Directo-

rate (NVE) HYDRA II database. Figure 1 shows locations

of the study catchments, and Table 1 shows the catchment

characteristics. The definition of small catchment follows

that of Fleig & Wilson () with an upper area limit of
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50 km2. We selected where the DDD model had a known

history of underestimating floods so that the dynamic river

network model could be tested and evaluated.

Precipitation, temperature and discharge are the

main input data for running and calibrating the DDD

model. We used hourly data of precipitation, temperature

and discharge. Precipitation and temperature are based on
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
a 1 × 1 km gridded product of the Norwegian Meteorologi-

cal Institute (http://thredds.met.no/thredds/catalog.html)

(Lussana et al. ). We used a total of 5 years of data for

calibration and validation. The DDD model uses distributed

precipitation and temperature data as input for the

model’s 10 elevation zones extracted from the hypsographic

curve of a catchment. The elevation of the center of each

http://thredds.met.no/thredds/catalog.html
http://thredds.met.no/thredds/catalog.html


Table 1 | Catchment characteristics of the study catchments

S.no Cat_ID
Area
(km2)

Lake
(%)

Marsh
land (%)

Forest
(%)

Bare
mountain (%)

Cultivated
land (%)

Urban
(%)

Mean
elvation (m)

Mean annual
precipitation (mm)

Mean annual
temprature (�C)

Specific runoff
(l/s/km2)

Mean hillslope
slope (%)

1 6.10 7 2.7 1.6 94.3 0 0 0 302.9 886 4.1 20.6 18.3

2 12.193 50.7 1.3 3 88.4 0 4.3 0.5 306.5 840 3.8 17.5 15.3

3 19.107 41.5 4.8 1.4 86.4 0 4.2 0.8 88.4 1,158 4.2 24.2 14.7

4 26.64 9.7 7.2 2.2 38.8 46.2 1.1 0 203.9 1,688 6.7 45.8 28.3

5 36.32 20.9 2.5 0.9 13.5 81.4 0 0 1,039.4 2,377 0.2 105.2 34.1

6 41.8 27.4 7.7 0.4 8.8 82.2 0 0 836.8 2,955 2.7 126.4 37.5

7 42.2 31.1 2.8 1.4 40.7 52.1 0 0 573.3 2,361 4.8 108.3 40.4

8 55.4 50.6 3.7 1.3 51.8 30.7 2.8 0.2 361.3 2,593 5.4 100.4 41.9

9 63.12 12.8 4.5 0.3 5.8 86.1 0.6 0 886.2 2,579 1.1 94.8 34.4

10 68.2 20.9 4.3 0 20.2 50.3 2.5 0 402.4 2,736 5 125.2 43.6

11 73.21 25.8 7.4 2.2 2.2 88 0 0 1,292.5 946 �0.8 34.7 21.5

12 73.27 30.4 9.1 0.5 0.1 89.4 0 0 1,372 679 �2.5 33.5 14.8

13 91.2 25.8 10.1 3 3.7 66.5 1.3 0 261.9 2,072 6.1 63.5 29.9

14 101.1 40 11.3 1.6 61.3 11.3 6 0.1 232.9 1,704 5.5 54.9 23.9

15 172.8 21.2 10.7 0.5 1.4 82.5 0 0 659 1,465 1 46 17

Minimum 7 1.3 0 0.1 0 0 0 88.4 679 �2.5 17.5 14.7

Maximum 50.7 11.3 3 94.3 89.4 6 0.8 1,372 2,955 6.7 126.4 43.6
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temperature and precipitation grid cell has been extracted

from the 10 × 10 m digital elevation model (DEM) of

Norway. Discharge data have been obtained from the

Norwegian Water Resources and Energy Directorates

(NVE) HYDRA II database. The Norwegian Mapping

Authority (www.statkart.no) is the source of the topography,

observed river network and land use data.

The DDD rainfall-runoff model

The DDD model currently runs operationally with daily and

three-hourly time steps at the Norwegian flood forecasting

service. It has two main modules: the subsurface and the

dynamics of runoff. In DDD, the distribution of distances

between points in the catchment and their nearest river

reach (distance distributions of a hillslope) is the basis for

describing the flow dynamics of the hillslope. The distri-

bution of distances between points in the river network

and the outlet forms the basis for describing the flow

dynamics of the river network. The hillslope and river

flow dynamics of DDD is hence described by unit hydro-

graphs (UHs) derived from distance distributions from a

GIS and celerity derived from recession analysis (Skaugen

& Onof ; Skaugen &Mengistu ). When the distance

distributions are associated with flow celerity of the hillslope

and rivers, we obtain the distributions of travel times which

constitute the time area concentration curve (Maidment

). The derivative of the time area concentration curve

gives the instantaneous UH (Bras ), which is basically

a set of weights distributing the input (precipitation and

snowmelt) in time to the outlet.

Subsurface

The volume capacity of the subsurface water reservoir,

M (mm), is shared between a saturated zone with volume

S (mm) and an unsaturated zone with volume D (mm). If

the volume of the saturated zone is high, the unsaturated

volume has to be correspondingly small (Skaugen & Onof

; Skaugen & Mengistu ). The actual water volume

present in the unsaturated zone is described as Z (mm).

The subsurface state variables are updated after evaluating

whether the current soil moisture, Z(t), together with the

input of rain and snowmelt, G(t), represent an excess of
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
water over the field capacity, R, which is fixed at 30%

(R¼ 0.3) of D(t) (Skaugen & Onof ). If G(t)þZ(t)>

R*D(t), then the excess water X(t) is added to S(t).

Excesswater (mm=h)

X(t) ¼ Max
G(t)þ Z(t)

D(t)
� R, 0

� �
D(t)

(4)

Groundwater (mm=h)
dS
dt

¼ X(t) �Q(t) (5)

Soilwater content (mm=h)
d Z
dt

¼ G(t) �X(t)� Ea(t) (6)

Soilwater zone (mm=h)
dD
dt

¼ �dS
dt

(7)

Potential evapotranspiration (mm=h) Ep ¼ Cea �T (8)

Actual evapotranspiration (mm=h) Ea ¼ Ep� Sþ Z
M

(9)

Q(t) is runoff, and Ea(t) is the actual evapotranspiration

which is estimated as a function of potential evapotranspira-

tion and the level of storage. Cea is a degree hour factor

which is positive for positive temperature (T ) and zero

for negative temperature. Ea is drawn from Z. The degree

hour approach is a simplification but experiences from

Skaugen & Onof () show that the evapotranspiration

routine in DDD calculates similar values to the approach

used in the well-known rainfall-runoff model HBV (Bergström

). A recession analysis of observed runoff from the catch-

ment is used to estimate the catchment-scale fluctuations of

storage and the capacity of the subsurface water reservoir

(M) (see Skaugen & Mengistu ).
Runoff dynamics

The dynamics of runoff in DDD has been derived from the

catchment features using a GIS combined with runoff

recession analysis. The method for describing the runoff

dynamics of a catchment is built on the distance distribution

derived from the catchment topography. The distances from

the points in the catchment to the nearest river reach are cal-

culated as Euclidean distance for the marsh and soil parts of

a hillslope. Previous studies in more than 120 catchments in

http://www.statkart.no


Figure 2 | Structure of distance distribution dynamics (DDD) rainfall-runoff model. Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.

2019.003.
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Norway showed that the exponential distribution describes

the hillslope distance (Euclidean distance from the nearest

river reach) distribution well, and the normal distribution

describes well the distances between points in the river

network and outlet of a catchment (Skaugen & Onof

). Figure 2 shows the structure of the DDD model. The

model is written in the R programming language. All

GIS work is done with ArcGIS 10.3 (ESRI ), and

the recession analysis is done using an R script (R Core

Team ).

Water is conveyed through the soils to the river network

by waves with celerity determined by the actual storage, S(t),

in the catchment (Skaugen & Onof ; Skaugen &

Mengistu ). The celerity associated with the different

levels of subsurface storage is estimated by assuming

exponential recessions with parameter Λ in the equation

Q(t) ¼ Q0Λe�Λ(t�t0), where Q0 is the peak discharge immedi-

ately before the recession starts. Λ is the slope per Δt of the

recession in the log–log space.

Λ(t) ¼ log (Q(t))� log(Q(tþ Δt)) (10)

The distribution of Λ is modeled using a two-parameter

gamma distribution.
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf

 2023
The celerity, v, is calculated as a function of Λ using

Equation (11):

v ¼ Λ Dm

Δt
(11)

where, Dm is the mean of the distances from points in the

catchment (hillslope) to the nearest river. The capacity of

the subsurface reservoir M (mm) is divided into five storage

levels, i, corresponding to the quantiles of the distribution

of Λ under the assumption that the higher the storage, the

higher the value of Λ. Each storage level is further assigned

a celerity νi ¼ λi Dm

Δt
(see Equation (11)), where λi is the par-

ameter of the UH for the individual storage level i, and

estimated such that the runoff from several storage levels

will give a UH equal to the exponential UH with a parameter

Λi. With the assumption that the recession and its distribution

carries information on the distribution of catchment-scale

storage, we can consider that the temporal distribution of

catchment-scale storage, S(t), is a scaled version to that of

Λ. S(t) is calculated using Equation (12), and its distribution

is modeled using a two-parameter gamma distribution.

S(t) ¼ Q(t)
1� e�Λ(t)

(12)

http://dx.doi.org/10.2166/nh.2019.003
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The DDD model has five storage levels (i¼ 1,…, 5).

Four storage levels are subsurface level, whereas the fifth

one is an overland flow level with unlimited capacity

(Skaugen & Onof ; Skaugen & Mengistu ). The

five levels have five-UHs (four for subsurface flow and one

for overland flow) and each of them has different temporal

scales as they have been assigned different celerities. The

UH is modeled as follows:

UHi(t) ¼ λie�λi(t�to) (13)

where to is the time of input, and λi is the parameter of the

exponential distribution estimated from recession analysis

for each level, i.
Model parameters and calibration

The model parameters are divided into three main groups.

The first group are those estimated from observed hydro-

meteorological data (Table 2), the second group are those

estimated by model calibration against observed discharge
Table 2 | List of DDD rainfall-runoff model parameters estimated from observed hydro-meteo

Parameters Description of the parameter

d Parameter for spatial distribution of SWE, decorrelation leng

a0 Parameter for spatial distribution of SWE, shape parameter

MAD Long-term mean annual discharge

Gshape Shape parameter of λ

Gscale Scale parameter of λ

GshInt Shape parameter of Λ

GscInt Scale parameter of Λ

Table 3 | List of DDD rainfall-runoff model parameters needing calibration

Parameters Description of the parameter Me

pro Liquid water in snow Ca

cx Degree hour factor for snow melt Ca

CFR Degree hour factor for refreezing Ca

Cea Degree hour factor for evapotranspiration Ca

rv Celerity for river flow Ca
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(Table 3), and the third group are those estimated from digi-

tized maps using a GIS (Table 4). The snow routine in DDD

has two parameters estimated from the spatial distribution

of observed precipitation data (Skaugen & Weltzien ).

The shape parameter (a0) and the decorrelation length (d)

of the gamma distribution of snow and snow water equival-

ent (SWE) are estimated from a previous calibration for 84

catchments in Norway (Skaugen et al. ). The calibration

of the model is performed using the probability particle

swarm optimization (PPSO) algorithm (Lu & Han ).

The Kling–Gupta efficiency criteria (KGE) have been used

as objective function for the calibration (Gupta et al.

), and we used KGE, the BIAS (ratio of the mean of

simulated to observed discharge) and visual inspection of

hydrographs to evaluate the performance of the model.
Dynamic river network routine

We introduce a dynamic river network concept into the

DDD model so that the scale of the overland unit hydro-

graph (OUH) will be dynamic while keeping the four
rological data

Method of estimation Unit

th From spatial distribution of observed
precipitation

Positive real number

From spatial distribution of observed
precipitation

Positive real number

From long-term observed mean annual
flow data

m3/s

Recession analysis of observed runoff Positive real number

Recession analysis of observed runoff Positive real number

Recession analysis of observed runoff Positive real number

Recession analysis of observed runoff Positive real number

thod of estimation Unit Intervals of calibration

libration fraction 0.03–0.1

libration mm �C�1 h�1 0.05–1.0

libration mm �C�1 h�1 0.001–0.01

libration mm �C�1 h�1 0.01–0.1

libration m/s 0.5–1.5



Table 4 | List of DDD rainfall-runoff model parameters estimated from geographical data using GIS

Symbol of parameters Description of the parameter

Area Catchment area

maxLbog Maximum distance of marsh land portion of hillslope

midLbog Mean distance of marsh land portion of hillslope

bogfrac Areal fraction of marsh land from the total land uses

zsoil Areal fraction of DD for soils (what area with distance zero to the river)

zbog Areal fraction of distance distribution for marsh land (what area with distance zero to the river)

midFl Mean distance (from distance distribution) for river network

stdFL Standard deviation of distance (from distance distribution) for river network

maxFL Maximum distance (from distance distribution) for river network

maxDl Maximum distance (from distance distribution) of non-marsh land (soils) of hill slope

midDL Mean distance (from distance distribution) of non-marsh land (soils) of hill slope

midGl Mean distance (from distance distribution) for glaciers

stdGl Standard deviation of distance (from distance distribution) for glaciers

maxGl Maximum distance (from distance distribution) for glaciers

Hypsographic curve 11 values describing the quantiles 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
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subsurface UHs constant during the simulation period. The

methodology, we used in estimating the dynamic OUHs of

a hillslope, is similar to that of GIUH and of the width

function, i.e., the travel time probability density function

of a unit amount of water draining from a catchment.

However, the approaches used in estimating the parameters

of the distribution are different, i.e., the approach in calculat-

ing the celerity and distances of a flow from the points in the

hillslope to the nearest river reach. Further, we assumed that

the scale of the travel time distribution in a hillslope is

dynamic for generating dynamic OUHs while the shape is

held constant. In DDD, the dynamic OUHs are turned on

and off according to saturation of the subsurface thus

giving a dynamic travel time distribution.

The river network indicates where the subsurface water

flow becomes surface water flow. The network system gov-

erns the dynamics of runoff for conditions where we have

no overland flow from the hillslope in that there is a signifi-

cant (orders of magnitude) difference in water celerity

for flow through the soils and flow in the river network

(Robinson et al. ). In case of overland flow, however,

we can imagine a dynamic river network (and hence dynamic

distance distributions) as a function of overland flow (OF).

We made three assumptions to derive such algorithm.
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1. The mean celerity of the overland flow (νOF) is constant,

i.e., independent of the subsurface saturation and river

network.

2. The overland flow unit hydrograph (OUH) is exponential

determined from Dm and νOF.

3. The Dm of a river network is a function of volume of

water per area per unit time, i.e., OF. If we assume a criti-

cal flux, Fc of 10 m3/h is necessary to create a stream,

then OF of 10 mm for an hour over Ac ¼ 1000 m2, will

provide such a flux, whereas the same flux is obtained

for OF of 100 mm over 100 m2. The two cases have differ-

ent critical supporting area (Ac), and these cases will

provide us with two different river networks where the

latter has smaller Dm than the former.

The physical mechanisms underpinning the above three

assumptions are:

1. The variable contributions of saturation excess overland

flow of a hillslope develops along the existing river

network following the concept of Dunne’s overland

flow (Dunne ).

2. The critical supporting area (Ac defines the minimum

catchment area from which the generated runoff is

sufficient to initiate and maintain river development
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(Schaefer et al. )). The expansion and contraction of

the stream network is governed by the amount of

saturation excess overland flow.

3. The hillslope travel time probability density function of

overland flow is estimated from the distance distributions

at any point from the hillslope to the river network and

the celerity of flow in the hillslope (D’Odorico & Rigon

; Rigon et al. ).

In order to compute the OUH, we need the mean (Dm)

and the maximum (Dmax) of the hillslope distance

distribution and the mean overland flow celerity, νOF.

Using assumption (3), we can derive a dynamic Ac after

introducing a critical flux (Fc ) as shown in Equation (14),

which needs to be determined.

Fc (m3=h) ¼ Ac(m2) �OF (m=h) (14)

where OF is saturation excess overland flow and is esti-

mated from the DDD model output at each simulation

time step. When the subsurface is saturated and there

is overland flow (OF> 0), the dynamic river network sub-

routine is activated and the corresponding Ac will be

calculated in the model using Equation (14).

We need to compute the coefficients a and b of the

general power relation between Dm and Ac of each of the

study catchments (see Equation (3)) for computing a

dynamic Dm during simulation. For computing a and b,

we have used the following procedure:

1. The 10 × 10 m DEM of a catchment has been recondi-

tioned to the observed river network using the DEM

reconditioning tool from Arc Hydro and a raster flow

accumulation map has been prepared using GIS.

2. We wrote a python script that can loop through several

thresholds of flow accumulation (Ac ) to define stream

and create several stream networks. From the distance

distributions derived from each stream networks, the

Dm is calculated.

3. A regression curve is fitted to the synthetically derived

Ac and Dm of a catchment to estimate a and b

(Figure 3 shows the fitted curves for six sample catch-

ments). The values of a and b are unique for each

catchment and are listed in Table 5 for all study

catchments.
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After we have obtained the coefficients of the relation-

ship between Ac and Dm, the Ac estimated from Equation

(14) will be used to estimate Dm using Equation (3). We

estimated Dmx from the exponential distribution with par-

ameter Dm, as a distance where 99% of the catchment area

is accounted for. From the recession analysis for estimating

celerities, we already have an estimate of νOF in the DDD

model (Skaugen & Onof ). We estimate a dynamic

OUH for every time step when overland flow is estimated.

When the Dm calculated using Equation (3) is greater

than the Dm of the observed river network, the dynamic

river network degenerates to the observed river network.

The observed river network is the basis network for all

cases where the subsurface capacity is unsaturated, satu-

rated but no overland flow and when there is overland

flow but not sufficient to expand the observed (existing)

stream network. When the subsurface capacity is saturated

and there is sufficient OF, the observed stream network

starts to expand. The extent of expansion is determined by

the magnitude of the estimated OF and Fc.

We have tested the performance of the DDD model

with and without the dynamic river network routine. We

calibrated and validated the DDD model as described

in the model parameter and calibration section, and we

implemented the dynamic river routine into the model and

calibrated Fc. We have calibrated Fc manually after calibrat-

ing automatically DDD parameters without dynamic river

network. The procedures we have followed in calibrating

are as follows:

1. The Fc parameter is adjusted by trial and error to fit the

observed flood peaks, which had been underestimated by

DDD without dynamic river network.

2. We have visually compared the observed flood hydro-

graphs and flood hydrographs simulated with and

without dynamic river network.

3. While calibrating DDD with Fc (with dynamic river net-

work module), the KGE and BIAS values obtained

should not be less than the KGE and BIAS values of

DDD without dynamic river network method (earlier

calibration result).

4. Using the visual inspection of observed hydrographs,

KGE and BIAS, the Fc which fits the observed flood

peaks well is taken as a calibrated value.



Figure 3 | Curves fitted to the relation between mean distance distribution of hillslope, i.e., Dm and critical supporting area, i.e., Ac for six sample study catchments with a relation,

Dm ¼ aAb
c .
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As for the previous case, we used KGE, BIAS and hydro-

graphs to evaluate the performance of the model with

dynamic river network routine. We have also analyzed the

mean absolute relative error (MARE, Equation (15)) of 91

flood peaks with and without river dynamics.

MARE(%) ¼ 1
N

XN

i¼1

(Oi � Si)
Oi

�100
����

���� (15)

where Oi is the observed flood peak and Si is the predicted

flood peak with and without dynamic river network. N is

the number of flood peaks (91 in this study). We have also

analyzed the quantiles of the distribution of relative errors

(RE, Equation (16)) of the flood peaks prediction.

RE(%) ¼ (Oi � Si)
Oi

�100 (16)
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf

 2023
where Oi is the observed flood peak and Si is the predicted

flood peak with and without dynamic river network.

Correlation between Ac andFc with environmental

factors

We have done a correlation analysis between the par-

ameters Ac and Fc and environmental factors to improve

the understanding on how the dynamic river network

develops and to assess the potential for relating Fc to

environmental factors. The environmental factors included

in the correlation analysis are mean annual precipitation,

mean hillslope slope, bare mountain and forest land

covers of the study catchments. We have used the Pearson

correlation coefficient for the analysis. The Ac derived

from observed river network has a spatial variation within

a catchment; therefore, we have estimated the mean Ac for



Table 5 | The coefficient of determination (R-squared) and the coefficients of the power

relation between Dm and Ac, i.e., Dm ¼ aAb
c for all the study catchments

Cat_ID a b R2

6.1 2.17 0.37 0.99

12.193 1.16 0.42 1

19.107 1.04 0.43 1

26.64 1.23 0.42 1

36.32 1.18 0.42 1

41.8 0.61 0.51 0.99

42.2 0.92 0.45 1

55.4 1.1 0.44 1

63.12 1.05 0.45 1

68.2 0.86 0.49 1

73.21 0.82 0.48 1

73.27 1.19 0.44 0.99

91.2 0.68 0.51 0.99

101.1 1.1 0.45 0.98

172.8 1.08 0.44 1
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each of the study catchments before the correlation analysis

using the following two steps. First, the Dm of the observed

stream network is estimated using GIS. Second, the mean

Ac of the observed river network is calculated using

Equation (3). To assess the potential for relating Fc with

the environmental factors, correlation analysis between

the calibrated Fc and the environmental factors has also

been performed. We have also done a stepwise method of

multiple linear regression between Fc and the four environ-

mental factors mentioned above to see if there is a possibility

for regionalizing Fc.
RESULTS

Performance of DDD with and without dynamic river

network

The calibration and validation results of the DDD model

without a dynamic river network show that the model

performs satisfactorily with KGE values between 0.55

and 0.9 and BIAS between 0.75 and 1.25. As stated by

Thiemig et al. (), 0.75�KGE< 0.9 is considered good,
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
0.5�KGE< 0.75 is intermediate and 0.0�KGE< 0.5 is

poor. Seven catchments show good and eight catchments

show intermediate performance both during the calibration

and validation periods. Even if the KGE performance is

satisfactory, the visual inspection of the hydrographs

shows that several observed flood peaks are underestimated.

We added the dynamic river network routine into the

DDD model and calibrated the critical flux (Fc ) parameter

of the routine manually for the whole simulation period.

The KGE and BIAS performance of the model are similar

as before, i.e., without dynamic river network for all study

catchments except one, where the KGE is slightly lower.

However, the inspection of the hydrographs clearly shows

that the predication of several underestimated flood peaks

has been improved after the addition of the dynamic river

network routine. The dynamic OUHs that resulted from

the dynamic river network have higher peaks and narrower

width during the flooding events, and these OUHs, added

with the subsurface UHs, helped in improving the pre-

viously underestimated floods. Figure 4 shows the hillslope

distance distributions for variable Ac for catchment 73.27.

Figure 5 shows the empirical cumulative distance distri-

butions functions as an example for the dynamic distance

distribution presented in Figure 4, and Figure 6 shows the

four dynamic OUHs which resulted from the corresponding

distance distributions functions. Table 6 shows OF, Ac and

Dm for a catchment 12.193 during a flooding event.

Figure 7 shows the hydrographs during the flooding

periods with and without the dynamic river network routine

for six sample study catchments. Table 7 shows the observed

floods, simulated floods, KGE and BIAS performance of

DDD model with and without dynamic river network

routine for five sample study catchments selected randomly.

The results of the statistical analysis (mean absolute rela-

tive errors and quantiles of relative errors), for the 91

observed peak floods from the 15 study catchments, show

that the dynamic river network method improved the

prediction of peak floods significantly. The 0.75 quantile of

the relative errors of the simulated peaks reduced from

41% to 23%, and the 0.25 quantile of the relative errors

reduced from 22% to 1%. Figure 8 shows box plots of

the relative errors with and without river dynamics. The

MARE of the magnitude of the underestimated peak

floods is reduced from 32.9% to 15.7%.



Figure 4 | Map of sample dynamic distance distributions of hillslope generated from dynamic critical supporting area, i.e., Ac during flooding events for catchment 73.27.
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Correlation between Ac andFc with environmental

factors

The critical supporting area, Ac, of an observed stream

network of a catchment shows spatial variation within

the catchment (Figure 9 shows the distributions for five
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
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sample catchments); therefore, the mean value of a

catchment is used for the correlation analysis. The mean

Ac for the observed river networks is correlated with

environmental factors, i.e., vegetation cover, topography

and climate. The correlation with vegetation cover is

stronger than that of topography and climate. The mean



Figure 5 | Cumulative distance distributions functions of the dynamic hillslope distance distributions of Figure 4 for catchment 73.27.
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Ac has a positive correlation with the forest cover in a

catchment, but it has a negative correlation with mean
Figure 6 | Dynamic overland unit hydrographs of the cumulative distance distributions

functions under Figure 5 during a flooding event for catchment 73.27.
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annual precipitation, bare mountain cover and mean hill-

slope slope of a catchment. Table 8 shows the correlation

between the mean Ac and Fc and the environmental factors.

The calibrated critical flux, Fc , of the dynamic river

network routine is correlated with the environmental

factors. The correlation between Fc and the vegetation

cover is stronger than the correlation between Fc and topo-

graphy and mean annual precipitation. Fc shows positive

correlation with forest and negative correlation with bare

mountain, mean annual precipitation and mean hillslope

slope of a catchment. Table 9 shows the environmental

factors used in the correlation analysis, the Dm and mean

Ac of observed river network and the calibrated Fc of the

dynamic river network routine of the study catchments.

The result of stepwise multiple linear regression shows

that there is a potential to estimate Fc from the environ-

mental factors as shown in Equation (17). Bare mountain

is the only environmental factor contributing significantly

to the regression with a significant level of 0.1. The multiple



Table 6 | Dynamic mean distance of the hillslope distance distributions estimated and

used for generating dynamic overland unit hydrograph during flooding event

at catchment 12.193 with a calibrated critical flux of 90 m3/h

OF (mm/h) Ac (m2)
Dm (m) estimated
using Equation (3)

Dm (m) used in
deriving OUH

0.144 1,319,444.4 429.08 301.1

2.19 86,758 137.58 137.58

2.22 85,585.6 136.79 136.79

0.94 202,127.7 196.26 196.26

10.9 17,431.2 70.12 70.12

1.4 135,714.3 166.02 166.02

2.7 70,370.4 126 126

1.19 159,663.9 177.75 177.75

0.19 1,027,027 388.44 301.1

1.27 149,606.3 172.96 172.96

0.2 950,000 375.93 301.1

1.33 142,857.1 169.64 169.64

1.28 148,902.8 172.61 172.61

0.17 1,117,647.1 402.48 301.1

0.14 1,319,444.4 431.54 301.1

0.64 296,875 230.64 230.64

0.34 558,823.5 302 301.1

0.31 612,903.2 312.72 301.1

0.83 228,915.7 206.79 206.79

Italic numbers are rounded to two significant figures.
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coefficient of determination (R2) of the multiple regression

is 0.3 and the significant level (P) is 0.06.

Fc (m3=h) ¼ 160:7� 1:4 �bare mountain (%) (17)
DISCUSSION

Dynamic river networks

Dynamic river networks and hence dynamic OUHs are

introduced and implemented in the DDD rainfall-runoff

model to improve the simulation of floods. The dynamic

river network method expands the observed river networks

during OF events. The expansion means that the Ac required

to initiate and maintain a stream decrease. Smaller Ac

results in smaller Dm (see Table 5). The smaller Dm value

indicates shorter travel times from points in the catchment
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf

 2023
to the nearest river reach. The shorter travel time distri-

bution generates OUHs with a higher peak and shorter

scale for the hillslopes (Figure 6). The dynamic OUHs are

superpositioned with the other four subsurface UHs of

DDD to give a single dynamic UH of a catchment during

flooding events. The results of the method are supported

by the previous study of D’Odorico & Rigon () who

found that shorter hillslope distances result in shorter

travel times and hence higher flood peaks. The smaller Dm

results, obtained during the flooding events using the

dynamic river network method, are also supported by the

study of Humbert () who found that a good correlation

exists between the runoff coefficient of flooding events and

Dd, and hence the Dm, for 45 French catchments. Lazzaro

et al. () also found that the variability of runoff due to

higher Dd (lower Dm) creates a faster concentration of

flow that implies shorter travel times and higher peak

floods. The results in this study are also supported by the

results of Lee et al. () who found that a UH of a

catchment is dynamic during different precipitation intensi-

ties, i.e., the higher the precipitation intensity, the higher the

peak and shorter the temporal scale of the UHs. The results

of this study also show that a dynamic river network method

could be a solution for rainfall-runoff models which face

challenges in predicting flood peaks through continuous

simulation. Improving the prediction of peak floods in a

continuous simulation is very important because the hydro-

graph consisting of this peak flow is mainly responsible for

the damage caused by floods. Therefore, a dynamic river net-

work is a method to be conceptualized and included as one

routine in continuous rainfall-runoff models which underes-

timate predictions of floods.

We analyzed statistically 91 underestimated flood

peaks to evaluate the performance of the dynamic river

network. The MARE and quantiles of RE of the prediction

with and without dynamic river network show that the

overall performance of the method has improved the

prediction of the peaks satisfactorily. The dynamic river

network overestimated 17 of the 91 flood peaks and still

underestimates the remaining 74 floods but with a significant

improvement in the prediction of flood peaks compared to

the results obtained without a dynamic river network.

A single calibrated critical flux, Fc, improves the predic-

tion of several underestimated floods significantly, but it also



Figure 7 | Hydrographs of continuous simulations results of DDD rainfall-runoff models with flood peaks, i.e. observed, simulated with and without dynamic river network.

Table 7 | Observed and simulated floods using DDD with and without dynamic river network and the corresponding performance of the model for five sample catchments

Cat_ID Observed flood(s) in m3/s Simulation period

Simulated value(s)
of flood without
river dynamics
in m3/s

Performance of
DDD model
without
river dynamics
in calibration

Simulated value(s)
of flood with
river dynamics
in m3/s

Performance of
DDD model with
river dynamics

KGE BIAS KGE BIAS

12.193 29.42 2 years 12.97 0.64 1.2 28.78 0.65 1.2

19.107 11.65 and 16.2 3 years 7.64 and 10.3 0.8 0.93 9.42 and 16.1 0.81 0.94

41.8 43.96 and 36.13 2 years 28.02 and 26.74 0.77 0.84 36.3 and 40.3 0.77 0.84

73.27 18.85 3 years 13.3 0.71 0.76 18.3 0.71 0.76

91.2 12.06 2 years 8.34 0.71 0.8 12.04 0.71 0.8

Italic numbers are rounded to two significant figures.
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overestimates a few flood peaks (Figure 7). Reasons for over-

estimation could be that a single calibrated Fc could not
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
represent the different precipitation patterns, overland flow

patterns and initial conditions prior to flooding events.



Figure 8 | Distributions of relative errors (%) of prediction of 91 flood peaks with and without dynamic river network.

Figure 9 | Distributions of critical supporting area, i.e., Ac of observed stream networks for five of sample study catchments.

Table 8 | Correlation between calibrated critical flux, Fc of the dynamic river network with

environmental variables, and correlation between mean critical area, Ac of the

observed river network with some environmental variables

Forest
(%)

Bare
mountain (%)

Mean hillslope
slope (%)

Mean annual
precipitation (mm)

Mean Ac (m
2) 0.63 �0.63 �0.56 �0.49

Fc (m
3/h) 0.46 �0.5 �0.29 �0.18
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Another reason for such overestimation could be that the

dynamic Dm estimated using Equation (3) is not always an

accurate representation of the reality during a flood event.

The limitations of manual calibration include subjectivity

and time consuming. Manual calibration methods are sub-

jective in the evaluation of model fit and the final choice

of optimal parameters. Ndiritu () pointed out that



Table 9 | The environmental factors used in the correlation analysis, the mean distance distribution, and mean critical area, Ac of observed river network, and the calibrated critical flux, Fc
of the dynamic river network routine

Cat_ID

Environmental factors
Observed river
network

Dynamic river network
Forest (%) Bare mountain (%) Mean annual precipitation (mm) Mean hillslope slope (%) Dm (m) Mean Ac (m2) Fc (m3/h)

6.1 94.3 0 886 18.3 149.2 92,406 15

12.193 88.4 0 840 15.3 301.1 560,042 190

19.107 86.4 0 1,158 14.7 336.9 689,123 370

26.64 38.8 46.2 1,688 28.3 181.6 146,146 5

36.32 13.5 81.4 2,377 34.1 168.6 135,213 120

41.8 8.8 82.2 2,955 37.5 157.2 53,418 15

42.2 40.7 52.1 2,361 40.4 175.9 117,477 30

55.4 51.8 30.7 2,593 41.9 155.1 76,715 15

63.12 5.8 86.1 2,579 34.4 181.2 93,596 80

68.2 20.2 50.3 2,736 43.6 211.3 75,573 150

73.21 2.2 88 946 21.5 298.4 216,464 15

73.27 0.1 89.4 679 14.8 189.4 100,964 60

91.2 3.7 66.5 2,072 29.9 283.8 137,481 90

101.1 61.3 11.3 1,704 23.9 334.0 328,354 150

172.8 1.4 82.5 1,465 17 168.1 95,972 10
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manual calibration may be more prone to obtaining subopti-

mal parameter sets than automatic calibration. Studies also

show that manual calibration is more subjective than auto-

matic calibration because it largely depends on visual

hydrograph inspection and the personal judgment of the

hydrologist. Substantial amount of time is also required to

adjust Fc so that the observed and simulated flood peaks

agreed well. A separate automatic calibration of Fc (which

is not included in this study) after defining and writing

appropriate objective function could improve the limitations

of the manual calibration. However, since we have only one

manually calibrated parameter and we have enough experi-

ence of using DDD model, the manual calibration result of

Fc could be very good. In addition, the results of our study

show that the manually calibrated Fc resulted in a signifi-

cant improvement in predicting flood peaks using dynamic

river network method.

The hydrograph in Figure 7 shows that the two floods of

the catchment 41.8 could not be estimated well using a

single calibrated Fc of magnitude 15 m3/h even if the overall

prediction of the flood peaks is improved. When we look at

the flood hydrographs, the 27 November flood of 43.96 m3/s
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
(at 8 A.M), had been preceded by a 1-day precipitation of

68.9 mm (from 26 November 2011 09:00 to 27 November

2011 08:00). The precipitation was again preceded by a

3-day precipitation of magnitude 86.1 mm, i.e., the 4-day

precipitation preceded the flooding event was 154.9 mm.

When Fc is fitted to this single flooding event, 5 m3/h is

required. After 1 month, another heavy precipitation event

happened (56.9 mm/day) and the event was preceded by

82.2 mm of 3-day precipitation, i.e., the 4-day precipitation

preceded the flooding event was 139.7 mm. The magnitude

of the flood was 36.13 m3/s. When Fc is fitted to this

single flooding event, 25 m3/h is required. The variation in

the fitted values of Fc for different flooding events in a

catchment shows that we could have an overestimation of

flooding events when we use a single calibrated Fc for the

whole simulation period as a representative for a catchment.

Accordingly, a single Fc of 15 m3/h for the catchment

41.8 has overestimated the December 2011 flood, i.e.,

36.13 m3/s, but it has improved the overall prediction of

the flood peaks in the catchment.

The spatial variability of Ac during flooding events,

which is not considered in this study, could also be another
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factor for the overestimation of floods using a single cali-

bration value of Fc for a catchment. We have derived the

coefficients of Equation (3) (a and b) with the assumption

of constant Ac using the DEM, which considers only the

topography of a catchment. However, the Ac of observed

stream networks clearly shows that there is a spatial variabil-

ity of Ac within a catchment. Geological and land use

factors play significant roles in initiating and maintaining a

stream, and these factors control the spatial variability of

Ac in a catchment (Montgomery & Dietrich ; Ogden

et al. ; Sjöberg ; Ward et al. ) in addition to

the topography. The correlation results between Ac and

vegetation cover, which is done in this study and explained

in the next section, also confirm that the land use affects the

spatial variability of Ac. Figure 7 shows box plots of the

spatial distributions of Ac of observed stream network for

five sample catchments. For flooding events preceded by

short duration and higher values of OF, Equation (3) gives

very low values of Dm. The very low Dm gives OUHs

of sharp peak and short scales which overestimated the

floods. However, if we had calculated the actual Dm using

the spatial variability of Ac, we could have found higher

values of Dm than the value calculated using Equation (3)

and the overestimation could have been avoided.

For estimating the parameters of travel time distri-

butions of overland flow of a hillslope, we followed the

original approach used in DDD (e.g. the distance from any

point in the catchment to the nearest river network is

calculated using the Euclidean distance and the celerity is

determined from recession analysis). The GIUH and of

width function estimates the distribution of travel times at

the outlet of a catchment combining the hillslope and river

network travel times using the steepest descent path from

any point in the catchment to the outlet and the shape

and scale parameters of the travel time distribution could

change with the extent of hillslope saturation. Therefore,

further investigation, i.e., comparison assessment is required

before concluding as one method is better than the other.

Correlation of Ac and Fc with environmental factors

Environmental factors such as vegetation cover, topography

and climate, affect Ac and hence Dm. Land use (e.g.

vegetation cover) affects the hydrology and can affect
om http://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
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subsurface as well as overland flow which in turn can

cause changes in the stream network, i.e., Ac (Jonathan &

Dennis ). The correlation results show that the denser

the vegetation cover in a catchment the higher the Ac is

required for initiating and maintaining a stream and vice

versa, i.e., positive correlation with forest and negative

correlation with bare mountain. The correlation result con-

firms the findings that a decrease in vegetation causes a

decrease in surface resistance and critical shear stress,

which result in an increase of drainage density (a reduction

in Dm), i.e., streams form easier in less vegetated catchments

(Willgoose et al. ; Prosser & Dietrich ; Magnuson

et al. ; Tucker & Slingerland ). Field observations

also show that higher Dm and hence higher Ac is generally

observed in denser vegetation cover (Morisawa ).

The steepness of a catchment is one of the topographical

factors controlling Ac and hence Dm. In this study, we

used the mean hillslope slope of a catchment and found

that a catchment hillslope slope has negative correlation

with Ac, i.e., the higher the steepness, the lower the Ac

required to initiate and maintain stream. This finding is

supported by Montgomery & Dietrich () who found

that stream initiation on steep slopes shows a negative

relationship between valley gradient at the stream head

and Ac, i.e., the higher the stream head slope the lower

the Ac (lower Dm).

The positive correlation between Fc and vegetation

cover in a catchment shows that the denser the vegetation

covers, the higher the Fc. Fc shows negative correlation

with bare mountain, mean hillslope slope and mean

annual precipitation of a catchment. The Ac and hence Fc

depend on several factors, which include geology, precipi-

tation, vegetation, morphology, soils and land uses, and

one factor may be more important than another (see

Table 8). Therefore, a more detailed investigation supported

by field work (e.g. mapping of the slope, geology, vegetation

cover and soil of a catchment at the head of first-order

streams of observed river networks and mapping of the

pattern of expansion of first-order streams during flooding

events) should be carried out to assess how the combination

of these factors control Ac and hence Fc.

We have done a simple multiple linear regression analy-

sis using the four environmental factors as predictors, i.e.,

forest, bare mountain, slope and mean annual precipitation,
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to estimate the response variable Fc. The result shows that

only bare mountain is contributing significantly in estimat-

ing Fc with a significance level of 0.1, and the coefficient

of determination of the regression (R2) is 0.3. The objective

of the regression analysis, done in this study, is to assess a

preliminary method for regionalization that can predict Fc

for ungauged catchments from environmental factors and

to lay a foundation for further studies.

A dynamic river network method could be implemented

in rainfall-runoff models as shown for DDD for prediction of

floods for catchments with a wide range of topography

and land uses (Table 1). In this study, the effect of steep

hills is reflected in the dynamic river networks as the

steepness of a catchment is one of the factors that govern

the initiation of streams. As shown in Table 8, the mean

hillslope slope has a negative correlation with Ac, i.e., we

need a smaller Ac to initiate and maintain streams in steep

topography than in a flat topography. Table 9 also shows

that the mean Ac of an observed stream network decreases

as the mean hillslope slope of a catchment increases. The

fundamental theory behind the method is the expansion of

river networks during flooding events, i.e., whether the

critical flux, Fc, which is required to initiate and maintain

a stream, is satisfied or not. The magnitude of Fc depends

on the magnitude of saturation excess overland flow, OF,

and the critical support area, Ac. The study results also

show that the critical support area, required to initiate and

maintain a stream, is smaller in steep and bare mountain

catchments than flat and forested catchments. Therefore,

the method could be applicable at different catchments

with different characteristics.
CONCLUSIONS

The dynamic river network method, introduced in Distance

Distribution Dynamics (DDD) rainfall-runoff model, can

improve the prediction of flood peaks in continuous simu-

lation satisfactorily. The performance of the DDD model

is the same with and without dynamic river network in

terms of KGE and BIAS. The statistical analysis on 91

flood peaks, underestimated by DDD without dynamic

river network method, shows that the MARE of the predic-

tion reduced from 32.9% to 15.7% using the dynamic river
://iwaponline.com/hr/article-pdf/51/2/146/682300/nh0510146.pdf
network method. With a dynamic river network method,

the 0.75 quantile of the relative errors reduced from 41%

to 23%, and the 0.25 quantile of the relative errors reduced

from 22% to 1%. The visual inspection of the hydrographs

also shows an improvement in the prediction of flood

peaks for several flooding events. Therefore, we recommend

the use of a dynamic river network method in the prediction

of floods. The next step in the development of the method is

to investigate the applicability of the method from gauged

to ungauged catchments and find a way to address the

limitations identified in this study.

The critical flux, Fc, the calibration parameter intro-

duced in the method, has been formulated as the product

of critical supporting area (Ac) and the saturated excess

overland flow (OF). Fc shows stronger correlation with

vegetation cover than topographical and climate factors.

The parameter shows positive correlation with forest

cover of catchments, and negative correlation with bare

mountain, mean hillslope slope and mean annual precipi-

tation. The simple multiple linear regression, using the

four environmental factors as predictors and Fc as a

response variable, shows that there is a potential to estimate

Fc from environmental factors and regionalize it for

using the method without calibration. The value of the cali-

brated Fc could be different for the same catchment of

different flood magnitudes, and it could be different for the

same type of vegetation cover for different catchments.

This difference shows that Fc could depend on several

environmental factors and further investigations should be

carried out.
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